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Chapter 6

Multivariate Distributions

I 6.1 Introduction

Thus far, we have considered the distribution of a single random variable. This chapter
extends the analysis to a collection of random variables X = X, X3, ..., X,,). When
m =2, we have a bivariate setting; when m = 3, a trivariate ... and so on. Although the
transition from univariate to multivariate analysis is ‘natural’, it does introduce some new
concepts, in particular: joint densities §6.1 A, non-rectangular domains §6.1 B, joint
distribution functions §6.1 C, marginal distributions §6.1 D, and conditional distributions
§6.1 E. Multivariate expectations, product moments, generating functions and multivariate
moment conversion functions are discussed in §6.2. Next, §6.3 examines the properties of
independence and dependence. §6.4 is devoted to the multivariate Normal, §6.5 discusses
the multivariate ¢ and the multivariate Cauchy, while §6.6 looks at the Multinomial
distribution and the bivariate Poisson distribution.

6.1 A Joint Density Functions

Continuous Random Variables

Let X = (X1, ..., X,,) denote a collection of m random variables defined on a domain of
support A c R™, where we assume A is an open set in R”. Then a function f: A - R, is
a joint probability density function (pdf) if it has the following properties:

f(x1, ooy xp) > 0, for(xy, ..., x,) € A

f"'ff(xl, X)) dx, dx, = 1 6.1)
A

@ Example 1: Joint pdf

Consider the function f(x, y) with domain of support A = {(x, y): 0 <x <%,0 <y < ®}:

fz ——; domain[f] = {{x, 0, «}, {y, 0, }};
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Clearly, f is positive over its domain, and it integrates to unity over the domain:

Integratel[f, {x,0,>}, {v,0,x}]

1

Thus, f(x, y) may represent the joint pdf of a pair of random variables. Figure 1 plots
f(x, y) over part of its support.

Fig. 1: The joint pdf f(x, y)

A contour plot allows one to pick out specific contours along which z = f(x, y) is
constant. That is, each contour joins points on the surface that have the same height z.
Figure 2 plots all combinations of x and y such that f(x, y) = % The edge of the dark-
shaded region is the contour line.

Fig. 2: The contour f(x, y) = %_10



§6.1 A MULTIVARIATE DISTRIBUTIONS 189

o Discrete Random Variables

Let X = (Xi, ..., X,,,) denote a collection of m random variables defined on a domain of

support A c R™. Then a function f: A — R, is a joint probability mass function (pmf) if
it has the following properties:

f(xt, ooy X)) = PXy =x1, 0.0, X = %) > 0, for (x1, ..., x,) €A

6.2)

Z "'Zf(-xla cees -xm) =1
A

@ Example 2: Joint pmf

x+1-y

Let random variables X and Y have joint pmf A(x, y) = 2

A={(x,y): xe{3,5,7), ye {0, 1, 2, 3}, as per Table 1.

with domain of support

Y=0|Y=1|Y=2|Y=3
X=3| 5 | % | % | %

Table 1: Joint pmf of A(x, y) = %

In Mathematica, this pmf may be entered as:

XxX+1l-vy
pmf =Tab1e[T, {x, 3,7, 2}, {v, O, 3}]
2 1 1 1
27 18 27 54
1 S5 2 1
9 54 27 18
4 7 1 5
27 54 9 54

This is a well-defined pmf since all the probabilities are positive, and they sum to 1:

Plus @@ Plus @@ pmf

1
The latter can also be evaluated with:

Plus @@ (pmf // Flatten)

1

Figure 3 interprets the joint pmf in the form of a three-dimensional bar chart.
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x+1-y
54

Fig. 3: Joint pmf of A(x, y) =

6.1 B Non-Rectangular Domains

If the domain of a joint pdf does not depend on any of its constituent random variables,
then we say the domain defines an independent product space. For instance, the domain
{(x, y): % <x<3, 1 <y<4}is an independent product space, because the domain of X
does not depend on the domain of Y, and vice versa. We enter such domains into
mathStatica as:

] 1
domain[£] = {{x, 5" 3}, {v. 1, 4}}

If plotted, this domain would appear rectangular, as Fig. 4 illustrates. In this vein, we refer
to such domains as being rectangular.

1
2

Fig. 4: A rectangular domain
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Sometimes, the domain itself may depend on random variables. We refer to such
domains as being non-rectangular. Examples include:

(i) {(x,y):0<x<y<o} This would appear triangular in the two-dimensional plane.
We can enter this domain into mathStatica as:

domain[£f] = {{x, 0, v}, {y, %X, }}
(i) {(x,y): x> +y* < 1}. This would appear circular in the two-dimensional plane. At
present, mathStatica does not support such domains. However, this feature is

planned for a future version of mathStatica, once Mathematica itself can support
multiple integration over inequality defined regions.

6.1 C Probability and Prob

Continuous Random Variables

Given some joint pdf f(xy, ..., X,), the joint cumulative distribution function (cdf) is
given by:

"X 291
PXy <Xy ooy Xon <Xp) = f f Wi, oo w)dwy - dw,,. (6.3)

The mathStatica function Prob [{xy, ..., X, }, f] calculates P(X; < xi, ..., Xpn < X;). The
position of each element {x,x,,...} in Prob[{x(,...,X,}, f]1 is important, and must
correspond to the ordering specified in the domain statement.

@ Example 3: Joint cdf

Consider again the joint pdf given in Example I:

£f=———; domain[£] = {{x, 0, =}, {y, 0, =}};

Here is the cdf F(x, y) = P(X <x, Y < y):

F = Prob[{x, v}, f]

e v |1 ev (x+x%2 +y+2xY)

(1+x)’y

Since F(x, y) may be viewed as the anti-derivative of f(x, y), differentiating F yields the
original joint pdf f(x, y):

D[F, x, y] // Simplify
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Figure 5 plots the joint cdf.

Fig. 5: The joint cdf F(x, y)

The surface approaches 1 asymptotically, which it reaches in the limit:
Prob[{c, =}, f]

1

@ Example 4: Probability Content of a Region — Introducing MrSpeedy

Let X = (X1, X2, X3) have joint pdf g(x;, x2, x3):

g

k e x; (%, +1) /x%;
domain[g]

{{x%:, 0, 1}, {x%2, 2, 4}, {x%3, 3, 5}};

where the constant k£ > 0 is defined such that g integrates to unity over its domain. The cdf
of g is:

Clear|[G]:;

G[x1l_, %x2_, ®x3_] = Prob[{xl, x2, %3}, g]

k(l+e (-1+x1)) (-2+x2) (4+x2) (-3 +x3)
6 x3

Note that we have set up G as a Mathematica function of x1 through x3, and can thus

apply it as a function in the standard way. Here, we find k by evaluating G at the upper
boundary of the domain:

G[1, 4, 5]

16 k
15
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This requires k = %2— in order for g to be a well-defined pdf. If we require the probability

content of a region within the domain, we could just type in the whole integral. For
instance, the probability of being within the region

1 7 9
SZ{(XI,Xz,X3)I O<X1<7, 3<XQ<7, 4<X3<7}

is given by:

s Iz X
2 2 2
j j j gdx; dx, dx;
4 J3z Jo

L(lﬁ

288 2 k

While this is straightforward, it is by no means the fastest solution. In particular, the
probability content of a region within the domain can be found purely by using the
function G[] (which we have already found) and the boundaries of that region, without
any need for further integration. Note: the solution is not G[%, %, %] -GJ0,3,4].
Rather, one must evaluate the cdf at every possible extremum defined by set S. The
mathStatica function MrSpeedy [cdf, S] does this.

? MrSpeedy

MrSpeedy[cdf, S] calculates the probability content
of a region defined by set S, by making use of the
known distribution function cdf[xl, x2, ..., xm].

For our example:
1 7 9
S={{0' —2“}1 {31 ?}I {41 _2"'}};

MrSpeedy [G, S]

Ve

2

17

288 k

MrSpeedy typically provides at least a 20-fold speed increase over direct integration. To
see the calculations Mr Speedy performs, replace G with say ®:

MrSpeedy [&, S]

-8[0, 3, 4] +3[0, 3, %} +3[0, % 4] - 3o, % %} +
1 1 9 17 1 7 9
@[7, 3, 4}*@[?, 3, 7}*@[7, ?, 4}+§[7, 5, ?}

MrSpeedy evaluates the cdf at each of these points. Note that this approach applies to
any m-variate distribution. ]
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o Discrete Random Variables

Given some joint pmf f(xy, ..., X,,), the joint cdf is
PXy X1, X X)) = D o D0 fwr, o wy). (6.4)
wp <X Wi < X

Note that the Prob function does not operate on multivariate discrete domains.

@ Example 5: Joint cdf

In Example 2, we considered the bivariate pmf h(x, y) = 1Y with domain of support

A={(xy:xe{3,57), ye{0,1,2,3})}. The cdf, H(x,y)=P(X<x,Y<y), can be
defined in Mathematica as follows:

wl+1l-w2

H[x_, y_] = Sum| ”

, {wl, 3, x, 2}, {w2, 0, y}]

1
2
To8 (8+7y—y +lOFloor[—i (-3+x) ]+

9yFloor[E2l (-3+x)]| -y*Floor[= (-3 +x)]+

2Floor[% <73+x)]2 +2yFloor|

STRE ST

2
(-3 +x) | ]

Then, for instance, P(X <5, Y <3)is:

H[5, 3]

14
27

Figure 6 plots the joint cdf as a three-dimensional bar chart.

Fig. 6: The joint cdf H(x, y)
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6.1 D Marginal Distributions

Continuous Random Variables

Let the continuous random variables X; and X, have joint pdf f(x;,x,). Then the
marginal pdf of X, is fi(x;), where

Sitxr) =ff(x1,x2)dx2. (6.5)

2

More generally, if (Xi, ..., X,,) have joint pdf f(xi, ..., x,), then the marginal pdf of a
group r<m of these random variables is obtained by ‘integrating out’ the (m —r)
variables that are not of interest. The mathStatica function, Marginal [X,, f1, derives
the marginal joint pdf of the variable(s) specified in X,. If there is more than one variable
in X,, then it must take the form of a list. The ordering of the variables in this list does not
matter.

@ Example 6: Marginal
Let the continuous random variables X = X1, X», X5, X4) have joint pdf f(x;, x,, x3, x4):

£
domain[£f]

k e x; (%, +1) (%3 -3)%/x%;
{{x®1, 0, 1}, {x2, 1, 2}, {x%3, 2, 3}, {%a, 3, 4}};

where & is a constant. The marginal bivariate distribution of X, and X, is given by:

Marginal [{Xa, X4}, £]
k(L)

2
3X4

The resulting marginal density depends only on values of X, and X,, since X; and X;
have been integrated out. Similarly, the marginal distribution of X; does not depend on
values of X, X, or Xj:

Marginal [x,, £f]

5k
6 x7

We can use Marginal to determine k, by letting X, be an empty set. Then all the random
variables are ‘integrated out’:

Marginal[{}, £]

5k
72

Thus, in order for f to be a well-defined density function, kK must equal 75—2 |
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Discrete Random Variables

In a discrete world, the [ symbol in (6.5) is replaced by the summation symbol Z. Thus, if
the discrete random variables X; and X, have joint pmf f(x;, x,), then the marginal pmf
of X; is fi(x;), where

Al =D fxr, x). (6.6)

The Marginal function only operates on continuous domains; it is not currently
implemented for discrete domains.

@ Example 7: Discrete Marginal

x+1-y

Recall, from Example 2, the joint pmf h(x, y)= =

{,y): xe(3,5, 7}, ye{0,1,2,3}}):

with domain of support

l1-y

X+
pmf =Tab1e[T, {x, 3,7, 2}, {y¥, 0, 3}]7

By (6.6), the marginal pmf of Y is:

x+1l-vy

pmf, = Su.m[ 52

, {%, 3,7, 2}] // simplify

6-vy
18

where Y may take values of 0, 1, 2 or 3. That is:
pmf, /. y-» {0, 1, 2, 3}
{i 5 2 i}
3’7 18" 9' 6

Alternatively, we can derive the same result directly, by finding the sum of each column
of Table 1:

Plus @@ pmf

1 2 1
5 % 5 %)

The sum of each row can be found with:

Plus @@ Transpose [pmf ]

(3 1 13,

27" 3" 27

Further examples of discrete multivariate distributions are given in §6.6. |
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6.1 E Conditional Distributions

Continuous Random Variables

Let the continuous random variables X; and X, have joint pdf f(x;, x;). Then the
conditional pdf of X; given X, = x, is denoted by f(x; | X, = x,) or, for short, f(x; | X7).
It is defined by

S ;)

[ | x) = 55

provided f>(x;) > 0 6.7)

where f>(x;) denotes the marginal pdf of X, evaluated at X, = x,. More generally, if
(X1, ..., X,,) have joint pdf f(xq, ..., x,), the joint conditional pdf of a group of r of these
random variables (given that the remaining m — r variables are fixed) is the joint pdf of the
m variables divided by the joint marginal pdf of the m — r fixed variables.

