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Chapter 2

Continuous Random Variables

I 2.1 Introduction

Let the continuous random variable X be defined on a domain of support A c R. Then a
function f:A —> R, is a probability density function (pdf) if it has the following
properties:

f(x)>0 for all xe A

P(Xe S):ff(x)dx, forSc A
s

The cumulative distribution function (cdf) of X, denoted F'(x), is defined by
FO) = PX=x) = | fondw, ——w<x<e 2.2)

The mathStatica function Prob[x, f] calculates P(X < x). Random variable X is said to
be a continuous random variable if F(x) is continuous. In fact, although our starting point
in mathStatica is typically to enter a pdf, it should be noted that the fundamental
statistical concept is really the cdf, not the pdf. Table 1 summarises some properties of the
cdf for a continuous random variable (a and b are constants).

i O=sFx=l

(i)  F(x)is anon-decreasing function of x
(iii)) F(=)=0, F(®)=1

(iv) Pla<X<b) = F(b)—F(a), fora<b
v) PX=x)=0

o) L p

Table 1: Properties of the cdf F(x) for a continuous random variable
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The expectation of a function u(X) is defined to be:

Eluo] = [ ue) foydx 23)

X

The mathStatica function Expect[u, f] calculates E[u], where u = u(X). Table 2
summarises some properties of the expectation operator, where a and b are again constants.

(1) Ela]l = a
(i)  Elau(X)] = aEu(X)]
(iii) E[u(X)+b] = b+ E[u(X)]

(iv) E[an a Xi| = ana,- E[X;]
i=1 i=1

Table 2: Basic properties of the expectation operator

@ Example 1: Maxwell-Boltzmann: The Distribution of Molecular Speed in a Gas

The Maxwell-Boltzmann speed distribution describes the distribution of the velocity X of
a random molecule of gas in a closed container. The pdf can be entered directly from
mathStatica’s Continuous palette:

V2 /rn , .
f = — ¥ e 207 3 domain[f] = {x, 0, o} && {o>0};
o
From a statistical point of view, the distribution depends on just a single parameter o > 0.
Formally though, in physics, o = VT kg /m where kg denotes Boltzmann’s constant, T
denotes temperature in Kelvin, and m is the mass of the molecule. The cdf F(x) is
P(X < x):

F = Prob[x, f]

= 2
e 2o ?X
TN X g
o

V2 o

Figure 1 plots the pdf (left panel) and cdf (right panel) at three different values of o.

F
03 o=2 1 0.=2 _ —_—
0.8 -
0.2 o=4 4
0.6 4
o=4 /0'26
0.1 N\— 0.4 /
~ o0=6 /
% ~N 0.2 VZ
pd ~ ~ e
-~ X X
5 10 15 20 5 10 15 20

Fig. 1: The Maxwell-Boltzmann pdf (left) and cdf (right), when o = 2, 4, 6



§2.1 CONTINUOUS RANDOM VARIABLES 33

The average molecular speed is E[X]:

Expect [x, f]

2 3o
\l T
1

The average kinetic energy per molecule is E [7 m X2]:

1
Expect[?mxz, f] /. 0> VTks/m

3Tksg
2

@ Example 2: The Reflected Gamma Distribution

Some density functions take a piecewise form, such as:

fi(x) ifx<a
f) =

f(x) ifx=a

Such functions are often not smooth, with a kink at the point x = . In Mathematica, the
natural way to enter such expressions is with the If [condition is true, then fi, else f; ]
function. That is,

f = Iflx<a, £f1, £2]; domain[f] = {x,-o0,}

where £1 and £2 must still be stated. mathStatica has been designed to seamlessly
handle If statements, without the need for any extra thought or work. In fact, by using
this structure, mathStatica can solve many integrals that Mathematica could not normally
solve by itself. To illustrate, let us suppose X is a continuous random variable such that
X =x € R with pdf

(_x)(l/—l ex .
— T ifx<0
2N«
o=t 2
X e .
Tm ifx=0

where O < @ < 1. This is known as a Reflected Gamma distribution, and it nests the
standard Laplace distribution as a special case when @ = 1. We enter f(x) as follows:

(_x) a-1 e* xoz—l e ¥

2T[a] = 2T[a] s
{x, -oo, oo} && {a > 0};

£ If[x<0,

domain[£f]
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Here is a plot of f(x) when @ = 1 and 3:

PlotDensity[f /. a-» {1, 3}]:

Fig. 2: The pdf of the Reflected Gamma Distribution, when @ =1 (—) and 3 (- — -)

Here is the cdf, P(X < x):

cdf = Prob[x, f]

Gamma [a, -X] _ Gamma [a, X]
If[x<0, 2T [a] , 1 2T [al }
Figure 3 plots the cdf when @ = 1 and 3.
F

2 4 6

Fig. 3: The cdf of the Reflected Gamma Distribution (¢ = 1 and 3)



§2.2A CONTINUOUS RANDOM VARIABLES 35

I 2.2 Measures of Location

2.2 A Mean

Let the continuous random variable X have pdf f(x). Then the population mean, or mean
for short, notated by 1 or /11 , is defined by

iy = EIX] = [xf0dx (2.4)

X

if the integral converges.

@® Example 3: The Mean for Sinc® and Cauchy Random Variables

Let random variable X have a Sinc” distribution with pdf f(x), and let ¥ have a Cauchy
distribution with pdf g(y):

1 sin[x]? .
£f=—; domain[f] = {x, -, x};
bl x2
L d in[g] = { }
g= —mm—; omaln |g| = {Y,s =, s}
7 (1+y?)

Figure 4 compares the pdf’s of the two distributions.

Fig. 4: Cauchy pdf (—) and Sinc? pdf (—--)

The tails of the Sinc® pdf are snake-like, and they contact the axis repeatedly at non-zero
integer multiples of .
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The mean of the Sinc? random variable is E [X]:

Expect [x, f]

0
By contrast, the mean of the Cauchy random variable, E[Y], does not exist:

Expect [y, g]

— Integrate::idiv :
Y
1+y2
— Integrate::idiv :
Y
1+y?

Integral of does not converge on {-oo, oo},

Integral of does not converge on {-oo, oo},

| % dy
JT

2.2B Mode

Let random variable X have pdf f(x). If f(x) has a local maximum at value x,,, then we
say there is a mode at x,,. If there is only one mode, then the distribution is said to be
unimodal. If the pdf is everywhere continuous and twice differentiable, and there is no
corner solution, then a mode is the solution to

df(x) _ d? f(x)
2 =, 2 <o, 2.5)

Care should always be taken to check for corner solutions.

@ Example 4: The Mode for a Chi-squared Distribution

Let random variable X ~ Chi-squared(n) with pdf f(x):

/2-1 g-x/2
f=——; domain[f] = {x, 0, «} && {n>0};
2n/2 I‘[%]

The first-order condition for a maximum is obtained via:

FOC =D[f, x] // Simplify; Solve [FOC == 0, x]

— Solve::ifun : Inverse functions are being
used by Solve, so some solutions may not be found.

{{X%sz'_ﬁ}, {x%72+n}}

Consider the interior solution, x,, =n—2, for n> 2. The second-order condition for a
maximum, at x,, = n — 2, is:
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soc = D[f, {x, 2}] /.x> n-2// Simplify

which is negative for n > 2. Hence, we conclude that x,, is indeed a mode, when n > 2. If
n < 2, the mode is the corner solution x,, = 0. Figure 5 illustrates the two scenarios by
plotting the pdf when n = 1.98 and n = 3.

f

/ n=1.98; Corner mode since n <2

0.5

n=73; Interior mode since n>2

Fig. 5: Corner mode (when n < 2) and interior mode (when n > 2)

2.2 C Median and Quantiles

Let the continuous random variable X have pdf f(x) and cdf F(x) = P(X < x). Then, the
median is the value of X that divides the total probability into two equal halves; i.e. the
value x at which F(x) = % More generally, the p™ quantile is the value of X, say x,, at
which F(x,) = p, for 0 < p <1. Quantiles are calculated by deriving the inverse cdf,
x, =F'(p). Ideally, inversion should be done symbolically (algebraically).
Unfortunately, for many distributions, symbolic inversion can be difficult, either because
the cdf can not be found symbolically and/or because the inverse cdf can not be found. In
such cases, one can often resort to numerical methods. Symbolic and numerical inversion
are also discussed in §2.6 B and §2.6 C, respectively.

@ Example 5: Symbolic Inversion: The Median for the Pareto Distribution

Let random variable X ~ Pareto(a, b) with pdf f(x):

£ =ab*x @®Y; Jomain[f] = {x, b, »} && {a>0, b>0};
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and cdf F(x):

F = Prob[x, f]

The median is the value of X at which F(x) = %:

1
Solve[F == —2—, x]

— Solve::ifun : Inverse functions are being
used by Solve, so some solutions may not be found.

([ 2% 5}
More generally, if Mathematica can find the inverse cdf, the p" quantile is given by:

Solve[F == p, x]

— Solve::ifun : Inverse functions are being
used by Solve, so some solutions may not be found.

{{x>b(1-p)*}}

Figure 6 plots the cdf and inverse cdf, when a =4 and b = 2.