Since the conditional pdf f(x; | X,) is a well-defined pdf, we can use it to calculate
probabilities and expectations. For instance, if u(X;) is a function of X;, then the
conditional expectation E [u(Xl) | X, = le is given by

Elux)| x] = [ utn) G | ) dx,. 6.8)

X1

With mathStatica, conditional expectations are easily calculated by first deriving the
conditional density, say fion(x1) = f(x; | x;) and domainlfe,n]l. The desired
conditional expectation is then given by Expect [u, f.on]. TWo particular examples of
conditional expectations are the conditional mean E [Xl | le, which is known as the
regression function of X; on X,, and the conditional variance Var(X; |x2), which is
known as the scedastic function.

@ Example 8: Conditional

The mathStatica function, Conditional [X,, f], derives the conditional pdf of X,
variable(s), given that the remaining variables are fixed. As above, if there is more than
one variable in X,, then it must take the form of a list; it does not matter how the variables
in this list are sorted. To eliminate any confusion, a message clarifies what is (and what is
not) being conditioned on. For density f(x;, x2, x3, x4), defined in Example 6, the joint
conditional pdf of X, and X4, given X; = x; and X3 = x;3 is:

Conditional [{x,, x4}, £]

— Here is the conditional pdf £ (x; , x4 | X1 , X3 ):
24 (1 +xy)
2
5 X1

Note that this output is the same as the first Marginal example above (given k = %).

This is because (X;, X», X3, X4) are mutually stochastically independent (see §6.3 A). ®
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@ Example 9: Conditional Expectation (Continuous)

Let X; and X, have joint pdf f(x;,x,)=x; +x,, supported on the unit rectangle
{(x1,%):0<x <1,0<x, <1}

f=x +x;; domain[f] = {{x%., 0, 1}, {x2, O, 1}};

as illustrated below in Fig. 7. Derive the conditional mean and conditional variance of X,
given X, = x,.

Fig. 7: The joint pdf f(x;, x3) = x; +x,

Solution: The conditional pdf f(x; | X,), denoted £y, is:!

feon = Conditional [x;, f]

— Here is the conditional pdf £ (x; ’xz )<

X1 + Xo

1
3 + X2

In order to apply mathStatica functions to the conditional pdf f..,, we need to declare
the domain over which it is defined. This is because mathStatica will only recognise £,
as a pdf if its domain has been specified. Since random variable X, is now fixed at x,, the
domain of f_., is:

domain[f.on] = {x%:, 0, 1};
The required conditional mean is:

Expect [X1, foon]

2+ 3 x5
3+6x;
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The conditional variance is:

Var [xl L4 fcorA ]

1+6x, +6x3
18 (1 +2x,)°2

As this result depends on X, , the conditional variance is heteroscedastic. | |

Discrete Random Variables

The transition to a discrete world is once again straightforward: if the discrete random
variables, X; and X,, have joint pmf f(x, x,), then the conditional pmf of X, given
X, = x; is denoted by f(x, | X, = x1) or, for short, f(x, | x1). It is defined by

S x)

feo|x) = [ACORE

provided fi(x;) > 0 (6.9)

where fi(x;) denotes the marginal pmf of X, evaluated at X; = x;, as defined in (6.6).
Note that mathStatica’s Conditional function only operates on continuous domains;
it is not implemented for discrete domains. As above, the conditional pmf f(x, | x;) can
be used to calculate probabilities and expectations. Thus, if u(X;) is a function of X,, the
conditional expectation E [u(Xz) | X, = xl] is given by

E[uXo) | x| = 3 ul) f(x | x). (6.10)

X2

@ Example 10: Conditional Mean (Discrete)

Find the conditional mean of X, given Y =y, for the pmf h(x, y) = with domain of

support {(x, y): x€{3,5,7}, ye {0, 1,2, 3}}.

x+1-y
54

Solution: We require E[X| Y= y] =Yxhx|ly) =X« /;Z(x_(yy)) In Example 7, we found
X X Yy
6—

that the marginal pmf of ¥ was h,(y) = l—gy. Hence, the solution is:

xX+1-vy 6 -y . .
sol =Su.m[x / , {x, 3,7, 2}] // Simplify
54 18
98 - 15y
18-3vy

This depends, of course, on Y = y. Since we can assign four possible values to y, the four
possible conditional expectations E [X | Y= y] are:

sol /. Y—){ol 1, 2, 3}
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I 6.2 Expectations, Moments, Generating Functions

6.2 A Expectations

Let the collection of m random variables (X, ..., X,,) have joint density function

f(x1, ..., xu). Then the expectation of some function u of the random variables,
ulXi, ..., X,), s

f fu(xl,--.,xm)f(xl,--.,xm)clxl-~-clxm
Xm X1

EluXy, ... X»)| = (6.11)
Z Z ULy ooy X)) f(X1, oy Xn)

‘Xm

corresponding to the continuous and discrete cases, respectively. mathStatica’s Expect
function generalises neatly to a multivariate continuous setting. For instance, in §6.1 D,
we considered the following pdf g(x;, x,, x3, x4):

g ?exl X (% +1) (%3 -3)2/x%;

domain[g] {{x®1, 0, 1}, {x2, 1, 2}, {x%3, 2, 3}, {%a, 3, 4}};

We now find both E[X; (X? — X,)] and E[X,]:

Expect [x; (X2 -x;), g]

157

Tg‘ <*2+(e)

Expect [x,, g]
S

12 Log[?

6.2 B Product Moments, Covariance and Correlation

Multivariate moments are a special type of multivariate expectation. To illustrate, let X;
and X, have joint bivariate pdf f(x;, x,). Then, the bivariate raw moment /ers is

’

L, = EIX]X3]. (6.12)

With s =0, /ero denotes the r™ raw moment of X;. Similarly, with r =0, /JOYS denotes the
s raw moment of X,. More generally, /Jm is known as a product raw moment or joint

raw moment. These definitions extend in the obvious way to higher numbers of variables.

The bivariate central moment 1,  is defined as
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W, = E[(Xi —E[X,1) (X2 —E[X2])']. (6.13)
The covariance of X; and X, denoted Cov(X;, X;), is defined by
Cov(X;, X;) = E[(X; - E[X:]) (X; - E[X;])]. (6.14)

When i=j, Cov(X;, X;) is equivalent to Var(X;). More generally, the variance-
covariance matrix of X = (Xi, X, ..., X,,;,) is the (mxm) symmetric matrix:

N PN o T
Varcov(X) = E|(X - E[X])(X - E[X]) ]
X, —EX,
X> —EX;
- E : [ (X, ~EX). (X2 ~EX). ... (Xn~EX,) )
Xm _EXm
X —EX,) X —EX)) (X, —EXp) - (X —EX)) (X, —EX,)
-k X, —EXp) (X, —EXy) X, —EX,)’ o (X —EX) (X, —EX,)
L (Xm _EXm) (Xl _EXI) (Xm _EXm) (X2 _EX2) (Xm _EXW)Z
var(X,)  Cov(X;, X)) - Cov(X;, X,)
Cov(X,, X1) Var(X;) - Cov(Xs, X,)
CovX, X;)  Cov(Xp, Xo) - Var(X,,)

It follows from (6.14) that Cov(X;, X;) = Cov(X;, X;), and thus that the variance-
covariance matrix is symmetric. In the notation of (6.13), one could alternatively express
Varcov(jf ) as follows:

H2,0,0,..,0 Hi1,0,.,0 7 Hio,.,0,1
Varcov(X) = U1,1,.0,...,0 Uo,z,.o,...,o MO,I,:..,O,I 6.15)
Hi,0,..,0,1 Ho,1,0,..1 -+ Hoo,..,0,2
which again highlights its symmetry.
Finally, the correlation between X; and X is defined as
Cov(X;, X;
pXi, X;) = py = Mﬁv—-ﬁg)‘ (6.16)

where it can be shown that —1<p; <1. If X; and X; are mutually stochastically
independent (§6.3 A), then p;; = 0; the converse does not always hold (see Example 16).
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@ Example 11: Product Moments, Cov, Varcov, Corr

Let the continuous random variables X, Y and Z have joint pdf f(x, y, z):

1 2z x
£ = —— e 777 [l+a(2y-1) Exf[—]|;

27 A 2
{{x’ -0, OO}, {y, 0, 1}' {zl ol oo}}
&& {-1<a<1l, A>0};

domain[£f]

The mean vectoris o = E[(X, Y, Z)]:

Expect [{x, v, 2z}, f]

Here is the product raw moment /132,1 =E[X*Y*Z]:

Expect [x3 v? z, £]

5a A

121

Here is the product central moment Uy .2 = E[( X - E[X] )2 (Z-E|Z] )2]:
Expect [ (x - Expect [x, f] )2 (z - Expect [z, f] )2, £f]
22

Cov(X, Y) is given by:

Cov[{x, v}, f]

a

6

More generally, the variance-covariance matrix is:

Varcov|[f]

o
I w7 0
o 1
6\ 12 0
0 0 A2

The correlation between X and Y is:

Corr[{x, v}, £f]

a

V3n
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6.2 C Generating Functions

The multivariate moment generating function (mgf) is a natural extension to the univariate
case defined in Chapter 2. Let X = (X1, ..., X,,) denote an m-variate random variable, and
let 7=(t1, ..., tn) € R” denote a vector of dummy variables. Then the mgf My (7) is a
function of 7; when no confusion is possible, we denote M, (7) by M (7). It is defined by

M(1) = Ele™X| = E[en X+ +m¥n] (6.17)

provided the expectation exists for all #; € (—c, ¢), for some constant ¢ >0, i=1, ..., m. If
it exists, the mgf can be used to generate the product raw moments. In, say, a bivariate
setting, the product raw moment /Jm = E[X] X35] may be obtained from M (7) as follows:

, s M(?)
- r S -
Hrs = EIXT XD = at; ot .

7=

(6.18)

The central moment generating function may be obtained from the mgf (6.17) as follows:

_\

E[@?-(?—ﬁ)] = e F M), where I = E[X]. (6.19)

The cumulant generating function is the natural logarithm of the mgf. The multivariate
characteristic function is similar to (6.17) and given by

C(@) = Elexp(ii.X)] = Elexp(i(ti Xi + 6 Xo + -+ + 1, X,,))] (6.20)

where i denotes the unit imaginary number.

Given discrete random variables defined on subsets of the non-negative integers
{0, 1, 2, ...}, the multivariate probability generating function (pgf) is

(7)) = E[f" 62 - %] (6.21)
The pgf provides a way to determine the probabilities. For instance, in the bivariate case,

1 oI
P(Xlzr,XZ:s) = W—m—g—%l ;5 . (622)
1=

The pgf can also be used as a factorial moment generating function. For instance, in a
bivariate setting, the product factorial moment,

A, sl = EIX" X3
b (6.23)
= EXi(X; -D-- X —r+1) x XX -1 (X, —s+1)]
may be obtained from I1(7) as follows:
/ _ "l ylsly — O I(T)
,u[rs S] - E[Xl X2 ] - aﬂ (3!5 (624)

~l
Il
—l
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Note that 7 is set here to 1 and not 0. To then convert from factorial moments to product
raw moments, see the FactorialToRaw function of §6.2 D.

@ Example 12: Working with Generating Functions

Gumbel (1960) considered a bivariate Exponential distribution with cdf given by:

F=1l-e*-eV¥4e *voxy,

for 0 =0 < 1. Because X and Y are continuous random variables, the joint pdf f(x, y) may
be obtained by differentiation:

f = D[F, x, y] // Simplify
domain[f] = {{x, 0, «}, {y, 0, «}} && {0<©<1};

@ XY XYO (14 (ml+x+y) O+xy6?)

This is termed a bivariate Exponential distribution because its marginal distributions are
standard Exponential. For instance:

Marginal [x, f]

-X

e

Here is the mgf (this takes about 100 seconds on our reference machine):

t= {ti1, t2}; V= {x%, v}; mgf =Expect[e€"7, f]

— This further assumes that: {tl <1, Arg[ 7l;t2 ] + O}

B £, . 1
-1+ tl 1- t2
1 (clety) (-10%y)
57 \© (

+

MeijerG[{{}, {1}}, {{0, O}, {}},

(-1+t1) (-1+¢ty) }
O

(-1+t1) (L+(-1+06) ty) +

(-1+t1) (-1+¢t2) }
O

(1-ty + (-1+6+ty) t2)))

ExpIntegralkE [l ,

where the condition Arg | ’l%‘] + 0 is just Mathematica’s way of saying t, < 1. We
can now obtain any product raw moment /Jm = E[X] X3] from the mgf, as per (6.18). For
instance, (15 , = E[X} X3] is given by:

D[ mgf, {ti, 3}, {t2, 4}] /. t_ >0 // FullSimplify

120 (1+6 (5+26)) -12e? (1+66 (1+6)) Gamma [0, ]
o6
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If we plan to do many of these calculations, it is convenient to write a little Mathematica
function, Moment [r, s] = E[X" Y*], to automate this calculation:

Moment [r_, s_] :=
D[ mgf, {t;, r}, {tz, s}] /. t -0 // FullSimplify

Then /13y4 is now given by:

Moment [3, 4]

120 (1+6 (5+20)) -12e? (1+66 (1+6)) Gamma [0, ]
o6

Just as we derived the ‘mgf about the origin’ above, we can also derive the ‘mgf about the
mean’ (i.e. the central mgf). To do so, we first need the mean vector & = (E[X], E[Y]),
given by:

Il = {Moment[1, 0], Moment[O0, 1]}
{1, 1}

Then, by (6.19), the centralised mgf is:

.1

mgfc = e mgf;

Just as differentiating the mgf yields raw moments, differentiating the centralised mgf
yields central moments. In particular, the variances and the covariance of X and Y can be
obtained using the following function:

MyCov([i_, j_] := D[mgfc, t;, t;] /.t -0 // FullSimplify

which we apply as follows:

Array[MyCov, {2, 2}]

1

1 1+ [ Gamrréa[o,i@}
E i
14 ed Gamma [0, 5] 1

<]

To see how this works, evaluate:

Array[o, {2, 2}]

We could, of course, alternatively derive the variance-covariance matrix directly with
Varcov [ £], which takes roughly 6 seconds to evaluate on our reference machine. ]
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6.2 D Moment Conversion Formulae

The moment converter functions introduced in Chapter 2 extend naturally to a multivariate
setting. Using these functions, one can express any multivariate moment (1, 1 or x) in
terms of any other moment (1, 1 or ). The supported conversions are:

function description
RawToCentral [{r, s, ...} ] not implemented
RawToCumulant [ {r,s, ...} ] /me_“ in terms of x;j ..
CentralToRaw ([ {r,s, ...} ] U, s . in terms of “u

CentralToCumulant [{r,s,...}] 4, interms of x;j .

CumulantToRaw ][ {r, s, ...} ] Ky.s,... in terms of Hij .
CumulantToCentral [{r, s, ...} ] Ky, ... in terms of [y .

and
RawToFactorial [{r,s, ...} ] /ersy_“ in terms of [i[i, j, ...]
FactorialToRaw [ {r,s, ...} ] [[r, s] in terms of /ﬁli‘j

Table 2: Multivariate moment conversion functions

@ Example 13: Express Cov(X, Y) in terms of Raw Moments

Solution: By (6.13), the covariance between X and Y is the central moment pp (X, Y).
Thus, to express the covariance in terms of raw moments, we use the function
CentralToRaw[{1l,1}]:

CentralToRaw|[{1l, 1}]
Ul,l 4 *,&0,1 ,&1,0 +,&1,1

This is just the well-known result that uy .y = EIXY]-E[Y]E[X]. [ |

Cook (1951) gives raw — cumulant conversions and central — cumulant
conversions, as well as the inverse relations cumulant - raw and cumulant — central, all
in a bivariate world with r+ s < 6; see also Stuart and Ord (1994, Section 3.29). With
mathStatica, we can derive these relations on the fly. Here is the bivariate raw moment
(15 , expressed in terms of bivariate cumulants:

RawToCumulant [ {3, 2}]

/1312 > Kb 1 K3, o+ Ko,2Ki,o+6Ko,1Ki gKi,1+6Ki0K] 1+
3K} g Ki,2 +3 K51 Ki,0 Kz,0 + 3 Ko,2 K1,0 Kz,0 +
6 Ko,1 K1,1 K2,0 +3 K1,2 K2,0 + 6 Ko,1 K1,0 K2,1 +6K1,1 Kz,1 +
3 K1,0 Ka,2 +Kg,1 K3,0 +Ko,2 K3,0 +2Ko,1 K3,1 +K3,2
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Working ‘about the mean’ (i.e. set xj,0 = Ko,; =0) yields the CentralToCumulant
conversions. Here is:

CentralToCumulant [ {3, 2}]

H3,2 > 3 Ky,2 Kg,0 +6 K11 Ka,1 +Ko,2 K3,0 +K3,2

The inverse relations are given by CumulantToRaw and CumulantToCentral.
Here, for instance, is the trivariate cumulant x, ; ; expressed in terms of trivariate raw
moments:

CumulantToRaw[{2, 1, 1}]

, , ;2 , ;2
Kz,1,1 > =6 HUg,0,1 Ho,1,0 H1,0,0 * 2 Ho,1,1 H1,0,0 *+

4 1g,1,0 H1,0,0 H1,0,1 + % Ho,0,1 H1,0,0 H1,1,0 ~
213, 0,0 M1,1,0 =2 Hy,0,0 M1,1,1 2 Ho,0,1 Ho,1,0 M2,0,0 ~

Ho,1,1 H2,0,0 ~Ho,1,0 H2,0,12 ~Ho,0,1 H2,1,0 T H2,1,1

The converter functions extend to any arbitrarily large variate system, of any weight. Here
is the input for a 4-variate cumulant x3 ; 3. of weight 8 expressed in terms of central
moments:

CumulantToCentral[{3, 1, 3, 1}]

The same expression in raw moments is about 5 times longer and contains 444 different
terms. It takes less than a second to evaluate:

Length [CumulantToRaw[{3, 1, 3, 1}][2]] // Timing

{0.383333 Second, 444}

Factorial moments were discussed in §6.2 C, and are applied in §6.6 B. David and Barton
(1957, p. 144) list multivariate factorial - raw conversions up to weight 4, along with the
inverse relation raw — factorial. With mathStatica, we can again derive these relations on
the fly. Here is the bivariate factorial moment [1[3, 2] expressed in terms of bivariate raw
moments:

FactorialToRaw [ {3, 2}]
(3, 2] > -2 /11,1 +2 /11,2 +3 /12,1 -3 /12,2 ’/13,1 *f,l3,2
and here is a trivariate RawToFactorial conversion of weight 7:

RawToFactorial [{4, 1, 2}]

bgq1, 001, 1, 1)+ 41, 1, 21 +74(2, 1, 1] +74[2, 1, 2] +
643, 1, 1] +64[3, 1, 2] +4[4, 1, 1] +4[4, 1, 2]
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The Converter Functions in Practice

Sometimes, one might know how to derive one class of moments (say raw moments) but
not another (say cumulants), or vice versa. In such situations, the converter functions
come to the rescue, for they enable one to derive any moment (/1, u or x), provided one
class of moments can be calculated. This section illustrates how this can be done. The
general approach is as follows: first, we express the desired moment (say x; ;) in terms of
moments that we can calculate (say raw moments):

CumulantToRaw [ {2, 1}]
2

Kz,1 > 2 U1 Hy,0 =2 Hy,0 H1,1 —Ho,1 Ha o ¥ Hp g

and then we evaluate each raw moment /17 for the relevant distribution. This can be done
in two ways:

Method (i): derive /17 from a known mgf
Method (ii):  derive 1 directly using the Expect function.

Examples 14 and 15 illustrate the two approaches, respectively.

@ Example 14: Method (i)
Find y, | , for Cheriyan and Ramabhadran’s multivariate Gamma distribution.

Solution: Kotz et al. (2000, p.456) give the joint mgf of Cheriyan and Ramabhadran’s
m-variate Gamma distribution as follows:

-6 n
GammaMGF [m_] := (1—21:5] n(l—tj)_ej
-1

i-1
So, for a trivariate system, the mgf is:

mgf = GammaMGF [3]

(1-t1) ™ (1-t2) ™ (1-t3)™" (1-t1 -ty -t3)
The desired central moment 1, | , can be expressed in terms of raw moments:

sol = CentralToRaw[{2, 1, 2}]

;2 , ;2
H2,1,2 >4 Hy 0,1 Ho,1,0 H1,0,0 ~
’ ’ ;2 ’ ’ ;2 ’ ;2
Ho,0,2 Ho,1,0 H1,0,0 = 2 Ho,0,1 Ho,1,1 H1,0,0 + Ho,1,2 H1,0,0 ~
4 1y 0,0 Ho,1,0 M1,0,0 H1,0,1 2 Ho,1,0 M1,0,0 H1,0,2
;2 ’ ’ ’ ’
2 o010 M1,0,0 H1,1,0 * 4 Hg,0,1 H1,0,0 H1,1,1 ~

2 Uy,0,0 M1,1,2 ~ Ho,0,1 Ho,1,0 M2,0,0 ¥ 2 Ho,0,1 Ho,1,0 H2,0,1 ~
’ ’ ;2 ’ ’ ’
Ho,1,0 M2,0,2 * Ho,0,1 H2,1,0 =2 Ho,0,1 H2,1,1 + H2,1,2
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Here, each term /Jh v denotes [t (X,Y,Z)=E[X" Y*Z"], which we can, in turn, find
by differentiating the mgf. Since we wish to do this many times, let us write a little

Mathematica function, Moment [r, s, vl = E[X" Y* ZV], to automate this calculation:

r,s,v

Moment [r_, s_, Vv_] :=
D[mgf, {t;, r}, {tz, s}, {ts, v}] /.t -0

Then, the solution is:
sol /. ;'lk_ > Moment [k] // Simplify
H2,1,2 %290 <l2+1090 +91 +93)

An alternative solution to this particular problem, without using the converter
functions, is to first find the mean vector [« = {E[X], E[Y], E[Z]}:

I = {Moment[1, 0, 0], Moment[0, 1, 0], Moment [0, O, 1]}

{60 +61, By +62, Oy +63}

Second, find the central mgf, by (6.19):

t={ti, t, t3}; mgfc= e % mgf

e & (60+61) ~ty (Bp+63) -tz (60+63) <l _ tl)*el

(1-t2) ™ (1-t3)™® (1-t1 -ty -t3)™®
Then, differentiating the central mgf yields the desired central moment p, | , again:

D[mgfc, {ti, 2}, {t2, 1}, {t3, 2}] /.t_-0 // Simplify

290 <l2+1090 + 61 +93)

@ Example 15: Method (ii)

Let random variables X and Y have joint density f(x, y):

1

e T2V |e¥ 4+ (e -2) Erf[_x_] d

Fh
]

V2
domain[£f] = {{x, -, ~}, {y, 0, ©}} && {-l<a<1};

For the given density, find the product cumulant x5 ;.

Solution: If we knew the mgf, we could immediately derive the cumulant generating
function. Unfortunately, Mathematica Version 4 can not derive the mgf; nor is it likely to
be listed in any textbook, because this is not a common distribution. To resolve this
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problem, we will make use of the moment conversion formulae. The desired solution,
K2.2, expressed in terms of raw moments, is:

sol CumulantToRaw|[ {2, 2}]

2,2 , ,2 , , , ,2
Kg,2 = =06 Uy 1 Hy o+ 2 Hg o Hy g +8 Lo g Hy oMy, —2Hy 1~
’ ’ ;2 ’ ’ ’ ’ ’ ’

2 Uy,9 My, 2 How Hyo —Ho,2 Moo =2 Ho,1 Mo, 1 + Hp, o

Here, each term /Jm denotes /Jm(X, Y)=E[X" Y*], and so can be evaluated with the
Expect function. In the next input, we calculate each of the expectations that we require:

sol /. ;'lr_,s_ > Expect [x" y°, £] // Simplify
o0 o
2,2 o
The calculation takes about 6 seconds on our reference machine. [ |

I 6.3 Independence and Dependence

6.3 A Stochastic Independence

Let random variables X = Xy, ..., X,,) have joint pdf f(x;, ..., x,,), with marginal density
functions fi(x1), ..., fu(xn). Then (Xi, ..., X,,) are said to be mutually stochastically
independent if and only if

FOas o xm) = filxn) x % fin () - (6.25)
That is, the joint pdf is equal to the product of the marginal pdf’s. A number of well-

known theorems apply to mutually stochastically independent random variables, which we
state here without proof. In particular:

If (X, ..., X,,) are mutually stochastically independent, then:
i) Pa=<X <b,...,c<X,<d = Pa<X, <b)x--xP(c<X,<d

(i) Elu(X1) - un (X))l = Elun (X)) x -+ x Elu (X))
for arbitrary functions u; (-)

(i) Mty ..o ty) = M(1) x - x M(t,,) o
mgf of the joint distribution = product of the mgf’s of the marginal distributions

(iv) Cov(X;, X;) = 0 forall i # j
However, zero covariance does not imply independence.