F cdf X Inverse cdf
1 10
0.8 8
0.6 6
0.4 4
0.2 2
X F
2 4 6 8 10 0.2 04 0.6 0.8 1

Fig. 6: cdf and inverse cdf

@ Example 6: Numerical Inversion: Quantiles for a Birnbaum—Saunders Distribution

Let f(x) denote the pdf of a Birnbaum—Saunders distribution, with parameters @ = + and

2
B =4

(x-5)?
@ 2z 6= (X + 1
f = ( R) /.{a—)—,B—)4};
2

2aV2nB x3/2

domain[f] = {x, 0, «} && {a >0, B>0};
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Mathematica cannot find the cdf symbolically; that is, Prob [x, f1 fails. Instead, we can
construct a numerical cdf function NProb:

NProb[w_] := NIntegrate[f, {x, 0, w}]

For example, F(8) = P(X < 8) is given by:

NProb|[8]

0.92135

which means that X = 8 is approximately the 0.92 quantile. Suppose we want to find the
0.7 quantile: one approach would be to manually try different values of X. As a first guess,
how about X = 6?

NProb[6]

0.792892

Too big. So, try X = 5:

NProb[5]

0.67264

Too small. And so on. Instead of doing this iterative search manually, we can use
Mathematica’s FindRoot function to automate the search for us. Here, we ask
Mathematica to search for the value of X at which F(x) = 0.7, starting the search by trying
X=1and X =10:

sol = FindRoot [NProb[x] == 0.7, {x, {1, 10}}]

(x—>5.19527}

This tells us that X = 5.19527 ... is the 0.7 quantile, as we can check by substituting it back
into our numerical F(x) function:

NProb[x /. sol]

0.7

Care is always required with numerical methods, in part because they are not exact, and in
part because different starting points can sometimes lead to different ‘solutions’. Finally,
note that numerical methods can only be used if the pdf itself is numerical. Thus,
numerical methods cannot be used to find quantiles as a function of parameters a and
B—the method can only work given numerical values for @ and . ]
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I 2.3 Measures of Dispersion

A number of methods exist to measure the dispersion of the distribution of a random
variable X. The most well known is the variance of X, defined as the second central
moment

Var(X) = u, = E[(X - )] (2.6)
where 1 denotes the mean E[X]. The mathStatica function Var [x, f] calculates Var(X).
The standard deviation is the (positive) square root of the variance, and is often denoted

0.l Another measure is the mean deviation of X, defined as the first absolute central
moment

E[|x-ul] 2.7)

The above measures of dispersion are all expressed in terms of the units of X. This
can make it difficult to compare the dispersion of one population with another. By
contrast, the following statistics are independent of the variable’s units of measurement.
The coefficient of variation is defined by

olu. 2.8)

Gini’s coefficient lies within the unit interval; it is discussed in Example 9. Alternatively,
one can often compare the dispersion of two distributions by standardising them. A
standardised random variable Z has zero mean and unit variance:

Z=="F, (2.9)

Related measures are vV 8, and 3,, where

VB = Lo = H22
(2.10)

Here, the ; terms denote central moments, which are introduced in §2.4 A. If a density is
not symmetric about (i, it is said to be skewed. A common measure of skewness is \/E .
If the distribution of X is symmetric about n, then p; = E[(X —1)3] =0 (assuming s
exists). However, 1; = 0 does not guarantee symmetry; Ord (1968) provides examples.
Densities with long tails to the right are called skewed to the right and they tend to have
t5 > 0, while densities with long tails to the left are called skewed to the left and tend to
have 1; < 0. Kurtosis is commonly said to measure the peakedness of a distribution. More
correctly, kurtosis is a measure of both the peakedness (near the centre) and the tail weight
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of a distribution. Balanda and MacGillivray (1988, p. 116) define kurtosis as “the location-
and scale-free movement of probability mass from the shoulders of a distribution into its
centre and tails. In particular, this definition implies that peakedness and tail weight are
best viewed as components of kurtosis, since any movement of mass from the shoulders
into the tails must be accompanied by a movement of mass into the centre if the scale is to
be left unchanged.” The expression [, is Pearson’s measure of the kurtosis of a
distribution. For the Normal distribution, 8, = 3, and so the value 3 is often used as a
reference point.

@ Example 7: Mean Deviation for the Chi-squared(n) Distribution

Let X ~ Chi-squared(n) with pdf f(x):

/2-1 g-x/2
f=——; domain|[f] = {x, 0, «} && {n>0};
2n/2 I‘[%]

The mean L is:

u = Expect[x, f]

n

The mean deviation is E [ | X —u |] Evaluating this directly using Abs [] fails to yield a
solution:

Expect [Abs[x - u], f]

2-0/2 j:e’xu x1*% abs[n - x] dx

i3]

w‘s

In fact, quite generally, Mathematica Version 4 is not very successful at integrating
expressions containing absolute values. Fortunately, mathStatica’s support for If [a, b,
c] statements provides a backdoor way of handling absolute values—to see this, express

y=|x—u|as:
y = If[x<u, p-x, x-ul;
Then the mean deviation E[|X—u |]is given by:2

Expect [y, f]

4Gamma [l + 5, 5] -2nGammal 3,

N

w‘s
—
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@ Example 8: B, and S, for the Weibull Distribution
Let X ~ Weibull(a, b) with pdf f(x):

axa—l

£f= ———; domain[£f] = {x, 0, «} & {a >0, b>0};
b2 e(3)

Here, a is termed the shape parameter, and b is termed the scale parameter. The mean y is:
u = Expect[x, f]

1
bril+ —]

while the second, third and fourth central moments are:
{U2s M3, Mg} = Expect[ (x-p) 234, £1;
Then, B; and (3, are given by:

w3 u
>

{B1, B2} = {—,
B K2

(2r[1+%]3_w+1ﬂ[3+a]>

{

Note that both 8; and 3, only depend on the shape parameter a; the scale parameter b has
disappeared, as per intuition. Figure 7 plots 8, and 3, for different values of parameter a.

1 Bi

0 5 10 15 20
a

Fig. 7: (3, and B, for the Weibull distribution (plotted as a function of parameter a)



§2.3 CONTINUOUS RANDOM VARIABLES 43

Note that the symbols 1,, (i, and i, are ‘reserved’ for use by mathStatica’s moment
converter functions. To avoid any confusion, it is best to Unset them:

prior to leaving this example. ]

@ Example 9: The Lorenz Curve and the Gini Coefficient
Clearall[a, b, p, %, u, £, F]

Let X be a positive random variable with pdf f(x) and cdf F(x), and let p = F(x). The
Lorenz curve is the graph of L(p) against p, where

p
L(p) = ﬁﬁ F ') du @.11)

and where F~'(-) denotes the inverse cdf. In economics, the Lorenz curve is often used to
measure the extent of inequality in the distribution of income. To illustrate, suppose
income X is Pareto distributed with pdf f(x):

£ =ab*x @®Y; Jomain[f] = {x, b, ©} && {a>0, b>0};
and cdf F(x):

F = Prob[x, f]

The inverse cdf is found by solving the equation p = F(x) in terms of x:

Solve[p == F, x]

— Solve::ifun : Inverse functions are being
used by Solve, so some solutions may not be found.

{{x>Db (1-p)%}}
Equation (2.11) requires that the mean of X exists:

mean = Expect [x, f]
— This further assumes that: {a>1}

ab
-1l+a

... so we shall impose the tighter restriction a > 1. We can now evaluate (2.11):
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LC =

Integrate[b (1 -u) ', {u, 0, p}]
mean

a a (1-p) '/ (-1+p)
(-1+a) < 1 —“1+a )

a

Note that the solution does not depend on the location parameter b. The solution can be
simplified further:

LC =FullSimplify[LC, {0<p<1l, a>1}]

ol

1-(1-p)*

The Lorenz curve is a plot of LC as a function of p, as illustrated in Fig. 8. The
horizontal axis (p) measures quantiles of the population sorted by income; that is, p = 0.25
denotes the poorest 25% of the population. The vertical axis, L(p), measures what
proportion of society’s total income accrues to the poorest p people. In the case of Fig. 8,
where a = 2, the poorest 50% of the population earn only 29% of the total income:

c/.{a»2, p-> .50}

0.292893
The 45° line, L(p) = p, represents a society with absolute income equality. By contrast, the

line L(p) = 0 represents a society with absolute income inequality: here, all the income
accrues to just one person.

0.8

0.6 +

L(p)

04 ¢

0.2 ¢

p

Fig. 8: The Lorenz Curve for a Pareto distribution (a = 2) ﬁ
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The Gini coefficient is often used in economics to quantify the extent of inequality in
the distribution of income. The advantage of the Gini coefficient over the variance as a
measure of dispersion is that the Gini coefficient is unitless and lies within the unit
interval. Let S denote the shaded area in Fig. 8, and let T denote the area below the Lorenz
curve. The Gini coefficient (GC) is defined by the ratio GC = 5+ = )z = 2. That is,
GC =twice the shaded area. Since it is easy to compute area T, and since S = % -T, we

use GC =2 S =1-2T. Then, for our Pareto example, the Gini coefficient is:

1 -2 Integrate[ LC, {p, 0, 1}, Assumptions »a > 1] //
Simplify

1
-1+2a

This corresponds to a Gini coefficient of % for Fig. 8 where a =2. If a= 1, then GC =1
denoting absolute income inequality. As parameter a increases, the Lorenz curve shifts
toward the 45° line, and the Gini coefficient tends to 0, denoting absolute income
equality. ]

I 2.4 Moments and Generating Functions

2.4 A Moments

The r™ raw moment of the random variable X is denoted by /1, (X), or /1, for short, and is
defined by

[, = E[X]. (2.12)

Note that /10 =1, since E[X°] = E[1] = 1. The first moment, /11 = E[X], is the mean of X,
and it is also denoted /1.