Table 3: Properties of mutually stochastic independent random variables
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@ Example 16: Stochastic Dependence and Correlation

Let the random variables X, Y and Z have joint pdf A(x, y, z):

Exp[——:- (%2 +y? +22)] (1+xyzExp[—% (%2 +y%2 +22)])

(2 7'(') 3/2

domain[h] = {{x, -, =}, {y, -, =}, {z, -, =}};

Since the product of the marginal pdf’s:

Marginal [x, h] Marginal[y, h] Marginal[z, h]

... 1s not equal to the joint pdf A(x, y, z), it follows by (6.25) that X, Y and Z are mutually
stochastically dependent. Even though X, Y and Z are mutually dependent, their
correlations p;; (i # j) are all zero:

Varcov[h]

1 0 O
0 1 O
0 0 1
Clearly, zero correlation does not imply independence. ]

6.3 B Copulae

Copulae provide a method for constructing multivariate distributions from known
marginal distributions. We shall only consider the bivariate case here. For more detail, see
Joe (1997) and Nelsen (1999).

Let the continuous random variable X have pdf f(x) and cdf F(x); similarly, let the
continuous random variable Y have pdf g(y) and cdf G(y). We wish to create a bivariate
distribution H(x, y) from these marginals. The joint distribution function H(x, y) is given
by

H(x,y) = C(F, G) (6.26)
where C denotes the copula function. Then, the joint pdf A(x, y) is given by

2
h(x,y) = %Hxi%@yy), (6.27)

Table 4 lists some examples of copulae.
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copula formula restrictions
Independent C=FG
Morgenstern C=FG(l+a(l-F)(1-0G) -l<ax<l1
Ali-Mikhail-Haq ~ C = FG d=a<l
l—-a(l1-F)(1-G)
_ 1 (e—ozF _ 1) (e—ozG _ 1)
Frank C=-1logl+ P | a#0

Table 4: Copulae

With the exception of the independent case, each copula in Table 4 includes parameter «.
This term induces a new parameter into the joint bivariate distribution 4(x, y), which gives
added flexibility. In each case, setting parameter a = 0 (or taking the limit @ — 0, in the
Frank case) yields the independent copula C = F G as a special case. When @ =1, the

Ali-Mikhail-Haq copula simplifies to C = £G

———=—— as used in Exercise 8.
F+G-FG

In the following two examples, we shall work with the Morgenstern (1956) copula.?
We enter it as follows:

ClearAll [F, G]

Copula :=FG (l+a (1-F) (1-G))

@ Example 17: Bivariate Uniform (a la Morgenstern)

Let X ~ Uniform(0, 1) with pdf f(x) and cdf F(x), and let Y ~ Uniform(0, 1) with pdf g(y)
and cdf G(y):

£f=1; domain[f] = {x, 0, 1}; F = Prob[x, f];
g=1; domain[g] = {y, 0, 1}; G = Prob[y, gl;

Let h(x, y) denote the bivariate Uniform obtained via a Morgenstern copula. Then:

h = D[Copula, %, ¥y] // Simplify

1+ (-1+2x%) (-1+2y) a
with domain of support:

domain[h] = {{x%, 0, 1}, {y, 0, 1}} && {-1<a<1};
Figure 8 plots the joint pdf i(x, y) when @ = % Clicking the ‘View Animation’ button in
the electronic notebook brings up an animation of A(x, y), allowing parameter « to vary

from —1 to 1 in step sizes of % This provides a rather neat way to visualise positive and
negative correlation.
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Fig. 8: Bivariate Uniform joint pdf i(x, y) when @ = % ﬁ

We already know the joint cdf H(x, y) = P(X < x, Y <y), which is just the copula function:

Copula
xy (1+(1-x) (1-v)a)

The variance-covariance matrix is given by:

Varcov[h]
1 o
12 36
a1
36 12

@ Example 18: Normal-Uniform Bivariate Distribution (a la Morgenstern)

Let X ~ N(0, 1) with pdf f(x) and cdf F(x), and let Y ~ Uniform(0, 1) with pdf g(y) and
cdf G(y):

-

f = ; domain[f] = {x, -, }; F =Prob[x, £];:
V2

g=1;

domain[g] = {y, 0, 1}; G = Probly, g];

Let h(x, y) denote the bivariate distribution obtained via a Morgenstern copula. Then:
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h = D[Copula, x, ¥y] // Simplify

e (L+(-1+2y) aErf[ 2]

Va2

with domain of support:

domain[h] = {{x, -, <}, {¥, 0, 1}} && {-1<a=<1};

Figure 9 plots the joint pdf 4(x, y) when @ = 0.

Fig. 9: Normal-Uniform joint pdf 4(x, y) when & = 0 ﬁ

The joint cdf H(x, y) = P(X < x, Y <) is the copula function:
Copula // Simplify

X

1+Erf[%}]] (1+Erf[ﬁ}]

We can confirm that the marginal distributions are in fact Normal and Uniform,
respectively:

%y 1+% (-1+y) a

Marginal [x, h]
Marginal [y, h]
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The variance-covariance matrix is:

Varcov[h]

o
Y
o 3

6~/ 2

Let h.(y) denote the conditional density function of Y, given X = x:

h. = Conditional [y, h]
— Here is the conditional pdf h (y ’ x):
1+ (-1+2y) aErf[%}
with domain:
domain[h.] = {y, 0, 1} && {-1<a<1};
Then, the conditional mean E [Y | X= x] is:

Expect [y, h.]

[3+aErf[3_}]

V2

1
6

and the conditional variance Var(Y | X= x) is:

Var[y, hc]
1 2 X 2
?6—‘ (3*0( Erf[ﬁ‘} ]

Figure 10 plots the conditional mean and the conditional variance, when X and Y are
correlated (a = 1) and uncorrelated (a = 0).

E[Y |x] Var (Y | x)

S R .
/_' 006

1

2

3

1

3
-3 -2 -1

0.02

Fig. 10: Conditional mean and variance ﬁ
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I 6.4 The Multivariate Normal Distribution

The Mathematica package, Statistics MultinormalDistribution”, has
several functions that are helpful throughout this section. We load this package as follows:

<< Statistics’

The multivariate Normal distribution is pervasive throughout statistics, so we devote
an entire section to it and to some of its properties. Given X = Xi, ..., X,,), we denote the
m-variate  multivariate Normal distribution by N(@, £), with mean vector
o=, ..., 1,) € R™, variance-covariance matrix X, and joint pdf

G = eo™? |z

exp(-5 &-1) = (G-1)) (6.28)
where X = (x1, ..., X,) € R™, and X is a symmetric, positive definite (mxm) matrix. When
m = 1, (6.28) simplifies to the univariate Normal pdf.

6.4 A The Bivariate Normal

Let random variables X; and X, have a bivariate Normal distribution, with zero mean
1 p

vector, and variance-covariance matrix X = (p |

). Here, p denotes the correlation

coefficient between X; and X,. That is:

.
I’

1 p)
p 1
dist2 = MultinormalDistribution [, =];

X= (%, %)}; i={0, 0}; Z‘.=(

Then, we enter our bivariate Normal pdf f(x;, x,) as:

£ PDF[distz, 1‘:] // Simplify

domain[f] = Thread[{X, -, =}] && {-1<p <1}

x? -2 px1 xp 44

e 2+2 02

271Vl - p2
{{Xy, —o0, @}, {Xy, —o0, }} && {-1<p<1}

where the PDF and MultinormalDistribution functions are defined in
Mathematica’s Statistics package.

When p = 0, the cdf can be expressed in terms of the built-in error function as:3

Fo = Prob[{x:, %2}, £/.p>0]

L (um[ X }] (um[ X2 }]

V2
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o Diagrams

Figure 11 plots the zero correlation pdf and cdf.

Fig. 11: The bivariate Normal joint pdf f (top) and joint cdf F (bottom), when p =0 ﬁ
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The shape of the contours of f(x;, x,) depends on p, as Fig. 12 illustrates with a set
of contour plots.

p=-098 p=-0.74 p=-049

|
[
[=}
(%)

|
[}
[=]
[N}

|
[N}
(=]
[N}

p=025

|
i8]
(=}
)

|
[S)
(=)
5]

|
8]
(=]
8]

p=049 p=074 p=098

Fig. 12: Contour plots of the bivariate Normal pdf, for different values of p

Each plot corresponds to a specific value of p. In the top left corner, p = —0.98 (almost
perfect negative correlation), whereas in the bottom right corner, p = 0.98 (almost perfect
positive correlation). The middle plot corresponds to the case of zero correlation. In any
given plot, the edge of each shaded region represents the contour line, and each contour is
a two-dimensional ellipse along which f is constant. The ellipses are aligned along the
X1 = x; line when p > 0, or the x; = —x; line when p < 0.

We can even plot the specific ellipse that encloses g% of the distribution by using the
EllipsoidQuantile[dist, q] function in Mathematica’s Statistics package.
This is illustrated in Fig. 13, which plots the ellipses that enclose 15% (bold), 90%
(dashed) and 99% (plain) of the distribution, respectively, when p is 0.6. Figure 14
superimposes 1000 pseudo-random drawings from this distribution on top of Fig. 13. On
average, we would expect around 1% of the simulated data to lie outside the 99% quantile.
For this particular set of simulated data, there are 11 such points (the large dots in Fig. 14).
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Fig. 14: Quantiles plotted with 1000 pseudo-random drawings
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Applying the mathStatica Toolset

We can try out the mathStatica toolset on density f. The marginal distribution of X; is
well known to be N(0, 1), as we confirm with:

Marginal[x;, £f]

2
X
2

e

Va2

The variance-covariance matrix is, of course, equal to X:

Varcov|[f]

(o7

The conditional distribution of X; given X, = x, is N(px,, 1 — p?), as we confirm with:

Conditional [k, f]

— Here is the conditional pdf £ (x1 | %2 ):

(x1-px3)?
daox)
e 2 (-1+p?)

V21 - p?
Here is the product moment E[X? X2 ]:

Expect [x? x2, f]

1+2p?

The moment generating function is given by:

t = {t1, t2}; mgf = Expect[eé'i, f]

1

e7 (t?+2 pt1 ta+t})

Here, again, is the product moment E[X 12 X22], but now derived from the mgf:

D[mgfl {tll 2}: {tz: 2}] /. t_—>0

1+2p?

If the mgf is known, this approach to deriving moments is much faster than the direct
Expect approach. However, in higher variate (or more general) examples, Mathematica
may not always be able to find the mgf, nor the cf. In the special case of the multivariate
Normal distribution, this is not necessarily a problem since Mathematica’s Statistics
package ‘knows’ the solution. Of course, this concept of ‘knowledge’ is somewhat
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artificial — Mathematica’s Statistics package does not derive the solution, but rather
regurgitates the answer just like a textbook appendix does. In this vein, the Statistics
package and a textbook appendix both work the same way: someone typed the answer in.
For instance, for our example, the cf is immediately outputted (not derived) by the
Statistics package as:

CharacteristicFunction [dist2, {ti, t2}]

(e% (-t2 (pti+tz)-t1 (t1+pta))

While this works well here, the regurgitation approach unfortunately breaks down as soon
as one veers from the chosen path, as we shall see in Example 21.

@ Example 19: The Normal Linear Regression Model

Let us suppose that the random variables Y and X are jointly distributed, and that the
conditional mean of Y given X = x can be expressed as

E[Y|X=x] =a+ayx (6.29)

where a; and @, are unknown but fixed parameters. The conditional mean, being linear in
the parameters, is called a linear regression function. We may write

Y=a,+a,x+U (6.30)

where the random variable U = Y — E [Y | X = x] is referred to as the disturbance, and has,
by construction, a conditional mean equal to zero; that is, E[U | X =x] =0. If Y is
conditionally Normally distributed, then by linearity so too is U conditionally Normal, in
which case we have the Normal linear regression model. This model can arise from a
setting in which (Y, X) are jointly Normally distributed. To see this, let (¥, X) have joint
bivariate pdf N(z, ) where:

2
N O Oy Ox P
B={uy, ux}; == i . |z

Oy Ox O o2
cond = {oy >0, ox >0, -1<p<1l};
dist = MultinormalDistribution [, =];

Let f(y, x) denote the joint pdf:

£ Simplify [PDF[dist, {y, x}], cond]
domain[£f] = {{y, -, =}, {x, -, «}} && cond

(y-uy)? 0-2p (x-px) (v-Hy) Ox Oy +(x-ux)? o}

e 2 (-1+p?) 0% 02

271 -p? ox Oy

({y, -, o}, {x, -0, ©}}&& {0y >0, 0x >0, -1 <p<1}
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The regression function E' [Y | X = x] can be derived in two steps (as per Example 9):

(i) We first determine the conditional pdf of Y given X = x:

feon = Conditional [y, £]

— Here is the conditional pdf £ (y | x):

((y-py) ox+p (-x+ux) oy)?
e 2 (-1+p2) of of

V211 - p? oy

where the domain of the conditional distribution is:
domain[f.on] = {y, -, «} && cond;
(ii)) We can now find E[Y | X= x] :

regf = Expect [y, fconl

Ly + o (X -HUx) Oy
Ox

This expression is of form a; + @, x. To see this, we can use the CoefficientList

function to obtain the parameters a; and a,:

CoefficientList [regf, x]

{MY B DM(;(XOY ) Do(zy }

In summary, if (¥, X) are jointly bivariate Normal, then the regression function
E[Y | X = x] is linear in the parameters, of form «; + @, x, where «; = 1, — @, L1y and
£7r "which is what we set out to show. Finally, inspection of f.., reveals that the

ox
conditional distribution of Y| (X =x) is Normal. Joint Normality therefore determines a

y =

Normal linear regression model. |

@ Example 20: Robin Hood

Robin Hood has entered the coveted Nottingham Forest Archery competition, where
contestants shoot arrows at a vertical target. For Mr Hood, it is known that the distribution
of horizontal and vertical deviations from the centre of the target is bivariate Normal, with
zero means, equal variances o> and correlation p. What is the probability that he gets a
bull’s-eye, if the latter has unit radius?

Solution: We begin by setting up the appropriate bivariate Normal distribution:

-~ N 1 p
X-= . ; ={0,0}; == 2( );
{31, %2} b= } o} o 1

dist = MultinormalDistribution [, =];
cond = {c>0, -1<p<l1l, r>0, 0<6<277};
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Let f(x;, x,) denote the joint pdf:

£

domain[£f]

Simplify[PDF[dist, i] y cond]

{{x1, -, ©}, {xz, -0, ©}} && cond;

x3 -2 px1 X2 +x5
T2 (-1+02) o2
@ 2 (-1+p?) 0

27Vl -p?2 o2

The solution requires a transformation to polar co-ordinates. Thus:

Q= {x; »rcCos[8], X > rSin[6]};

Here, R = 4/ X% + X% represents the distance of (X;, X,) from the origin, while
® = arctan(X, / X;) represents the angle of (X;, X;) with respect to the X; axis. Thus,
R=reR, and ®=0€c{f: 0<0<2n}. We seek the joint pdf of R and ®. We thus
apply the transformation method (Chapter 4). We do so manually (see §4.2 C), because
there are two solutions, differing only in respect to sign. The desired joint density is g(r, 6):

g Simplify[ (£ /. Q) Jacob [?c /.Q, {x, 6}] ’ cond]
domain[g] = {{xr, 0, «}, {6, 0, 27x}} && cond;

r? (-1+pSin[206])

e 2 (-1+p2) 02 Tr

27Vl -p?2 o2

The probability of hitting the bull’s-eye is given by P(R < 1). In the simple case of zero
correlation (p = 0), this is:

pr = Prob[{1l, 2n}, g/.p > 0]

1
1-e 77

As expected, this probability is decreasing in the standard deviation o, as Fig. 15
illustrates.

Prob

0.8
0.6
0.4

0.2

(o
1 2 3 4 5

Fig. 15: Probability that Robin Hood hits a bull’s-eye, as a function of o ﬁ
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More generally, in the case of non-zero correlation (p + 0), Mathematica cannot determine
this probability exactly. This is not surprising as the solution does not have a convenient
closed form. Nevertheless, given values of the parameters o and p, one can use numerical
integration. For instance, if o = 2, and p = 0.7, the probability of a bull’s-eye is:

NIntegrate[g /. {c>2, p>0.7}, {x, 0, 1}, {6, 0, 2 7}]

0.155593

which contrasts with a probability of 0.117503 when p = 0. More generally, it appears that
a contestant whose shooting is ‘elliptical’ (o # 0) will hit the bull’s-eye more often than an
‘uncorrelated’ (p = 0) contestant! | |

@ Example 21: Truncated Bivariate Normal

Let (X, Y) ~ N(0, =) with joint pdf f(x, y) and cdf F(x, ), with = = (}) " ) where we
shall assume that 0 < p < 1. Corresponding to f(x, y), let g(x, y) denote the pdf of a
truncated distribution with Y restricted to the positive real line (¥ > 0). We wish to find
the pdf of the truncated distribution g(x, y), the marginal distributions gy (x) and gy (y), and
the new variance-covariance matrix.

Solution: Since the truncated distribution is not a ‘textbook’ Normal distribution,
Mathematica’s Multinormal package is not designed to answer such questions. By
contrast, mathStatica adopts a general approach and so can solve such problems. Given:

V={x,v}; R={0,0}; z:(1 pl); cond = {0<p<1};
Then, the parent pdf f(x, y) is:

f = Simplify[PDF[MultinormalDistribution[ii, =], V], cond];
domain[£f] = {{x, -, =}, {y, -, ©}} && cond;

By familiar truncation arguments (§2.5 A):

glx,y) = N ACES) B 2 f(x, y), forxeR,yeR,

1 - F(,0)
which we enter as:

2f;
{{x, -0, ©}, {y, 0, }} && cond;

g
domain[g]

The marginal pdf of Y, when Y is truncated below at zero, is gy ():

gy = Marginal [y, g]
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This is the pdf of a half-Normal random variable, as illustrated in Fig. 16.

8y
0.8

0.6

0.4

0.2

1 2 3 4 Y

Fig. 16: The marginal pdf of ¥, when Y is truncated below at zero

By contrast, the marginal pdf of X, when Y is truncated below at 0, is given by gx(x):

gx = Marginal [x, g]

e’% (II.JrErf[w’f;D2 })

Va2

which is Azzalini’s skew-Normal(A) pdf with A = p / Vi- p? (see Chapter 2, Exercise 2).
Even though X is not itself truncated, gy (x) is affected by the truncation of Y, because X is
correlated with Y. Now consider the two extremes: if p =0, X and Y are uncorrelated, so
gx(-) = fx(+), and we obtain a standard Normal pdf; at the other extreme, if p = 1, X and
Y are perfectly correlated, so gx(-)= gy(-), and we obtain a half-Normal pdf. For
0 < p < 1, we obtain a result between these two extremes. This can be seen from Fig. 17,
which plots both extremes, and three cases in between.

8x
0.8

1 2 3

Fig. 17: The marginal pdf of X, when Y is truncated below at zero.
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The mean vector, when Y is truncated below at zero, is:

Expect [{x, v}, g]

2o 2

The variance-covariance matrix for (X, Y), when Y is truncated below at zero, is:

Varcov[g]

_ 2p? (=2+1) p
l s s
(-2+7) P —2+7T
s s

This illustrates that, in a mutually dependent setting, the truncation of one random variable
effects all the random variables (not just the truncated variable). |

6.4 B The Trivariate Normal

The trivariate Normal distribution for (X, Y, Z) is fully specified by the (3x1) vector of

means and the (3x3) variance-covariance matrix. When the mean vector is O and the
variances are all equal to unity, we have:

1 Oxy Pxz
V= ({x,v,2}; I={0,0,0}; 2= o 1 Py |:
pxz pyz 1

dist3 = MultinormalDistribution [, =];

cond = {-1<pPyy <1, -1<pPyxz<1, -1<py; <1, Det[Z] >0};

where p; denotes the correlation between variable i and variable j, and the condition
Det [Z] > 0 reflects the fact that the variance-covariance matrix is positive definite. Let
g(x, y, z) denote the joint pdf:

g = PDF[dist3, V] // Simplify

x24y? 42222 2 -y? 0%, -2y 2 0yz -x* %, -2 X 0xz (2-Y Oyz) +2 Pxy (-XY+Y Z Pxz +X Z Oyz )

e 2 (-1+02, +0%, -2 Pxy Pxz Pyz *0%;)

2 \/5 7T3/2 \/l - p)z(y - /O;zcz + 2 /Oxy Pxz /Oyz - /33212
with domain:

domain[g] = Thread[{V, -, «}] && cond

{{X, -, °°}: {YI -, °°}/ {Z, -, w}}&&{fl<pxy<ll
~1<Pxz <1, “1<py, <1, 1-p% 0%, +2 Pxy Oxz Oyz — P2y > 0}
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Here, for example, is E[X Y e?]; the calculation takes about 70 seconds on our reference
computer:

Expect [xy e*, g]
Ve (Pxy +Pxz Pyz)

Figure 12, above, illustrated that a contour plot of a bivariate Normal pdf yields an ellipse,
or a circle given zero correlation. Figure 18 illustrates a specific contour of the trivariate
pdf g(x, y, 2), when p,, = 0.2, p,, = 0.3, p,, » 0.4, and g(x, y, z) = 0.05. Once again,
the symmetry of the plot will be altered by the choice of correlation coefficients. Whereas
the bivariate Normal yields elliptical contours (or a circle given zero correlation), the
trivariate case yields the intuitive 3D equivalent, namely the surface of an ellipsoid (or that
of a sphere given zero correlations). Here, parameter p,, alters the ‘orientation’ of the
ellipsoid in the x-y plane, just as p,, does in the y-z plane, and p,, does in the x-z plane.

Fig. 18: The contour g(x, y, z) = 0.05 for the trivariate Normal pdf ﬁ

Just as in the 2D case, we can plot the specific ellipsoid that encloses g% of the
distribution by using the function E11ipsoidQuantile [dist, g]. This is illustrated in
Fig. 19 below, which plots the ellipsoids that enclose 60% (solid) and 90% (wireframe) of
the distribution, respectively, given p,, —»0.01, p,, - 0.01, p,, » 0.4. Ideally, one
would plot the 90% ellipsoid using translucent graphics. Unfortunately, Mathematica
Version 4 does not support translucent graphics, so we use a WireFrame instead.
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Fig. 19: Quantiles: 60% (solid) and 90% (wireframe)

@® Example 22: Correlation and Positive Definite Matrix

Let X, Y and Z follow a standardised trivariate Normal distribution. It is known that
Pxy =09 and p,, =—-0.8, but p,, is not known. What can we say, if anything, about the
correlation p,?

Solution: Although there is not enough information to uniquely determine the value of p,,,
there is enough information to specify a range of values for it (of course, -1 < p,, <1
must always hold). This is achieved by using the property that ¥ must be a positive
definite matrix, which implies that the determinant of X must be positive:

dd =Det[Z] /. {Oxy = -9, Pxz = - .8}
-0.45-1.44 py, - 02,
This expression is positive when p,, lies in the following interval:

<< Algebra’
InequalitySolve [dd > 0, py:]

-0.981534 < py, < -0.458466
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6.4 C CDF, Probability Calculations and Numerics

While it is generally straightforward to find numerical values for any multivariate Normal
pdf, it is not quite as easy to do so for the cdf. To illustrate, we use the trivariate Normal
pdf g(x,y,z) = PDF[dist3, {x,y, z}] defined at the start of §6.4 B. We distinguish
between two possible scenarios: (i) zero correlation, and (ii) non-zero correlation.