The r' central moment 11, is defined by
= E[(X -] (2.13)

where 1 = E[X]. This is also known as the r™ moment about the mean. Note that ty =1,
since E[(X —u)O] = E[1]. Similarly, u, =0, since E[(X —u)l] = E[X] - . The second
central moment, (i, = E [(X - u)zl, is known as the variance of X, and is denoted Var(X).
The standard deviation of X is the (positive) square root of the variance, and is often
denoted o. Moments can also be obtained via generating functions; see §2.4 B. Further,
the various types of moments can be expressed in terms of one another; this is discussed in
§2.4 G.
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@ Example 10: Raw Moments for a Standard Normal Random Variable
Let X ~ N(0, 1) with pdf f(x):

2

e =T
f = ; domain[£f] = {x, -oo, };

Var

The r™ raw moment E[X"] is given by:

sol = Expect[x", f]

— This further assumes that: {r>-1}

1

27 (20 (14 (-1)7) T[4

= 2

Then, the first 15 raw moments are given by:

sol /. r-> Range[1l5]

{6, 1,0, 3, 0, 15, 0, 105, 0, 945, 0, 10395, 0, 135135, 0}

The odd moments are all zero, because the standard Normal distribution is symmetric
about zero. | |

24 B The Moment Generating Function

The moment generating function (mgf) of a random variable X is a function that may be
used to generate the moments of X. In particular, the mgf Mx(¢) is a function of a real-
valued dummy variable ¢. When no confusion is possible, we denote My(¢) by M(t). We
first consider whether or not the mgf exists, and then show how moments may be derived
from it, if it exists.

Existence: Let X be a random variable, and r € R denote a dummy variable. Let ¢
and 7 denote any two real-valued constants such that r <0 and 7> 0; thus, the open
interval (¢, 7) includes zero in its interior. Then, the mgf is given by

M(t) = E[e'X] (2.14)

provided E[e’*] € R, for all ¢ in the chosen interval ¢ < ¢ < 7. The condition that M(¢) be
positive real for all ¢ € (¢, 7) ensures that M(¢) is differentiable with respect to ¢ at zero.
Note that when ¢ = 0, M(0) is always equal to 1. However, M(¢) may fail to exist for ¢ # 0.

Generating moments: Let X be a random variable for which the mgf M(¢) exists.
Then, the ™ raw moment of X is obtained by differentiating the mgf r times with respect
to t, followed by setting ¢ = 0 in the resulting formula:
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o d™(®1)
He = t:(). (2.15)

Proof: If M(t) exists, then M(¢) is ‘r-times’ differentiable at t = 0 (for integer r > 0) and

tX X
‘ZEC[;; ]=E[‘l§;  for all £ € (z, 7) (Mittelhammer (1996, p. 142)). Hence,
d"Ele'X] _ d’ e _ . _ r
| = El5G] = Elxe*]) = E[x]o
t=0 t=0 t=0

Using mathStatica, the expectation E[e'X] can be found in the usual way with
Expect. However, before using the obtained solution as the mgf of X, one must check
that the mgf definition (2.14) is satisfied; i.e. that M (t) is positive real for all ¢ € (¢, 7).

@ Example 11: The mgf of the Normal Distribution

Let X ~ Normal(u, 02). Derive the mgf of X, and derive the first 4 raw moments from it.

Solution: Input the pdf of X:

1 (x-pu)?

oV2r 202

domain[£f] {x, -0, ©} && {4 € Reals, o> 0};
Evaluating (2.14), we find:

M = Expect [e"*, £]

By inspection, M € R, for all t €R, and M = 1 when ¢ = 0. Thus, M corresponds to the mgf
of X. Then, to determine say /12 from M, we apply (2.15) as follows:

D[M, {t, 2}] /.t >0

12+ o2

More generally, to determine /lr, r=1, ..., 4, fromM:

Table[D[M, {tl r}] /.t->0, {rl 4}]

{p, 2 +0?, w2 +3puc®, u* +6u%o0? +30%)
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@ Example 12: The mgf of the Uniform Distribution
Let X ~ Uniform(0, 1). Derive the mgf of X, and derive the first 4 raw moments from it.

Solution: Input the pdf of X, and derive M:

£=1; domain[£f] = {x, 0, 1} ; M= Expect[e**, f]
-1l+et

t

Figure 9 plots M in the neighbourhood of ¢ = 0.

0.8
0.6
04

0.2 ¢

-1 -0.5 0.5 1
Fig. 9: FunctionM for—-1<t<1

Clearly, M € R, in a neighbourhood of values about # = 0. At the particular value 7 =0,
the plot seems to indicate that M = 1. If we input M/ . t—->0, Mathematica replaces ¢ with O
to yield 0/0:

M/.t->0

. . . 1
— Power::infy : Infinite expression Nl encountered.

— oo::indet :
Indeterminate expression 0 ComplexInfinity encountered.

Indeterminate

To correctly determine the value of M at t =0, L’Hopital’s rule should be applied. This
rule is incorporated into Mathematica’s Limit function:

Limit [M, t - 0]

1

Thus, M = 1 when ¢ =0, as required. Since all requirements of the mgf definition are now
satisfied, M is the mgf of X.
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To determine the first 4 raw moments of X, we again apply (2.15), but this time in tandem
with the Limit function:

Table[ Limit[ D[M, {t, r}], t 0], {r, 4}]

1 1 1 1
-5 7 5}

More generally, E[X"] = ﬁ, as we can verify with Expect [x*, f]. |

@ Example 13: The mgf of the Pareto Distribution?

Let X be Pareto distributed with shape parameter a > 0 and location parameter b > 0. Does
the mgf of X exist?

Solution: Input the pdf of X via the mathStatica palette:
f=ab*x®Y; domain[f] = {x, b, »} && {a>0, b>0};
The solution to M (¢) = E[e'X] is given by mathStatica as:

M = Expect [e"*, £]

a ExpIntegralE[l +a, -bt]

If we consult Mathematica’s on-line help system on ExpIntegralE, we see that the
ExpIntegralkE function is complex-valued if the value of its second argument, —bt, is
negative. Since b > 0, M will be complex-valued for any positive value assigned to r. To
illustrate, suppose parameters a and b are given specific values, and M is evaluated for
various values of # > 0:

M/.{a>5,b>1} /. t » {.2, .4, .6, .8}

{1.28704 -0.0000418879 i, 1.66642 -0.00134041 i,
2.17384-0.0101788 1, 2.85641 - 0.0428932 1}

Hence, the requirement that M must be positive real in an open interval that includes the
origin is not satisfied. Therefore, the mgf of X does not exist. The non-existence of the
mgf does not necessarily mean that the moments do not exist. The Pareto is a case in
point, for from:

Expect [x", £]
— This further assumes that: {a>r}

ab*
a-r

.. we see that the raw moment /lr exists, under the given conditions. | |



50 CHAPTER 2 §2.4C

2.4 C The Characteristic Function

As Example 13 illustrated, the mgf of a random variable does not have to exist. This may
occur if e'* is unbounded (see (2.14)). However, the function e'’~, where i denotes the
unit imaginary number, does not suffer from unboundedness. On an Argand diagram, for
any t € R, e''* takes values on the unit circle. This leads to the so-called characteristic
function (cf) of random variable X, which is defined as

C(t) = E[e'"X]. (2.16)

The cf of a random variable exists for any choice of # € R that we may wish to make; note
C(0) = 1. If the mgf of a random variable exists, the relationship between the cf and the
mgf is simply C(f) = M (i t). Analogous to (2.15), raw moments can be obtained from the
cf via

Lo= i % 2.17)
t=0

provided /1, exists.

@ Example 14: The cf of the Normal Distribution

Let X ~ N(u, 0%). Determine the cf of X.

Solution: Input the pdf of X:

o

domain[£f] {x, -, ©} && {4 € Reals, o> 0};

Since we know from Example 11 that the mgf exists, the cf of X can be obtained via
C(t)=M(it). This sometimes works better in Mathematica than trying to evaluate
Expect [el t*, f] directly:

cf = Expect[e**, £] /. t o it

. 2 42
]Ltu—tzo

e
Then, the first 4 moments are given by:

Table[i * D[cf, {t, r}] /.t->0, {r, 4}] // Simplify

{p, 2 +0?, w2 +3puc®, u* +6u%o0? +30%)
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@ Example 15: The cf of the Lindley Distribution

Let the random variable X be Lindley distributed with parameter ¢ > 0. Derive the cf, and
derive the first 4 raw moments from it.

Solution: Input the pdf of X from the mathStatica palette:

2

f = 51 (x+1) e®%; domain[f] = {x, 0, ©} && {6 > 0};
+

The cf is given by

cf = Expect [elt*, f]
— This further assumes that: {Im[t] ==0}

52 (1-1it+6)
(L+68) (-1t+6)2

The condition on ¢ output by mathStatica is not relevant here, for we restrict the dummy
variable 7 to the real number line. The first 4 raw moments of X are given by:

Table[i * D[cf, {t, r}] /.t >0, {xr, 4}] // Simplify

{2+5 2 (3+6) 6 (4+6) 24<5+5)}
5+62 ' 62 (1+6) ' 63 (1L+6) ' 6% (1+6)

@ Example 16: The cf of the Pareto Distribution

Let X be Pareto distributed with shape parameter a =4 and location parameter b = 1.
Derive the cf, and from it, derive those raw moments which exist.

Solution: The Pareto pdf is:
£f=ab*x®Y; domain[f] = {x, b, »} & {a >0, b>0};
When a =4 and b = 1, the solution to the cf of X is:

cf = Expect [e!®*, £/. {a» 4, b>1}]

1

= (€'t (6-it (-2+t (-i+t))) +t*Gamma[0, -1t])

From Example 13, we know that the mgf of X does not exist. However, the moments of X
up to order r < a = 4 do exist, which we obtain from the cf by applying (2.17):

Table[ Limit [1* D[cf, {t, r}], £t > 0], {r, 4}]
4
{32 4 =}

Notice that we have utilised Limit to obtain the moments here, so as to avoid the 0/0
problem discussed in Example 12. ]
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2.4 D Properties of Characteristic Functions (and mgf’s)

§2.4 B and §2.4 C illustrated how the mgf and cf can be used to generate the moments of a
random variable. A second (and more important) application of the mgf and cf is to prove
that a random variable has a specific distribution. This methodology rests on the
Uniqueness Theorem, which we present here using characteristic functions; of course, the
theorem also applies to moment generating functions, provided the mgf exists, since then
C(ty=M(@i1).

Uniqueness Theorem: There is a one-to-one correspondence between the cf and the pdf of
a random variable.

Proof: The pdf determines the cf via (2.16). The cf determines the pdf via the Inversion
Theorem below.
|

The Uniqueness Theorem means that if two random variables X and Y have the same
distribution, then X and Y must have the same mgf. Conversely, if they have the same
mgf, then they must have the same distribution. The following results can be especially
useful when applying the Uniqueness Theorem. We present these results as the MGF
Theorem, which holds provided the mgf exists. A similar result holds, of course, for any
cf, with 7 replaced by i z.

MGF Theorem: Let random variable X have mgf Mx(¢), and let a and b denote constants.
Then

My.o(t) = ' Mx(t) Proof: Mx.,(t) = E[e'**] = e'* Mx(r)
Myx () = Mx(b1) Proof: Myx(t) = E[e'®®] = E[e"PX] = My(1b)
My x(t) = € Mx(bt) Proof: via above.

Further, let (Xi, ..., X,,) be independent random variables with mgf’s Mx, (1), i=1, ..., n,
and let Y = )7, X;. Then

My (1) = H My, () Proof: via independence (see Table 3 of Chapter 6).
i=1

If we can match the functional form of My () with a well-known moment generating
function, then we know the distribution of Y. This matching is usually done using a
textbook that lists the mgf’s for well-known distributions. Unfortunately, the matching
process is often neither easy nor obvious. Moreover, if the pdf of Y is not well-known (or
not listed in the textbook), the matching may not be possible. Instead of trying to match
My (¢) in a textbook appendix, we can (in theory) derive the pdf that is associated with it
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by means of the Inversion Theorem. This is particularly important if the derived cf is not
of a standard (or common) form. Recall that the characteristic function (cf) is defined by

C = j::e“x fxdt. (2.18)

Then, the Inversion Theorem is given by:

Inversion Theorem: The characteristic function C(f) uniquely determines the pdf f(x) via

fx) = 2—17;f_: e O dt (2.19)

Proof: See Roussas (1997, p. 142) or Stuart and Ord (1994, p. 126).
|

If the mgf exists, one can replace C(f) with M(i¢) in (2.19). Inverting a characteristic
function is often computationally difficult. With Mathematica, one can take two
approaches: symbolic inversion and numerical inversion.

Symbolic inversion: If we think of (2.18) as the Fourier transform f(x) » C(¢), then
(2.19) is the inverse Fourier transform C(f) - f(x) which can be implemented in
Mathematica via:

InverseFourierTransform[ cf, ¢, x, FourierParameters—{1,1}]

To further automate this mapping, we shall create a function InvertCF [t — x, cf].
Moreover, we shall allow this function to take an optional third argument, InvertCF [¢
- x, cf, assume], which we can use to make assumptions about x, such as x >0, or
x € Reals. Here is the code for InvertCF:

InvertCF[t_ -» x_, cf_, Assum :{}] :=

Module[{sol},
sol = InverseFourierTransform[cf, t, x,
FourierParameters-{1l,1}];
If[Assum === {}, sol, FullSimplify[sol, Assum]]]

Numerical inversion: There are many characteristic functions that Mathematica
cannot invert symbolically. In such cases, we can resort to numerical methods. We can
automate the inversion (2.19) C(t) —» f(x) using numerical integration, by constructing a
function NInvertCF [t — x, cf]:

NInvertCF[t_-» x_, cf_] :=
1 )
Y. NIntegrate[ e *®* cf, {t, -o, 0, =},
7
Method - DoubleExponential]

The syntax {t, —oo, 0, o} tells Mathematica to check for singularities at 0.
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@ Example 17: Linnik Distribution

The distribution whose characteristic function is

1

€O = T

teR, O<a=<2 (2.20)

is known as a Linnik distribution; this is also known as an a-Laplace distribution. The
standard Laplace distribution is obtained when a = 2. Consider the case @ = %:
1
cf = —— —
1+ Aabs[t]3/?

Inverting the cf symbolically yields the pdf f(x):
f = InvertCF[t -» x, cf]

MeijerG[{{T, S ==} {1}

[\)

1
4\/§7T7/2
{{0, 1 1 1 7 2

1 1 %
12" 3" 3" 12" 3" K}’ {K’ ?}}’ 46656}

ul

where domain[f]={x, -0, o}. Figure 10 compares the a = % pdf to the @ = 2 pdf.

pdf

x
Fig. 10: The pdf of the Linnik distribution, when o = % and 2

@ Example 18: The Sum of Uniform Random Variables

Let (X, ..., X)) be independent Uniform(0, 1) random variables, each with characteristic

t

function C(¢) = "—”_—1— It follows from the MGF Theorem that the cfof ¥ = Y7, X; is:
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The pdf of Y is known as the Irwin-Hall distribution, and it can be obtained in
Mathematica, for a given value of n, by inverting the characteristic function cf. For
instance, when n = 1, 2, 3, the pdf’s are, respectively, £1, £2, £3:

{£f1, £2, £3} = InvertCF[t->y, cf/. n-> {1, 2, 3}, y> 0]

{

(1 +Sign[l-v]), % (y+Abs[-2+y] -22Abs[-1+Vy]),

INEEN T

(v’ +3 (-1+y)?sign[l-vy] +

(-3+y)?sign[3-y]+3 (-2+y)? Sign[-2+vy])}

Figure 11 plots the three pdf’s. When n = 1, we obtain the Uniform(0, 1) distribution,
n = 2 yields a Triangular distribution, while n = 3 already looks somewhat bell-shaped.

0.8

0.6

04 |

02 r

1.5 2 2.5 3

—_ k- - = - - -

0.5

Fig. 11: The pdf of the sum of n Uniform(0, 1) random variables, whenn =1, 2, 3

@ Example 19: Numerical Inversion

Consider the distribution whose characteristic function is:

t2 T t
cf = e 7 + — t (Erf[—] -Sign[t]|:
N 2 V2

Alas, Mathematica Version 4 cannot invert this cf symbolically; that is,
InvertCF[t-x,cf] fails. However, by using the NInvertCF function defined
above, we can numerically invert the cf at a specific point such as x = 2.9, which yields
the pdf evaluated at x = 2.9:

NInvertCF[t » 2.9, cf]

0.0467289 +0. i

By doing this at many points, we can plot the pdf:
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Plot[ NInvertCF[t -» x, cf], {x, -10, 10},
AxesLabel -» {"x", "pdf"}, PlotRange - {0, .21}];

pdf

0.2

015 +

0.1

0.05

-10 -5 5 10

Fig. 12: The pdf, now obtained by numerically inverting the cf

2.4 E Stable Distributions

According to the Central Limit Theorem, the sum of a large number of iid random
variables with finite variance converges to a Normal distribution (which is itself a special
member of the stable family) when suitably standardised. If the finite variance assumption
is dropped, one obtains a Generalised Central Limit Theorem, which states that the
resulting limiting distribution must be a member of the stable class. The word ‘stable’ is
used because, informally speaking, when iid members of a stable family are added
together, the shape of the distribution does not change. Stable distributions are becoming
increasingly important in empirical work. For example, in finance, financial returns are the
sum of an enormous number of separate trades that arrive continuously in time. Yet, the
distribution of financial returns often has fatter tails and more skewness than is consistent
with Normality; by contrast, non-Gaussian stable distributions can often provide a better
description of the data. For more detail on stable distributions, see Uchaikin and Zolotarev
(1999), Nolan (2001), and McCulloch (1996).