Zero Correlation

Under zero correlation, it is possible to find an exact symbolic solution using mathStatica
in the usual way.3-4 Let G(x,y, z) denote the cdf P(X <x,Y <y, Z<z) under zero

correlation:
Clear|[G]; G[x_,y , z_] =Prob[{x, ¥, 2}, g/. p_ - 0]
1 X \Y% Z
L 1+Erf[72_}] (um[w_}] (um[ﬁ}]

This solution is virtuous in two respects: first, it is an exact symbolic expression; second,
because the solution is already ‘evaluated’, it will be computationally efficient in
application. Here, for instance, is the exact symbolic solutionto P(X < -2, Y <0, Z < 2):

G[-2, 0, 2]
5 (1-Bef[VZ]) (1emre[VZ])

Because the solution is an exact symbolic expression, we can use Mathematica’s arbitrary
precision numerical engine to express it as a numerical expression, to any desired number
of digits of precision. Here is G[ -2, 0, 2] calculated to 40 digits of precision:

N[G[-2, 0, 2] , 40]

0.01111628172225982147533684086722435761304

If we require the probability content of a region within the domain, we could just type in
the whole integral. For instance, the probability of being within the region

S={(xy,2: 1<x<2, 3<y<4, 5<z<6}
is given by:

Integrate[g/.p - O,
{xl 11 2}1 {Y, 31 4}' {Z: 5' 6}] //N // Timing

{0.27 Second, 5.1178x1071}

Alternatively, we can use the mathStatica function MrSpeedy (Example 4). MrSpeedy
finds the probability content of a region within the domain just by using the known cdf
GI[] (which we have already found) and the boundaries of the region, without any need
for further integration:
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s={{1, 2}, {3, 4}, {5, 6}}; MrSpeedy[G, S] //N// Timing

{0. Second, 5.1178x10° '}

Mr Speedy often provides enormous speed increases over direct integration.

Non-Zero Correlation

In the case of non-zero correlation, a closed form solution to the cdf does not generally
exist, so that numerical integration is required. Even if we use the CDF function in
Mathematica’s Multinormal statistics package, ultimately, in the background, we are
still resorting to numerical integration. This, in turn, raises the two interrelated motifs of
accuracy and computational efficiency, which run throughout this section.

Consider, again, the trivariate Normal pdf g(x,y,z) = PDF[dist3, {x,y, z}]
defined in §6.4 B. If p,, = p, = o, = %, the cdf is:

Clear|[G]; G[var__] := CDF[dist3 /. p_-» 1/2, {var}]
Hence, P(X <1, Y < -7, Z < 3) evaluates to:3

G[1, -7, 3]

1.27981x107*2

If we require the probability content of a region within the domain, we can again use
MrSpeedy. The probability of being within the region

S={(xy,2: I<x<owo, -3<y<4, 5<z<6}
is then given by:

S = {{1, «~}, {-3, 4}, {5, 6}}; MrSpeedy[G, S] // Timing

{0.55 Second, 2.61015x10"}

This is a significant improvement over using numerical integration directly, since the latter
is both less accurate (at default settings) and far more resource hungry:

NIntegrate[g /. p_ > 1/2,
{%, 1, <}, {v, -3, 4}, {2z, 5, 6}] // Timing

— NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one
of the following: singularity, value of the integration
being 0, oscillatory integrand, or insufficient
WorkingPrecision. If your integrand is oscillatory
try using the option Method->Oscillatory in NIntegrate.

{77.39 Second, 2.61013x107"}
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The direct numerical integration approach can be ‘sped up’ by sacrificing some accuracy.
This can be done by altering the PrecisionGoal option; see Rose and Smith (1996a or
1996b). This can be useful when working with a distribution whose cdf is not known (or
cannot be derived), such that one has no alternative but to use direct numerical integration.

Finally, it is worth stressing that since the CDF function in Mathematica’s
Multinormal statistics package is using numerical integration in the background, the
numerical answer that is printed on screen is not exact. Rather, the answer will be correct
to several decimal places, and incorrect beyond that; only symbolic entities are exact. To
assess the accuracy of the CDF function, we can compare the answer it gives with
symbolic solutions that are known for special cases. For example, Stuart and Ord (1994,
Section 15.10) report symbolic solutions for the standardised bivariate Normal orthant
probability P(X <0, Y <0) as:

ArcSin|[p]
U

1
P2 = — +
4 27
while the standardised trivariate Normal orthant probability P(X <0, Y <0, Z <0) is:

1
47

1
P3 = —8- + (ArcSin[pyy,] + ArcSin[py,] + ArcSin[py.]) ;

We choose some values for p.,, Oy, Py::

11 { 1 1 2 |
o' T 12" 7 T s

Because P3 is a symbolic entity, we can express it numerically to any desired precision.
Here is the correct answer to 30 digits of precision:

N[P3 /. lis, 30]

0.169070356956715121611195785538
By contrast, the CDF function yields:

CDF[dist3 /. 1lis, {0, 0, 0}] // InputForm

0.1690703504574683

In this instance, the CDF function has only 8 digits of precision. In other cases, it may
offer 12 digits of precision. Even so, 8 digits of precision is better than most competing
packages. For more detail on numerical precision in Mathematica, see Appendix A.1.

In summary, Mathematica’s CDF function and mathStatica’s MrSpeedy function
make an excellent team; together, they are more accurate and faster than using numerical
integration directly. How then does Mathematica compare with highly specialised
multivariate Normal computer programs (see Schervish (1984)) such as
Bohrer—Schervish, MULNOR, and MVNORM? For zero-correlation, Mathematica can
easily outperform such programs in both accuracy and speed, due to its symbolic engine.
For non-zero correlation, Mathematica performs well on accuracy grounds.
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6.4 D Random Number Generation for the Multivariate Normal

Introducing MVNRandom

The mathStatica function MVNRandom [n, [, X] generates n pseudo-random m-
dimensional drawings from the multivariate Normal distribution with mean vector 7, and
(mxm) variance-covariance matrix X; the function assumes dimension m is an integer
larger than 1. Once again, X is required to be symmetric and positive definite. The
function has been optimised for speed. To demonstrate its application, we generate 6
drawings from a trivariate Normal with mean vector and variance-covariance matrix given
by:

o= {10, 0, -20}; z=(o.2 2 0.3]; MVNRandom[6, [, =]

10.1802 0.792264 -20.7549
9.61446 0.936577 -20.3007
9.00878 1.51215 -17.9076
10.0042 -0.749123 -23.6165
12.2513 -1.28886 -19.8166
10.7216 -0.626802 -15.847

The output from MVNRandom is a set of n lists (here n = 6). Each list represents a single
pseudo-random drawing from the distribution and so has the dimension of the random
variable (m = 3). In this way, MVNRandom has recorded 6 pseudo-random drawings from
the 3-dimensional N(zi, ) distribution.

Instead of using mathStatica’s MVNRandom function, one can alternatively use the
RandomArray function in Mathematica’s Multinormal Statistics package. To
demonstrate, we generate 20000 drawings using both approaches:

MVNRandom [20000, %, £]; // Timing
{0.22 Second, Null}

RandomArray [
MultinormalDistribution[fi, =], 20000] ; // Timing

{2.53 Second, Null}

In addition to its obvious efficiency, MVNRandom has other advantages. For instance, it
advises the user if the variance-covariance matrix is not symmetric and/or if it is not
positive definite.

How MVNRandom Works

MVNRandom works by transforming a pseudo-random drawing from an m-dimensional
N|(0, I,,,) distribution into a N(Z, X) drawing: the transformation is essentially the
multivariate equivalent of a location shift plus a scale change. The transformation relies
upon the spectral decomposition (using Eigensystem) of the variance-covariance
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matrix; that is, the decomposition of £ = HDH" into its spectral components H and D.
The columns of the (mxm) matrix H are the eigenvectors of X, and the (mxm) diagonal
matrix D contains the eigenvalues of X. Then, for a random vector Y ~ N(@, I,,,), a linear
transformation from Y to a new random vector X , according to the rule

X=1+HD"?Y 6.31)

finds X ~ N(i, X). By examining the mean vector and variance-covariance matrix, it is
easy to see why this transformation works:

— —

E[X] = E[f+HD'? Y| = [i, because E[Y] =0
and

Varcov(X) Varcov(ﬁ + HD'? ?)

= Varcov(HDl/2 ?)

HD'? Varcov(?) DV HT
HDH'

Y

because Varcov(Y) = I,,. We wish to sample the distribution of X, which requires that we
generate a pseudo-random drawing of Y and apply (6.31) to it. So, all that remains is to do
the very first step— generate Y —but that is the easiest bit! Since the components of Y
are independent, it suffices to combine together m pseudo-random drawings from the
univariate standard Normal distribution N(0, 1) into a single column.

Visualising Random Data in 2D and 3D Space

With Mathematica, we can easily visualise random data that has been generated in two or
three dimensions. We will use the functions D2 and D3 to plot the data in two-dimensional
and three-dimensional space, respectively:

D2[x_] := ListPlot[x, PlotStyle - Hue[1l],
AspectRatio -» 1, DisplayFunction -» Identity]:

D3[x_] :=
Graphics3D[ {Hue[1l], Map[Point, x]}, Axes - True]

Not only can we plot the data in its appropriate space, but we can also view the data
projected onto a hypersphere; for example, two-dimensional data can be projected onto a
circle, while three-dimensional data can be projected onto a sphere. This is achieved by
normalising the data by using the norm function defined below. Finally, the function
MVNPlot provides a neat way of generating our desired diagrams:

norm[x_] := Map[ &, x] ;

Vi#.#
MVNPlot [DD_, w_] := Show[GraphicsArray|
{DD[w], DD[norm[w] ]}, GraphicsSpacing - .3]]:
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The Two-Dimensional Case

(i) Zero correlation: Fig. 20 shows two plots: the left panel illustrates the generated data
in two-dimensional space; the right panel projects this data onto the unit circle. A
random vector X is said to be spherically distributed if its pdf is equivalent to that of
Y =HX, for all orthogonal matrices H. Spherically distributed random variables
have the property that they are uniformly distributed on the unit circle / sphere /
hypersphere. The zero correlation bivariate Normal is a member of the spherical

CHAPTER 6

class.® This explains why the generated data appears uniform on the circle.

Bi={0, 0}; z=(

MVNPlot [D2, w];

Fig. 20: Zero correlation bivariate Normal: random data

(i) Non-zero correlation: Fig. 21 again shows two plots, but now in the case of non-zero
correlation. The left panel shows that the data has high positive correlation. The right
panel shows that the distribution is no longer uniform on the unit circle, for there are
relatively few points projected onto it in the north-west and south-east quadrants.
This is because the correlated bivariate Normal does not belong to the spherical class;
instead, it belongs to the elliptical class of distributions. For further details on
elliptical distributions, see Muirhead (1982).

()

ﬁ= {0, 0};

MVNPlot [D2, w];

w = MVNRandom [1500, &, =];

/‘1"'"""'\ -
v\
\
i \
4 -0.5 0.5 /
-0.5 //
L™

0.5

w = MVNRandom [1500, T, =];

-0.5

0.5

T R .

Fig. 21: Correlated bivariate Normal: random data
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The Three-Dimensional Case

(i) Zero correlation: Fig.22 again shows two plots. The left panel illustrates the
generated data in three-dimensional space. The right panel projects this data onto the
unit sphere. The distribution appears uniform on the sphere, as indeed it should,
because this particular trivariate Normal is a member of the spherical class.

100
={0,0,0}; z=[o 1 o]; w = MVNRandom [2000, X, Z];
0 0 1

MVNPlot [D3, w];

Fig. 22: Zero correlation trivariate Normal: random data

(i) Non-zero correlation: see Fig.23 below. The three-dimensional plot on the left
illustrates that the data is now highly correlated, while the projection onto the unit

sphere (on the right) provides ample evidence that this particular trivariate Normal
distribution is no longer spherical.