Formally, a stable distribution S(a, B, c, a) is a 4-parameter distribution with
characteristic function C(¢) given by

exp(azzr—c|t|"{1+wsign(t) tan(ga)}) ifa+1
) = (2.21)

exp(ait—c|t| {1+iﬁsign(t)%log|t|}) ifa=1
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where 0 <@ <2,-1< =<1, c>0anda €R. Parameter « is known as the ‘characteristic
exponent’ and controls tail behaviour, S is a skewness parameter, ¢ is a scale parameter,
and a is a location parameter. Since the shape parameters @ and 8 are of primary interest,
we will let S(a, B) denote S(a, B, 1, 0). Then C(¢) reduces to

exp(_|t|a{1+iﬁ51gn(t)tan(§ a/)}) ifa+1
o) = (2.22)
exp(— |1] {1+iﬁsign(t)%log|t|}) ifa=1

with support,

R, ifa<landf = -1
support f(x) = { R. ifa<landf = 1 (2.23)
R otherwise

If @ < 1, the mean does not exist; if 1 < @ < 2, the mean exists, but the variance does not;
if @ =2 (the Normal distribution), both the mean and the variance exist. A symmetry
property is that f(x; a, 8) = f(-x; @, — ). Thus, if the skewness parameter =0, we
have f(x; a, 0) = f(—x; a, 0), so that the pdf is symmetrical about zero. In Mathematica,
we shall stress the dependence of the cf on its parameters @ and S by defining the cf (2.22)
as a Mathematica function of @ and 8, namely cf [, 8]:

Clear|[cf]
cfla_, B_] := Exp[-Abs[t]® (1+i/3 Sign[t] *
2 7
If[a ==1, ; Log[Abs|[t]]., Tan[—z— a]] )]

In the usual fashion, inverting the cf yields the pdf. Surprisingly, there are only three
known stable pdf’s that can be expressed in terms of elementary functions, and they are:

(i) The Normal Distribution: Let a = 2; then the cf is:

cf[2, B]

2
@-Abs [t]

which simplifies to e for teR. Inverting the cf yields a Normal pdf (the

InvertCF function was defined in §2.4 D above):

f = InvertCF[t »>x, cf[2, B]]

e

=
4

2V
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(ii) The Cauchy Distribution: Let @ = 1 and 8 = 0; then the cf and pdf are:

cf[1, 0]

@-Abs [t]

f = InvertCF[t -»x, cf[1, 0]]

1
T+ 7T X2

(iii) The Levy Distribution: Let @ = %, B = —1; then the cf is:
1
cf|—, -1
Y
(e—\/Abs [t] (1-iSign[t])
which, when inverted, yields the Levy pdf:

1
f = InvertCF[t—»x, cf[—z-, —1], x>0]

domain[f] = {x, 0, «};

-l
@ 7x

V2 7 %372
Here is a plot of the Levy pdf:

PlotDensity[£f, {x, 0, 6}]:

04 ¢
0.3
02 ¢

0.1t

1 2 3 4 5 6

Fig. 13: The Levy pdf

The Levy distribution may also be obtained as a special case of the
InverseGamma(y, b) distribution with y = % and b = 2.



§24E CONTINUOUS RANDOM VARIABLES 59

Only Three Known pdf’s?

It is often claimed that, aside from the Normal, Cauchy and Levy, no other stable pdf can
be expressed in terms of known functions. This is not quite true: it depends on which
functions are known. Hoffman-Jgrgenson (1993) showed that some stable densities can be
expressed in terms of hypergeometric , F, functions, while Zolotarev (1995) showed
more generally that some stable pdf’s can be expressed in terms of MeijerG functions.
Quite remarkably, Mathematica can often derive symbolic stable pdf’s in terms of , F,
functions, without any extra help! To illustrate, suppose we wish to find the pdf of
S(%, 0). Inverting the cf in the standard way yields:

1
ff = InvertCF[t - X, cf[?, 0] s X E Reals]

1
4 7 Abs [x]7/?
3/2 . 3 5 1
(72 Abs [x] HypergeometrlcPFQ[{l}, {Z' Z}' 7@7}
1 . . 1
A2 x? (COS[H} +Sign[x] Sln[H}))

Since Mathematica does not handle densities containing Abs [x] very well, we shall
eliminate the absolute value term by considering the x < 0 and x > O cases separately:

f_ = Simplify[ £ff /. Abs[x] » -x, x<0];

£, Simplify[ ££, x> 0];

and then re-express the S(%, 0) stable density as:
f = If[x<0, £, £,]; domain[f] = {x, -oo, };

Note that we are now working with a stable pdf in symbolic form that is neither Normal,
Cauchy, nor Levy. Further, because it is a symbolic entity, we can apply standard
mathStatica functions in the usual way. For instance, Expect [x, £] correctly finds that
the integral does not converge, while the cdf F(x) = P(X < x) is obtained in the familiar
way, as a symbolic entity!

F = Prob[x, f]

. 1 1
If[x<0, i Fresnelc[é} 7Fresnels[4} +
V2T \/§ V2T \/§
HypergeometricPFQ[{+, 1}, {5, 2=, 2}, - =]

’

2 7TX

1 - FresnelC [ } - FresnelS [

1 1
- R
\/27T\/; \/27T\/;}
HypergeometricPFQ[{+, 1}, {2, 2=, 2}, - =] }
2nx
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Figure 14 plots the pdf and cdf.

F
1

0.8
0.6
J

-4 -2 2 4 -20 -10 10 20

Fig. 14: The S(5, 0) pdf and cdf

More generally, examples fall into two classes: those that can be inverted
symbolically, and those that can only be inverted numerically. To illustrate, we shall
consider S(%, ) using symbolic methods; then S(1, ) via numerical methods, and finally
S(%, B) with both numerical and symbolic methods, all plotted when S = 0, %, 1. Figures
15-17 illustrate these cases: as usual, the code to generate these diagrams is given in the
electronic version of the text, along with some discussion.

24 F Cumulants and Probability Generating Functions

The cumulant generating function is the natural logarithm of the mgf. The r cumulant,
Kr, 18 given by

d" log(M(1))

Ky = . (2.24)

t=0

provided M(¢) exists. Unlike the raw and central moments, cumulants can not generally be
obtained by direct integration. To find them, one must either derive them from the
cumulant generating function, or use the moment conversion functions of §2.4 G.

The probability generating function (pgf) is
T(r) = E[¥] (2.25)

and is mostly used when working with discrete random variables defined on the set of non-
negative integers {0, 1, 2, ...}. The pgf provides a way to determine the probabilities. For
instance:

PX=r) = %% . r=0,1,2, .... (2.26)
=

The pgf can also be used as a factorial moment generating function. For instance, the
factorial moment

afrl = E[x"] = E[X(X-1)- (X -r+1D)]

may be obtained from I1(7) as follows:
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Fig. 16: S(1, B) with 8=0, <, 1 (bold, plain, dashed)
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i = Efxn] = 400 2.27)

t=1

where we note that ¢ is set to 1 and not 0. To convert from factorial moments to raw
moments, see the FactorialToRaw function of §2.4 G.

2.4 G Moment Conversion Formulae

One can express any moment ({1, i, or x) in terms of any other moment ({1, u, or x). To
this end, mathStatica provides a suite of functions to automate such conversions. The
supported conversions are:

function description
RawToCentral [r] /lr in terms of L
RawToCumulant [7] /lr in terms of x;
CentralToRaw [r] , in terms of [,
CentralToCumulant [r] H, in terms of x;
CumulantToRaw [r] K, in terms of /1,-
CumulantToCentral [r] x, 1in terms of L
and

RawToFactorial [r] /lr in terms of [1[{]
FactorialToRaw [7] [[r] in terms of /Jl-

Table 3: Univariate moment conversion functions

For instance, to express the 2™ central moment (the variance) Hy =E [(X —u )2] in terms
of raw moments u ;» We enter:
CentralToRaw[2]
2

M2 — 7,&1 +,&2

This is just the well-known result that i, = E [X2] - (E[X])*. Here are the first 6 central
moments in terms of raw moments:
Table [CentralToRaw[i], {i, 6}] // TableForm
tr >0
;2 ,
Mo — 7/11 + /12
,3 ;o ,
U3z = 2 [y =3 [ Hy + LUy
, 4 ;2 ;o ,
Ha = =3 Uy + 6Ly Uy =4 [y Uy + Uy
;5 ,3 ., ;2 ’ ’ ’
Hs >4 g =10 g ply + 10 g gy =54y Uy + Us

,6 , 4, ;3 /2 ;o ,
Ue = =5y + 15y ty =20 g s + 15 g py = 6 [y g + LUy
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Next, we express the 5 th raw moment in terms of cumulants:

sol = RawToCumulant [5]

fs = K: +10K3 Ky + 15 K1 K3 + 10 k% K3 + 10 K3 K3 + 5 K1 Kg + Ks
which is an expression in x;, fori = 1, ..., 5. Here are the inverse relations:

inv = Table [CumulantToRaw[i], {i, 5}]; inv // TableForm

’
K1 = HUq

;2 ’
Ko = Uy + Uy

,3 ;o ,
K3 = 2 [y =3 [y Uy + LUy
,4 2, ,2 ;o ,
Kg > =6y +12 g y =3 Ly —4 [y Uy + LUy
;5 73 ;2 ;72 ;o ;o ’
Ks =24ty =60y py +30 Ly gy +20 g iy =10 py s =5 pq Uy + Ug
Substituting the inverse relations back into sol yields /15 again:
sol /. inv // Simplify
[1s = [1s

Working ‘about the mean’ (i.e. taking x; =0) yields the CentralToCumulant
conversions:

Table|[ CentralToCumulant [r], {r, 5}]

{1 >0, Uy 5Ky, U3 > K3, Ug > 3 K5 +Kg, Us > 10Ky K3 +Kg}

The inverse relations are given by CumulantToCentral. Here is the 5" factorial
moment /1[5] =FE [X(X -DX-2)X-3)(X - 4)] expressed in terms of raw moments:

FactorialToRaw[5]
(5] »24 /1, - 50 [, +35 0, -10 {4, + [y
This is easy to confirm by noting that:

x (x-1) (%x-2) (%x-3) (x-4) // Expand

24x-50%x%+35%> - 10x* +x°
The inverse relations are given by RawToFactorial:

RawToFactorial [5]

’

fis > 4[1] +15[2[2] +25[3] + 10 [1[4] + [ [5]
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The Converter Functions in Practice

Sometimes, we know how to derive one class of moments (say raw moments), but not
another (say cumulants). In these situations, the converter functions come to the rescue,
for they enable us to derive the unknown moments in terms of the moments that can be
calculated. This section illustrates how this can be done. The general approach is: First,
express the desired moment (say xs) in terms of moments that we can calculate (say raw
moments). Then, evaluate each raw moment /2 ; for the relevant distribution.

@ Example 20: Cumulants of X ~ Beta(a, b)

Let random variable X ~ Beta(a, b) with pdf f(x):

xa—l (1_x)b—1 .
f = ; domain[f] = {x, 0, 1} & {a >0, b>0};
Beta[a, Db]

We wish to find the fourth cumulant. To do so, we can use the cumulant generating
function approach, or the moment conversion approach.

(i) The cumulant generating function is:

cgf = Log[Expect[e®*, £]]

Log [HypergeometriclFl[a, a+b, t]]
Then, the fourth cumulant is given by (2.24) as:

D[cgf, {t, 4}] /.t >0 // FullSimplify

6ab(a®+a? (1-2b) +b? (1+b) -2ab (2+Db))
(a+b)? (1+a+b)2 (2+a+b) (3+a+Db)

(ii)) Moment conversion approach: Express the fourth cumulant in terms of raw moments:
sol = CumulantToRaw [4]
,4 2, /2 ;o ,
Kg > =6y +12 g Uy =3 Ly —4 g Uy + LUy
Here, each term /lr denotes [Jr(X) = E[X"], and hence can be evaluated with the
Expect function. In the next input, we calculate each of the expectations that we

require:

sol /. ;'lr_ > Expect [x¥", £] // FullSimplify

. 6ab(a’*+a? (1-2b) +b? (1+b) -2ab (2+Db))
(a+b)?* (l+a+b)?2 (2+a+b) (3+a+b)

which is the same answer. | |
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I 2.5 Conditioning, Truncation and Censoring

2.5 A Conditional/Truncated Distributions

Let random variable X have pdf f(x), with cdf F(x) = P(X < x). Further, let a and b be
constants lying within the support of the domain. Then, the conditional density is

fr|a<X <b) = % Doubly truncated (2.28)
f(x) —w
flx | X>a) = 1 F@ (let b ) Truncated below (2.29)
< A€o} —
flx | X<b) Fb) (et a )  Truncated above (2.30)

These conditional distributions are also sometimes known as truncated distributions. In
each case, the conditional density on the left-hand side is expressed in terms of the
unconditional (parent) pdf f(x) on the right-hand side, which is adjusted by a scaling
constant in the denominator so that the density still integrates to unity.

Proof of (2.30): The conditional probability that event {); occurs, given event (),, is

_ PO N D) :
P(Qy | ) = Paay) — Pprovided P((;) # 0.
L PX<x | X=<b) = PX=<x [} X<b) = PX<x) provided x < b.
P(X<b) P(X<b)
cF(x | X=<b) = ggzg . Differentiating both sides with respect to x yields (2.30). 0

@ Example 21: A ‘Truncated Above’ Standard Normal Distribution
ClearAll[f, F, g, b]

Let X ~ N(0, 1) with pdf f(x):

2

e 2

Va2 r

Fh
1]
~e

domain[f] = {x, -, =} ;
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and cdf F(x):

F[x_] =Prob[x, f£f];

Let g(x) = f(x | X=<b)= % denote a standard Normal pdf truncated above at b:

£
; domain[g] = {x, -, b} && {b € Reals};
F[Db]

Figure 18 plots g(x) at three different values of b.

g(x)

Fig. 18: A standard Normal pdf truncated above at b = — %, %,

2.5B Conditional Expectations

Let X have pdf f(x). We wish to find the conditional expectation Ej [u(X) | a<X<b],
where the notation Ef[ -] indicates that the expectation is taken with respect to the random
variable X whose pdf is f(x). From (2.28), it follows that

b
fa u(x) f(x) dx (2.31)

EffuX) [a<X<b] = “pa—mm—

With mathStatica, an easier method is to first derive the conditional density via (2.28),
say g(x) = f(x]a < X < b) with domain[g] = {x, a, b}. Then,

Ef[uX) | a<X <b| = EuX)]. (2.32)
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@ Example 22: Mean and Variance of a ‘Truncated Above’ Normal

Continuing Example 21, we have X ~ N(0, 1) with pdf f(x) (the parent distribution), and
glx) = f(x |X < b) (a truncated above distribution). We wish to find E/[X | X <b]. The
solution is E,[X]:

Expect [x, g]

Because g(x) is ‘truncated above’ while f(x) is not, it must always be the case that
E,[X] <E¢[X]. As b becomes ‘large’, the truncation becomes less severe, so
E,[X] — E¢[X]. Thus, for our example, as b — «, E,[X] — 0 from below, as per Fig. 19
(left panel). At the other extreme, as b —» —, the 45° line forms an upper bound, since
E,[X]<b,if X <b.

E[X|X <b] Var(X| X <b)

Fig. 19: Conditional mean (left) and variance (right) as a function of b

Similarly, the variance of a truncated distribution must always be smaller than the
variance of its parent distribution, because the truncated distribution is a constrained
version of the parent. As b becomes ‘large’, this constraint becomes insignificant, and so
Var,(X) - Vary(X) from below. By contrast, as b tends toward the lower bound of the
domain, truncation becomes more and more binding, causing the conditional variance to
tend to 0, as per Fig. 19 (right panel). The conditional variance Var(X | X <b)is:

Var[x, g]

_x
1- 2e® - be = /%

7T<1+Erf[%”2 1+Erf[7b2:}

Finally, we Clear some symbols:
ClearAll[f, F, g]

... to prevent notational conflicts in future examples. |



68 CHAPTER 2 §2.5C

2.5 C Censored Distributions

Consider the following examples:

(i) The demand for tickets to a concert is a random variable. Actual ticket sales,
however, are bounded by the fixed capacity of the concert hall.

(i) Similarly, electricity consumption (a random variable) is constrained above by the
capacity of the grid.

(iii) The water level in a dam fluctuates randomly, but it can not exceed the physical
capacity of the dam.

(iv) In some countries, foreign exchange rates are allowed to fluctuate freely within a
band, but if they reach the edge of the band, the monetary authority intervenes to
prevent the exchange rate from leaving the band.

Examples (i) and (ii) draw the distinction between observed data (e.g. ticket sales,
electricity supply) and unobserved demand (some people may have been unable to
purchase tickets). Examples (iii) and (iv) fall into the general class of stochastic processes
that are bounded by reflecting (sticky) barriers; see Rose (1995). All of these examples
(i-iv) can be modelled using censored distributions.

Let random variable X have pdf f(x) and cdf F(x), and let ¢ denote a constant lying
within the support of the domain. Then, Y has a censored distribution, censored below at
point c, if

c if X<c
Y = (2.33)
X if X>c¢

Figure 20 compares the pdf of X (the parent distribution) with the pdf of Y (the censored
distribution). While X has a continuous pdf, the density of Y has both a discrete part and a
continuous part. Here, all values of X smaller than ¢ get compacted onto a single point c:
thus, the point ¢ occurs with positive probability F(c).

pdf of X

pdf of Y

Fig. 20: Parent pdf (top) and censored pdf (bottom)

The definitions for a ‘censored above’ distribution, and a ‘doubly censored’ distribution
(censored above and below) follow in similar fashion.
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@ Example 23: A ‘Censored Below’” Normal Distribution

ClearAll[£f, c]

c if X=<c
Let X ~ N(0, 1) with pdf f(x),and let Y = . We enter all this as:
X if X>c¢
e'%
f = ; domain[f] = {x, -, ©}; y=If[x=<c, c, x];

V2
Then, E[Y] is:

Expect [y, f]

% +—j2lc(1+Erf[Vc_2—}]

Note that this expression is equal to f(c) + ¢ F(c), where F(c) is the cdf of X evaluated at
the censoring point c. Similarly, Var(Y) is:

Var[y, £]
N PO 2e +
4

2

Erf[—c—} -c? Erf[—c—}

V2 V2

{22c<ec22 3
\| 7T

Figure 21 plots E[Y] and Var(Y) as a function of the censoring point c.