1 .95 .95
={0,0,0}; == [.95 1 .95]; w = MVNRandom [2000, I, =];
.95 .95 1

MVNPlot [D3, w];

Fig. 23: Correlated trivariate Normal: random data



236 CHAPTER 6 §6.5

I 6.5 The Multivariate t and Multivariate Cauchy

Let (Xi,...,X,) have a joint standardised multivariate Normal distribution with
correlation matrix R, and let Y ~ Chi-squared(v) be independent of (Xi, ..., X,,). Then the
joint pdf of

5 (G=1,...m) (6.32)
VY /v ’ '

T; =

defines the multivariate ¢ distribution with v degrees of freedom and correlation matrix R,
denoted #(R, v). The multivariate Cauchy distribution is obtained when R =17,, and v = 1.
The multivariate ¢ is included in Mathematica’s Multinormal Statistics package, so our
discussion here will be brief. First, we ensure the appropriate package is loaded:

<< Statistics’

Let random variables W; and W, have joint pdf #R, v) where R = (Il) ll)), and p

denotes the correlation coefficient between W; and W,. So:

W= {wi, wa}; R=( );cond:{—1<p<1,v>0};

dist2 = MultivariateTDistribution [R, Vv];

Then our bivariate ¢ pdf f(w;, w,) is given by:

£f = FullSimplify[PDF[distz, W], cond]

v v T
v (1 - p2) 7 (V-vp?+wl-2pw wy +w2) b0z

277

with domain of support:

domain[f] = Thread[{ﬁ, -oo, oo}] && cond
{{w1, =00, 00}, {wy, -0, 0}} && {-1<p<1l, v>0}

Example 23 below derives this pdf from first principles. The shape of the contours of
f(wy, wy) depend on p. We can plot the specific ellipse that encloses g% of the
distribution by using the function E11ipsoidQuantile [dist, g]. This is illustrated in
Fig. 24 which plots the ellipses that enclose 15% (bold), 90% (dashed) and 99% (plain) of
the distribution, respectively, with p = 0.4 and v = 2 degrees of freedom. The long-tailed
nature of the ¢ distribution is apparent, especially when this diagram is compared with
Fig. 13.
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Fig. 24: Quantiles: 15% (bold), 90% (dashed) and 99% (plain)

The bivariate Cauchy distribution is obtained when R =1, and v = 1:

£f/.{p> 0, vo1}

1

372
270 (1 +w? +w3)

Under these conditions, the marginal distribution of W is the familiar (univariate) Cauchy
distribution:
Marginal[w;, £ /. {p> 0, v 1}]
1

T+ 7T W

As in §6.4 C, one can use functions like MrSpeedy in conjunction with Mathematica’s
CDF function to find probabilities, and RandomArray to generate pseudo-random
drawings.

@ Example 23: Deriving the pdf of the Bivariate ¢

Find the joint pdf of:

X4
Ty = "/v ;

\/

=12

from first principles, where (X;, X,) have a joint standardised multivariate Normal
distribution, and Y ~ Chi-squared(v) is independent of (X;, X;).
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Solution: Due to independence, the joint pdf of (X;, X,, Y), say ¢(x;, x,, ), is just the pdf
of (X1, X>) multiplied by the pdf of Y:

%3 -2 px1 x5 +x3

@ -2+2 p? e'% y%'l
® = _—_— * ﬁ— 7
27Vl -p2 2v/ ri31
cond = {v>0, -1<p<1l};
domain[¢] = {{xi, -, *}, {xX2, -, ©}, {y, 0, «}} && cond;

Let U =Y. Then, using mathStatica’s Transform function, the joint pdf of (T, T,, U)
is:

X1 X3
f = Transform[ {t1 == —— , ty) == —— , u== y}, (p]
Vy/v Vy/v

v u (v-vpl+ti-2pty ty+td)

2-1-% ¢ TV (17 uv/?

nvNl-p?2 T[5]

with domain:

domain[£f] = {{t1, -, o}, {ty, -, «}, {u, 0, «}} && cond;
Then, the marginal joint pdf of random variables 7' and 7, is:

Marginal[{ti, t2}, £f]

v
v /1702 <v—vpz+t§—20t1 to,+t2 )7177

v-v p?
27 (v -vp2)

which is the desired pdf. Note that this output is identical to the answer given to
PDF [dist2, {ti, ty}] // FullSimplify . n

I 6.6 Multinomial and Bivariate Poisson

This section discusses two discrete multivariate distributions, namely the Multinomial and
the bivariate Poisson. Both of these distributions are also discussed in Mathematica’s
Statistics MultiDiscreteDistributions™ package.

6.6 A The Multinomial Distribution

The Binomial distribution was discussed in Chapter 3. Here, we present it in its degenerate
form: consider an experiment with n independent trials, with two mutually exclusive
outcomes per trial (E; or [E;). Let p; (i=1,2) denote the probability of outcome [E;
(subject to p; + p, = 1, and 0 < p; < 1), with p; remaining the same from trial to trial. Let
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the ‘random variables’ of interest be X; and X,, where X; is the number of trials in which
outcome [E; occurs (x; + x, = n). The joint pmf of X; and X; is

n! )
fO,x) = PXi=x1,X =x) = ol pi' ., xe€f0,1,...n)  (6.33)
Since X; + X, = n, one of these ‘random variables’ is of course degenerate, so that the
Binomial is actually a univariate distribution, as in Chapter 3. This framework can easily
be generalised into a Trinomial distribution, where instead of having just two possible
outcomes, we now have three (E,, E, or E3), subject to p; + p» + p3 = 1:

! x X X3
L Pl Py Py (6.34)

S, x2,x03) = PXy =x1, X =X, X3 =x3) = m‘,—x;‘

More generally, the m-variate Multinomial distribution has pmf

!
f(-xls ---s-xm) = P(Xl = X1, sXm :-xm) = ﬁ p)lCl pfﬁ" (635)

m m
subject to ZP:‘ =1, and in = n.
i=1 i=1

Since Y, x; = n, it follows, for example, that x,, = n— Y,";' x;. This implies that, given

n, the m-variate multinomial can be fully described using only m — 1 variables; see also
Johnson et al. (1997).7 We enter (6.35) into Mathematica as:
Length [X] p[[i]]xlli]]

Clear[£f]: f[X_List, p_List, n_] := n! -
X[i] !

i=1

The multinomial moment generating function is derived in Example 26 below, where we
show that

M@®@) = (Z Di e’f] ) (6.36)
i=1
@ Example 24: Age Profile

Table 5 gives the age profile of people living in Australia (Australian Bureau of Statistics,
1996 Census). The data is divided into five age classes.

class age proportion
| 0-14 21.6 %
11 15-24 14.5 %

I 25-44 30.8%
v 45-64 21.0 %
\Y% 65 + 12.1 %

Table 5: Age profile of people living in Australia
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Let p denote the probability vector (p;, p2, p3, P4, Ps):
p = {0.216, 0.145, 0.308, 0.210, 0.121};

(a) If we randomly select 10 people from the population, what is the probability they all
come from Class 1?

Solution.:
%={10, 0, 0, 0, 0}; £[%, B, 10]

2.21074x1077

(b) If we again randomly select 10 people, what is the probability that 3 people will be
from Class I, 1 person from Class II, 2 from Class III, 4 from Class IV, and 0 from
Class V?

Solution.:
%=(3,1, 2,4, 0}; £[%, D, 10]

0.00339687

(¢) If we again randomly select 10 people, what is the probability that Class III will
contain exactly 1 person?

Solution: If Class III contains 1 person, then the remaining classes must contain 9
people. Thus, we need to calculate every possible way of splitting 9 people over the
remaining four classes, then calculate the probability for each case, and then add it all up.
The composition of 9 into 4 parts can be obtained using the Compositions function in
the DiscreteMath' Combinatorica’ package, which we load as follows:

<< DiscreteMath’

Here are the compositions of 9 into 4 parts. The list is very long, so we just display the
first few compositions:

lis = Compositions[9, 4]; 1lis // Shallow

{{o, 0, 0, 9}, {0, 0, 1, 8}, {0, 0, 2, 7},
(0, 0,3,6}, {0,0,4,5}, {0, 0,5, 4}, {0, 0,6, 3},
(0, 0, 7,2}, {0,0,8,1}, {0, 0,9, 0}, <210>}

Since Class III must contain 1 person in our example, we need to insert a ‘1’ at position 3
of each of these lists, so that, for instance, {0, 0, 0, 9} becomes {0, 0, 1, 0, 9}:

lis2 = Map[Insert[#, 1, 3] &, lis]; lis2 // Shallow

({0, 0,1,0, 9}, {0, 0,1, 1, 8},
(0, 0,1,2,7},{0,0,1,3,6}, {0,0,1, 4,5},
(0, 0,1,5, 4}, {0, 0, 1,6, 3}, {0,0,1,7, 2},
{0, 0,1,8, 1}, {0,0,1,9, 0}, <210>}
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We can now compute the pmf at each of these cases, and add them all up:

Plus @@Map[f[#, D, 10] &, lis2]

0.112074

So, the probability that a random sample of 10 Australians will contain exactly 1 person
aged 25-44 is 11.2%. For the 15-24 age group, this probability rises to 35.4%.

An alternative (more automated, but less flexible) approach to solving (c) is to use
the summation operator, taking great care to ensure that the summation iterators satisfy the
constraint Z?:l x; = 10. So, if Class III is fixed at x3 = 1, then x; can take values from O to
9; x, may take values from O to (9 — x;); and x4, may take values from O to (9 — x; — x).
That leaves x5 which is degenerate: that is, given xy, x,, x3 = 1, and x4, we know that x;
must equal 9 — x; — x, — x4. Then the required probability is:

sum[£[{x:, X2, 1, X4, X5}, D, 10],
{x®1, 0, 9},
{x%,, 0, 9-x,},
{84, 0, 9—81—82},
{®5, 9-%; -%; -Xy, 9-%; -%X; -%3}]

0.112074

Example 26 provides another illustration of this summation approach. |

@ Example 25: Working with the mgf

In the case of the Trinomial, the mgf is:

3 n
mgf = (Zpi e"’i]
i1

t t t n
(e pp+e? py+e”’ p3)

The product raw moments E[ X{ X5 X§ ] can now be obtained from the mgf in the usual
fashion. To keep things neat, we write a little Mathematica function Moment [a, b, c]

function to calculate E[ X{ X2 X5 | from the mgf, now noting that Y7, p; = 1:

Moment [a_, b_, c¢_] :=

3
D[mgf, {t1, a}, {t2, b}, {ts, €}] /. t 50 /. > pi~1

i=1
The moments are now easy to obtain. Here is the first moment of X,, namely /JOY Lo
Moment [0, 1, O]

np;
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Here is the second moment of X, , namely /JOY 2.0°
Moment [0, 2, 0]
np; + (-1 +n) np?

By symmetry, we then have the more general result that E[X;]=np; and
E[X?]=np; + (n—1)n p}. Here is the product raw moment E[X} X> X3] = [1, |

Moment [2, 1, 1] // Simplify
(-2+n) (-l+n)np; (1+ (-3 +n) p1) P2 P3

The covariance between X; and X3 is given by i, ,,, which can be expressed in raw
moments as:

cov = CentralToRaw[{1l, 0, 1}]
Hi,0,1 = */,10,0,1 /11,0,0 +/ll,0,l

Evaluating each /17 term with the Moment function then yields this covariance:

cov /. ;'lr_ > Moment [r] // Simplify
H1,0,1 > —11 D1 D3

Similarly, the product cumulant x5 ; , is given by:

CumulantToRaw[{3, 1, 2}] /. ;'lx_ > Moment [x] // Simplify

K3,1,2 > 20D1 P2 P3 <1+P% (12-60p3) -3p3 +9p1 (-1+4p3))

@ Example 26: Deriving the Multinomial mgf
Consider a model with m = 4 classes. The pmf is:

=

X={X1, X2, X3, X4}
D= {Pis P2, DP3s DPa};

pmf = £[%, D, n]

X1 Xy X3 _Xg
n!p; Py P3 Dy
X1 !Xy X3! x4}

Recall that the moment generating function for a discrete distribution is:

E[e?.?] - ZZ exp(z t,»x,»)f(xl, cees X))
o Yo i=1
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Some care must be taken here to ensure the summation iterators satisfy the constraint
Z:’i \ X; = n; thus, if we let x; take values from O to n, then x, may take values from O to
n—x;, and then x; may take values from O to n—x; —x,. That leaves x, which is
degenerate; that is, given xy, x, and x3, we know that x, must be equal to n — x; — x, — x3.
Then the mgf is:

(943

= {t1, t2, t3, £4};

mgf = FullSimplify[

n n-x; n-x;-X; DN-X;-X;-X3

Z Z Z Z Evaluate [ee"“ pmf] ,

xX1=0x2=0 =x3=0 =X4=n-x;-X3-X3

ne Integers] // PowerExpand
(e p; +e™ py +e" p3 +e™ py)”

It follows by symmetry that the general solution is M(7)= (X", p; e" ", where
Z,nil pi=1 u

6.6 B The Bivariate Poisson
Clear|[g]

Let Yy, Y7 and Y, be mutually stochastically independent Poisson random variables, with
non-negative parameters Ag, A; and A,, respectively, and pmf’s g;(y;) for i € {0, 1, 2}:

e—li -AiYi
gy = —m—m—m;}
y; !

defined on y; € {0, 1, 2, ...}. Due to independence, the joint pmf of (Yo, Y7, Y>) is:

g = Jdo 91 92

-Ag-A1 - A Yo Y1 Y2
e 0 1 2 )\0 )\l )\2

Yo!yr!yz!

with domain:

dom'ain[g] = {{¥os 0, «}, {¥1, 0, o}, {¥2, 0, =}}
&& (A0 >0, 21 >0, A, > 0} && {Discrete};

A non-trivial bivariate Poisson distribution is the joint distribution of X; and X, where

X1 = Y1 + Y() and X2 = Y2 + YO . (637)
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Probability Mass Function

We shall consider four approaches for deriving the joint pmf of X; and X,, namely: (i) the
transformation method, (ii) the probability generating function (pgf) approach,
(iii) limiting forms, and (iv) Mathematica’s Statistics package.

(i) Transformation method
We wish to find the joint pmf of X; and X, as defined in (6.37). Let X, = Y, so that the
number of new variables X; is equal to the number of old variables Y;. Then, the desired
transformation here is:

eqn = {X; == Y1 +Yos X2 == Y2 +Yor Xo == Yol}i

Then, the joint pmf of (Xy, X, X3), say ¥(xo, X1, X2), is:

¢ = Transform[eqgn, g]

e—ho -A1 -2y )\Bio )\ixo X1 )\éxo +X2

Xo! (=Xg +%X1) ! (-Xg +X3) !

We desire the joint marginal pmf of X; and X;, so we now need to ‘sum out’ Xj. Since Y;
is non-negative, it follows that Xy < X;:

X1
pmf = Z Evaluate [¥]

Xo=0

A1 )\2}

(e’j" ~M-% HypergeometricU [7x1 R 5
0

S M Al

A’flxy( o )Xl)/(T[lerl]T[lerz])

Mathematica, ever the show-off, has found the pmf in terms of the confluent
hypergeometric function. Here, for instance, is P(X; = 3, X, = 2):

pmf /. {%x, -3, %, »2} // Simplify

le— e oM 30 (62 + 6 X Ag Ay + AT A2)

(ii) Probability generating function approach
By (6.21), the joint pgf is E[#{" £* -+ £Xn]:

pgf = Z Z Z Evaluate [t]* Y t¥*™¥° g]

¥0=0y1=0y2=0

@ Aot B2 Ao -Arrts A=Az +Er Ay

The pgf, in turn, determines the probabilities by (6.22). Then, P(X; =r, X, = s) is:



§6.6 B MULTIVARIATE DISTRIBUTIONS 245

Clear|[P];

D £, {t1, s {ta,
Plr , s ]:= 21PIEr 1 :";}' t2r 83, (e 50} // simplify

For instance, P(X; =3, X, =2)is:

P[3, 2]

le— e MM Q0 (622 46 X A Ay + A2 22)

as per our earlier result.

(iii) Limiting forms

Just as the univariate Poisson can be obtained as a limiting form of the Binomial, the
bivariate Poisson can similarly be obtained as a limiting form of the Multinomial. Hamdan
and Al-Bayyati (1969) discuss this approach, while Johnson et al. (1997, p. 125) provide
an overview.

(iv) Mathematica’s statistics package
The bivariate Poisson pmf can also be obtained by using Mathematica’s
Statistics MultiDiscreteDistributions’ package, as follows:

<< Statistics’

dist = MultiPoissonDistribution [y, {A1, A2}]:
Then, the package gives the joint pmf of (X, X;) as:

MmaPMF = PDF[dist, {xi, %,}] // Simplify

Do-Ai-kp 3K yX2
e ATH A

- (HypergeometricPFQ [{l, 1+Min[x1, X3] - x1, 1+

Min[Xi1, X3] - X2}, {2+Min[x:1, X2]},

)\O 1+Min[x1, %2 ] )
(Alkg) ]/(T[2+M1n[xl,x2]]

T[-Min[x;, X3] +X1] T'[-Min[X;, X3] +X3]) +

HypergeometricU[-x;, 1 -x1 + Xy, - %Oﬁ-] (- %Oil)

T[1l+x1] T[1+x3]

Ao }
A1 Ag

X1

While this is not as neat as the result obtained above via the transformation method (i), it
nevertheless gives the same results. Here, again, is P(X; = 3, X, = 2):

MmaPMF /. {x%; >3, X; -2} // Simplify

S5 €70 A (628 + 6 X0 A1 Az + AT A3)
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Moments

We shall consider three approaches for deriving moments, namely: (i) the direct approach,
(ii) the mgf approach, and (iii) moment conversion formulae.

(i) Direct approach

Even though we know the joint pmf of X; and X,, it is simpler to work with the
underlying Y; random variables. For instance, suppose we wish to find the product
moment /JM for the bivariate Poisson. This can be expressed as:

(., = EXi X2] = E[(Y1 + Yo) (Y2 + Yp)]

which is then evaluated as:

Z Z Z Evaluate[ (yi1 +¥Yo) (Y2 +Yo) g] // Expand

¥2=0y1=0y0=0

Ao + A2 + Ao Ay + Ag Ay + Ap Ay

(i1) MGF approach
The joint mgf of X; and X, is:

E[exp(ll X +0b Xg)] = E[exp(tl YT+ Y+ + lz)Yo)]

which is then evaluated as:8

mgf = Simplify[ i Z
y1=0y

2=0

Z Evaluate [etl yi+tz Y2+ (E1+t2) Yo a] ]
Yo =0

e(fl+etl't2 ) Ao+ (-1+e® ) Ap+ (~1l+e™ ) Ay

Differentiating the mgf yields the raw product moments, as per (6.18).
Moment [r_, s_] := D[mgf, {t,, r}, {tz, s}] /. t_ >0
Then, [JM = E[X; X;,] is now obtained by:

Moment [1, 1] // Expand

Xo + A2 + X0 AL + Ao Az + A1 Ay
which is the same result we obtained using the direct method. Here is ug | = E[X f X21 1:

Moment [3, 1]

)\0+6)\0 <)\0 +)\1) +3)\0 <A0 +)\1)2 + <)\0 +)\1) <)\0 +)\2) +
3 (R0 +A1)? (Ao +22) + (Ao + A1) (Ao +Az)
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The mean vector &I = (E[X; ], E[X3]) is:

I = {Moment[1l, 0], Moment[O, 1]}

{Ao+ A1, Ao+ A2}
By (6.19), the central mgf is given by:
// Simplify

t= {ti1, t2}; mgfc = e'e'ﬁ mgf

e (-1+ef17%2 —t1 ~ty) Ao+ (-1+e® -t1) A+ (~1+e™ ~ty) Ay

Then, 1, ; = Cov(X;, X5) is:
D[mgfc, {ti, 1}, {t2, 1}]1 /.t >0
Ao

while the variances of X; and X, are, respectively:
D[mgfc, {t;, 2}] /.t -0

)\0 +)\1

D[mgfc, {tz, 2}] /.t -0

)\0 +)\2

(iii) Conversion formulae
The pgf (derived above) can be used as a factorial moment generating function, as follows:

Fac[r_, s_] := D[pgf, {ti, r}, {t2, s}] /. t_-1

Thus, the factorial moment u[1, 2] = E [Xl[l] X2[2]] is given by:
Fac[1l, 2]
220 (Ao +Az) + (Ao + A1) (Ao +)\2)2

In part (ii), we found [JM = E[X; X]] using the mgf approach. We now find the same
expression, but this time do so using factorial moments. The solution, in terms of factorial

moments, is:
sol = RawToFactorial[{3, 1}]
5 >0, 1] +3 402, 1] +4[3, 1]

SO [1 3,1 can be obtained as:
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sol /. p[r__] » Fac[r]

[y 12X +3X (Mo+A1)% + (Ao + A1) (Xo +Ag) +
(Xo + A1) (Xo +A2) +3 (22X (Ro + A1) + (Ao + A1) (Ao + Az))

It is easy to show that this is equal to Moment [3, 11, as derived above.

I 6.7 Exercises

1. Let random variables X and Y have Gumbel’s bivariate Logistic distribution with
joint pdf

2707
Trer ey ©VERS

Sx, y) =

(i) Plot the joint pdf; (ii) plot the contours of the joint pdf; (iii) find the joint cdf; (iv)
show that the marginal pdf’s are Logistic; (v) find the conditional pdf f(Y | X = x).

2. Letrandom variables X and Y have joint pdf

fx,y) = A_lu_ exp[—(% + %)], definedon x>0,y>0

with parameters A > 0 and p > 0. Find the bivariate mgf. Use the mgf to find (i) E[X],
>i1) E[Y], (ii1) /13, 4 =E [X3 Y41, (iv) U3 4- Verify by deriving each expectation directly.

3. Let random variables X and Y have McKay’s bivariate Gamma distribution, with
joint pdf

_ ot a-1(y, _ b=l —cy .
fx,y) = TlalTT5] (y-x""e*’, definedon O<x<y<w
with parameters a, b, ¢ > 0. Hint: use domain [ f] = {{x, 0, ¥}, {y, x, °}} etc.

(i) Show that the marginal pdf of X is Gamma.

(ii) Find the correlation between X and Y.

(iii) Derive the bivariate mgf. Use it to find /132 = E[X3Y?].

(iv) Plot f(x,y) when a=3,b=2 and ¢=2. Hint: use an If statement, as per
Plot3D[If[0<x<y, f,0], {x,0,4}, {y, 0,4}, etc. ]

(v) Create an animation showing how the pdf plot changes as parameter a increases
from 2 to 5—the animation should look similar to the solution given here: [+

4. Let random variable X ~ N(0, 1) and let Y = X?>—2. Show that Cov(X, Y) =0, even
though X and Y are clearly dependent.

5. Let random variables X and Y have a Gumbel (1960) bivariate Exponential
distribution (see Example 12). Find the regression function E[Y | X =x] and the

scedastic function Var(Y | X = x). Plot both when 6 =0, %, 1.

6. Find a Normal-Exponential bivariate distribution (i.e. a distribution whose marginal
pdf’s are standard Normal and standard Exponential) using the Morgenstern copula
method. Find the joint cdf and the variance-covariance matrix.
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7. Find a bivariate distribution whose marginal distributions are both standard
Exponential, using Frank’s copula method. Plot the joint pdf A(x, y) when @ = —10.
Find the conditional pdf h(x | ¥ = y).

8. Gumbel’s bivariate Logistic distribution (defined in Exercise 1) has no parameters.
While this is virtuous in being simple, it can also be restrictive.

(i) Construct a more general bivariate distribution A(x, y; @) whose marginal
distributions are both standard Logistic, using the Ali-Mikhail-Haq copula,

with parameter a.
(i) Show that Gumbel’s bivariate Logistic distribution is obtained as the special
case h(x, y; @ = 1).
(iii) Plot the joint pdf i(x, y) when @ = %
(iv) Find the conditional pdf h(x | Y =y).

9. Let f(x,y; [, X) denote the joint pdf of a bivariate Normal distribution N(, X).
For 0 < w < 1, define a bivariate Normal component-mixture density by:

fouy) = wftey; B, 1) + (1-w) f(x, y; Ty, )

10

Letf, =2.2, %=, |

12
), F,=(0,0) and % =| | .

T 1
(i) Find the functional form for f(x, y).

.. ~ 7 -
(i) Plot f(x, y) when w = 5. Construct contour plots of f(x, y) when w =0 and
when w = 1.

(iii) Create an animation showing how the contour plot changes as w increases from
0 to 1 in step sizes of 0.025—the animation should look something like the

. . frice
solution given here: Wl

(iv) Find the marginal pdf of X, namely fx (x). Find the mean and variance of the
latter.

(v) Plot the marginal pdf derived in (iv) when w = 0, % and 1.

10. Let random variables (W, X, Y, Z) have a multivariate Normal distribution N(, X),
with:

2 =1(0,0,0,0), L=

vk Bw v =
|oc [T N[N
wlw = = AW
—_ u|w G|°° w| &~

—_
W

(i) Find the joint pdf f(w, x, y, 2).

(ii) Use the multivariate Normal mgf, exp(7.1 +
E[W X*Y Z%].

(iii) Find E[Wexp(X+Y +2)] .

(iv) Use Monte Carlo methods (not numerical integration) to check whether the
solution to (iii) seems ‘correct’.

v) FindP(-3<W<3,-2<X<» -7<Y<2, -1<Z<1).

1737, to find E[W X Y Z] and