1 2

Fig. 21: The mean and variance of Y, plotted at different values of ¢
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2.5D Option Pricing

Financial options are an interesting application of censored distributions. To illustrate, let
time ¢ =0 denote today, let {S(), ¢ = 0} denote the price of a stock at time ¢, and let St
denote the stock price at a fixed future ‘expiry’ date T > 0. A European call option is a
financial asset that gives its owner the right (but not the obligation) to buy stock at time T
at a fixed price k (called the strike price). For example, if you own an Apple call option
expiring on 19 July with strike £ = $100, it means you have the right to buy one share in
Apple Computer at a price of $100 on July 19. If, on July 19, the stock price St is greater
than k = $100, the value of your option on the expiry date is St — k; however, if St is less
than $100, it would not be worthwhile to purchase at $100, and so your option would have
zero value. Thus, the value of a call option at expiry T is:

St—k if St >k
Vr = (2.34)

0 if St <k

We now know the value of an option at expiry —what then is the value of this option
today, at t =0, prior to expiry? At ¢t =0, the current stock price S(0) is always known,
while the future is of course unknown. That is, the future price St is a random variable
whose pdf f(st) is assumed known. Then, the value V = V(0) of the option at r =0 is
simply the expected value of Vr, discounted for the time value of money between expiry
(t =T) and today (¢ = 0):

V= V() = e TE[Vy] (2.35)

where r denotes the risk-free interest rate. This is the essence of option pricing, and we see
that it rests crucially on censoring the distribution of future stock prices, f(st).

@ Example 24: Black—Scholes Option Pricing (via Censored Distributions)

The Black—Scholes (1973) option pricing model is now quite famous, as acknowledged by
the 1997 Nobel Memorial Prize in economics.3 For our purposes, we just require the pdf
of future stock prices f(sr). This, in turn, requires some stochastic calculus; readers
unfamiliar with stochastic calculus can jump directly to (2.38) where f(st) is stated, and
proceed from there.

If investors are risk neutral,4 and stock prices follow a geometric Brownian motion,
then

ds
5 = rdt + odz (2.36)

with drift » and instantaneous standard deviation o, where z is a Wiener process. By Ito’s
Lemma, this can be expressed as the ordinary Brownian motion

dlog(S) = (r—%z)clt + odz (2.37)
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so that dbg&ﬂ-N“r—5§)T,UZT}EhmewmgcﬂogSﬂ as log(St) — log(S(0)), it
then follows that

a =1og(san)+-(r-£fi)1‘

2 (2.38)
b=0'\/7

log(St) ~ N(a, b*)  where {

That is, St ~ Lognormal(a, b?), with pdf f(st):

2
£ - 1 Exp[_ (Log[sr] - a)

scbV2n 2 b?

~

domain[£f] {sp, 0, <} && {a € Reals, b>0};

The value of the option at expiry, Vr, may be entered via (2.34) as:
Ve = If[sy >k, sp -k, 0]:

while the value V = V(0) of a call option today is given by (2.35):
V = e*T Expect[Vy, £f]

-rT

<
2

+ e (l + Erf[

a - Log[k] }

V2 b

(—k(lAFErf[

a+b? - Log[k] }]]

V2 b

where a and b were defined in (2.38). This result is, in fact, identical to the Black—Scholes
solution, though our derivation here via expectations is quite different (and much simpler)
than the solution via partial differential equations used by Black and Scholes. Substituting
in for a and b, and denoting today’s stock price S(0) by p, we have:

2
Value:V/.{a—» Log[p]+(r—%—]T, b—)d‘\/TI‘_};

For example, if the current price of Apple stock is p = S(0) = $104, the strike price is
k = $100, the interest rate is 5%, the volatility is 44% per annum (o = .44), and there are
66 days left to expiry (T = %), then the value today (in $) of the call option is:

66
value /. {p-» 104, k- 100, r> .05, o- .44, T -———}

365
10.2686

More generally, we can plot the value of our call option as a function of the current stock
price p, as shown in Fig. 22.
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30 +
25 +
20 r
Option

Value 15 t

10 +

70 80 90 100 110 120 130
Stock Price

Fig. 22: Value of a call option as a function of today’s stock price

As p — 0, we become certain that St < k. Referring to (2.34), this means that as p — 0,
V — 0, as Fig. 22 shows. By contrast, as p - », P(St > k) —» 1, so we become certain that
St >k, and thus V - e~’'T E[St — k]. The latter is equal to p — e~ T k, as the reader can
verify with Expect [sr - k, f£] and then substituting in for a and b. This explains the
asymptotes in Fig. 22.

Many interesting comparative static calculations are now easily obtainable with
Mathematica; for example, we can find the rate of change of option value with respect to
o as a symbolic entity with D[Value, o] //Simplify. ]

I 2.6 Pseudo-Random Number Generation

This section discusses different ways to generate pseudo-random drawings from a given
distribution. If the distribution happens to be included in Mathematica’s Statistics
package, the easiest approach is often to use the Random [distribution] function included
in that package (§2.6 A). Of course, this is not a general solution, and it breaks down as
soon as one encounters a distribution that is not in that package.

In the remaining parts of this section (§2.6 B—D), we discuss procedures that allow,
in principle, any distribution to be sampled. We first consider the Inverse Method, which
requires that both the cdf and inverse cdf can be computed, using either symbolic (§2.6 B)
or numerical (§2.6 C) methods. Finally, §2.6 D discusses the Rejection Method, where
neither the cdf nor the inverse cdf is required. Random number generation for discrete
random variables is discussed in Chapter 3.

2.6 A Mathematica’s Statistics Package

The Mathematica statistics packages, ContinuousDistributions”™ and
NormalDistribution', provide built-in pseudo-random number generation for well-
known distributions such as the Normal, Gamma, and Cauchy. If we want to generate
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pseudo-random numbers from one of these well-known distributions, the simplest solution
is to use these packages. They can be loaded as follows:

<< Statistics’

Suppose we want to generate pseudo-random drawings from a Gamma(a, b) distribution:

xa—1 e—x/b
£=—; domain[£] = {x, 0, =} && {a>0, b>0};
r'[a] b2

If a =2 and b = 3, a single pseudo-random drawing is obtained as follows:

dist = GammaDistribution[2, 3] ; Random[dist]

8.61505
while 10000 pseudo-random values can be generated with:
data = RandomArray [dist, 10000];

The mathStatica function, FrequencyPlot, can be used to compare this ‘empirical’
data with the true pdf f(x):

FrequencyPlot [data, £ /. {a>» 2, b>3}];

0.12

0.1 |

0.08

f 006 |

0.04

0.02 +

Fig. 23: The empirical pdf (—) and true pdf (- — -)

While it is certainly convenient to have pre-written code for special well-known
distributions, this approach must, of course, break down as soon as we consider a
distribution that is not in the package. Thus, more general methods are needed.
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2.6 B Inverse Method (Symbolic)

Let random variable X have pdf f(x), cdf p = F(x) and inverse cdf x = F~'(p), and let u be
a pseudo-random drawing from Uniform(0, 1). Then a pseudo-random drawing from f(x)
is given by

x=F ') (2.39)

In order for the Inverse Method to work efficiently, the inverse function F~'(-) should be
computationally tractable. Here is an example with the Levy distribution, with pdf f(x):

1
2x

e

f= —; domain[f] = {x, 0, o} ;
A2 7 x3/2
The cdf F(x) is given by:

F = Prob[x, f]

lerf[

1
yoaved
while the inverse cdf is:

inv = Solve[u == F, x] // Flatten

— Solve::ifun : Inverse functions are being
used by Solve, so some solutions may not be found.

1
{x- 7}
2 InverseErf [0, 1 -u]

When u=Random[], this rule generates a pseudo-random Levy drawing x. More
generally, if the inverse yields more than one possible solution, we would have to select
the appropriate solution before proceeding. We now generate 10000 pseudo-random
numbers from the Levy pdf, by replacing u with Random [ ]:

data = Table[
1

, {10000}]; // Timing
2 InverseErf [0, 1 - Random] ] ]2

{2.36 Second, Null}

It is always a good idea to check the data set before continuing. The output here should
only consist of positive real numbers. To check, here are the last 10 values:

Take [data, -10]

{6.48433, 0.229415, 3.70733, 4.53735, 0.356657,
0.646354, 1.09913, 0.443604, 1.17306, 0.532637}
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These numbers seem fine. We use the mathStatica function FrequencyPlot to inspect
fit, and superimpose the parent density f(x) on top:

FrequencyPlot [data, {0, 10, .1}, £];

04 |

0.3 |

0.2 +

0.1

Fig. 24: The empirical pdf (—) and true pdf (- — -)

Some caveats: The Inverse Method can only work if we can determine both the cdf
and its inverse. Inverse functions are tricky, and Mathematica may occasionally
experience some difficulty in this regard. Also, since one ultimately has to work with a
numerical density (i.e. numerical parameter values) when generating pseudo-random
numbers, it is often best to specify parameter values at the very start —this makes it easier
to calculate both the cdf and the inverse cdf.

2.6 C Inverse Method (Numerical)

If it is difficult or impossible to find the inverse cdf symbolically, we can resort to doing
so numerically. To illustrate, let random variable X have a half-Halo distribution with pdf

fx):

2
f = —\/1— (x—2)2; domain[f] = {x, 1, 3};
7

with cdf F(x):

F = Prob[x, f]

(-2 +x)/-(-3+x) (-1+x) +ArcCos[2 - X]
VA
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Mathematica cannot invert this cdf symbolically; that is, Solve[u==F,x] fails.
Nevertheless, we can derive the inverse cdf using numerical methods. We do so by
evaluating (F, x) at a finite number of different values of x, and then use interpolation to
fill in the gaps in between these known points. How then do we decide at which values of
x we should evaluate (F, x)? This is the same type of problem that Mathematica’s Plot
function has to solve each time it makes a plot. So, following Abbott (1996), we use the
Plot function to automatically select the values of x at which (F(x), x) is to be
constructed, and then record these values in a list called 1is. The larger the number of
PlotPoints, the more accurate will be the end result:

lis = {};

Plot[ (ss =F; AppendTo[lis, {ss, x}]; ss), {x, 1, 3},
PlotPoints - 2000,
PlotRange - All, AxesLabel -» {"x", "F"}];

F
1t

0.8 +
0.6 +
04 ¢

02 ¢

1.5 2 2.5 3
Fig. 25: The cdf F(x) plotted as a function of x

Mathematica’s Interpolation function is now used to fill in the gaps between the
chosen points. We shall take the Union of 1is so as to eliminate duplicate values that
the Plot function can sometimes generate. Here, then, is our numerical inverse cdf
function:

InverseCDF = Interpolation[Union[lis]]

InterpolatingFunction[{{1.89946x107 ', 1.1}, <>]
Here are 60000 pseudo-random drawings from the half-Halo distribution:

data = Table[ InverseCDF|[ Random[] ], {60000}]:
// Timing

{1.1 Second, Null}
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Figure 26 compares this pseudo-random data with the true pdf f(x):

FrequencyPlot [data, {1, 3, .02}, f];

0.6

0.5

04 r

03 r

02 r

0.1

Fig. 26: The empirical pdf (—) and true half-Halo pdf (- — -)

2.6 D Rejection Method

Our objective is to generate pseudo-random numbers from some pdf f(x). Sometimes, the
Inverse Method may fail: typically, this happens because the cdf or the inverse cdf has an
intractable functional form. In such cases, the Rejection Method can be very helpful —it
provides a way to generate pseudo-random numbers from f(x) (which we do not know
how to do) by generating pseudo-random numbers from a density g(x) (which we do know
how to generate). Density g(x) should have the following properties:

¢ g(x) is defined over the same domain as f(x), and

o there exists a constant ¢ > 0 such that ACH) < c for all x. Thatis, ¢ = sup(M).
8(x) g(x)
Let x, denote a pseudo-random drawing from g(x), and let u denote a pseudo-random
drawing from the Unifom(0, 1) distribution. Then, the Rejection Method generates pseudo-

random drawings from f(x) in three steps:

The Rejection Method

(1) Generate x, and u.

2) Ifu=< % %, accept x, as arandom selection from f(x).
I

(3) Else, return to step (1).
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To illustrate, let f(x) denote the pdf of a Birnbaum—Saunders distribution, with parameters
a and B. This distribution has been used to represent the lifetime of components. We wish
to generate pseudo-random drawings from f(x) when say a = %, B =4

(x-B) 2

£ = e za8x (x+ f3) /. {a—»i,B—>4};
2

2aV2nrapB x3/2

domain[f] = {x, 0, «} && {a >0, B>0};

The Inverse Method will be of little help to us here, because Mathematica Version 4
cannot find the cdf of this distribution. Instead, we try the Rejection Method. We start by
choosing a density g(x). Suitable choices for g(x) might include the Lognormal or the
Levy (§2.6 B) or the Chi-squared(n), because each of these distributions has a similar
shape to f(x); this is easy to verify with a plot. We use Chi-squared(n) here, with n = 4:

x/2-1 g-x/2
= ————— /. no4; domain[g] = {x, 0, o};
2n/2 r[%]

Note that g(x) is defined over the same domain as f(x). Moreover, we can easily check

whether ¢ = sup(%) exists, by doing a quick plot of %

flg
1.4
1.2

1
0.8
0.6
0.4
0.2

X

5 10 15 20 25 30

Fig. 27: % plotted as a function of x

This suggests that ¢ is roughly equal to 1.45. We can find the value of ¢ more accurately
using numerical methods:

£
c = FindMaximu.m[;, {x, 3, 6}] [11

1.4739

We can easily generate pseudo-random drawings x, from g(x) using Mathematica’s
Statistics package:

<< Statistics"
dist = ChiSquareDistribution[4]; Xy; = Random[dist]

18.8847
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By step (2) of the Rejection Method, we accept x, as a random selection from f(x) if

u < Q(x,), where Q(x,) = 1 flxg)

¢ g0 We enter Q(x) into Mathematica as follows:

1 £
Q[x_ ] = — — // Simplify
c g

29.5562 e 8% (4 + x)
%5/2

Steps (1) — (3) can now be modelled in just one line, by setting up a recursive function. In
the following input, note how x, (a pseudo-random Chi-squared drawing) is used to
generate x; (a pseudo-random Birnbaum-Saunders drawing):

Xeg =
(%4 = Random[dist]; u=Random[]; If[u<Q[xg], Xg, Xe])

So, let us try it out ... here are 10000 pseudo-random Birnbaum—Saunders drawings:
data = Table[xs, {10000}];
Check the fit:

FrequencyPlot [data, f];

02+

0.15

0.1 +

0.05

Fig. 28: The empirical pdf (—) and true pdf (- — -)

The Rejection Method is most useful when working with densities f(x) that are not
covered by Mathematica’s Statistics package, and for which the symbolic Inverse Method
does not work. When using the Rejection Method, density g(x) should be chosen so that it
is easy to generate from, and is as similar in shape to f(x) as possible. It is also worth
checking that, at each stage of the process, output is numerical.
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7 Exercises

Let continuous random variable X have a semi-Circular (half-Halo) distribution with
pdf f(x)=2V1—x2 /7r and domain of support x € (=1, 1). Plot the density f(x).
Find the cdf P(X < x) and plot it. Find the mean and the variance of X.

Azzalini (1985) showed that if random variable X has a pdf f(x) that is symmetric
about zero, with cdf F(x), then 2 f(x) F(Ax) is also a pdf, for parameter A € R. In
particular, when X is N(0, 1), the density g(x) = 2 f(x) F(A x) is known as Azzalini’s
skew-Normal distribution. Find g(x). Plot density g(x) when A =0, 1 and 2. Find the
mean and variance. Find upper and lower bounds on the variance.

Let X ~ Lognormal(., ). Find the r™ raw moment, the cdf, p™ quantile, and mode.

Let f(x) denote a standard Normal pdf; further, let pdf g(x) = (2 7' (1 + cos(x)),
with domain of support x € (-, 7). Compare f(x) with g(x) by plotting both on a
diagram. From the plot, which distribution has greater kurtosis? Verify your choice
by calculating Pearson’s measure of kurtosis.

Find the y™ quantile for a standard Triangular distribution. Hence, find the median.

Let X ~ InverseGaussian(u, o) with pdf f(x). Find the first 3 negative moments (i.e.
E[X~'], E[X~2], E[X~3]). Find the mgf, if it exists.

Let X have pdf f(x) = Sech[x]/x, x € R, which is known as the Hyperbolic Secant
distribution. Derive the cf, and then the first 12 raw moments. Why are the odd-order
moments zero?

Find the characteristic function of X?, if X ~ N(u, 02).

Find the cdf of the stable distribution S(%, —1) as an exact symbolic entity.

The distribution of IQ in Class E2 at Rondebosch Boys High School is X ~ N(u, o?).
Mr Broster, the class teacher, decides to break the class into two streams: Stream 1
for those with IQ > w, and Stream 2 for those with IQ < w.

(i) Find the average (expected) IQ in each stream, for any chosen value of w.
(i) If u =100 and o = 16, plot (on one diagram) the average IQ in each stream as a
function of w.
(iii) If 4 =100 and o = 16, how should Mr Broster choose w if he wants:
(a) the same number of students in each stream?
(b) the average 1Q of Stream 1 to be twice the average of Stream 2?
For each case (a)—(b), find the average IQ in each stream.

Apple Computer is planning to host a live webcast of the next Macworld Conference.
Let random variable X denote the number of people (measured in thousands) wanting
to watch the live webcast, with pdf f(x) = ﬁ e 12 x, for x > 0. Find the expected
number of people who want to watch the webcast. If Apple’s web server can handle
at most ¢ simultaneous live streaming connections (measured in thousands), find the
expected number of people who will be able to watch the webcast as a function of c.

Plot the solution as a function of c.

Generate 20000 pseudo-random drawings from Azzalini’s (A =1) skew-Normal
distribution (see Exercise 2), using the exact inverse method (symbolic).



