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Preface

Imagine  computer  software  that  can  find  expectations  of  arbitrary  random  variables,
calculate  variances,  invert  characteristic  functions,  solve  transformations  of  random
variables,  calculate  probabilities,  derive  order  statistics,  find  Fisher:s  Information  and
Cramér=Rao  Lower  Bounds,  derive  symbolic  (exact)  maximum  likelihood  estimators,
perform  automated  moment  conversions,  and  so  on.  Imagine  that  this  software  was
wonderfully  easy  to  use,  and  yet  so  powerful  that  it  can  find  corrections  to  mainstream
reference  texts  and  solve  new problems  in  seconds.  Then,  imagine  a  book  that  uses  that
software to bring mathematical statistics to life G

Why Mathematica?

Why IMathematical  Statistics  with MathematicaL?  Why not  Mathematical  Statistics  with
Gauss, SPSS, Systat, SAS, JMP or S-Plus G ? The answer is four-fold:

(i) Symbolic engine
Packages  like  Gauss,  SPSS,  etc.  provide  a  numerical /graphical  toolset.  They  can
illustrate,  they  can  simulate,  and  they  can  find  approximate  numerical  solutions  to
numerical  problems,  but  they cannot  solve the algebraic / symbolic  problems that are
of  primary  interest  in  mathematical  statistics.  Like  all  the  other  packages,
Mathematica  also  provides  a  numerical  engine  and  superb  graphics.  But,  over  and
above  this,  Mathematica  has  a  powerful  symbolic /algebraic  engine  that  is  ideally
suited to solving problems in mathematical statistics.

(ii) Notebook interface
Mathematica  enables  one  to  incorporate  text,  pictures,  equations,  animations  and
computer input into a single interactive live document that is known as a Vnotebook:.
Indeed,  this  entire  book  was  written,  typeset  and  published  using  Mathematica.
Consequently,  this book  exists in two identical forms: (a) a printed book that has all
the tactile advantages of printed copy, and (b) an electronic book on the mathStatica
CD-ROM  (included)!here,  every  input  is  live,  every  equation  is  at  the  reader:s
fingertips,  every diagram can be generated  on the fly,  every example can be altered,
and so on. Equations are hyperlinked, footnotes pop-up, cross-references are live, the
index  is  hyperlinked,  online  HELP  is  available,  and  animations  are  a  mouse-click
away.

(iii) Numerical accuracy
Whereas  most  software  packages  provide  only  finite-precision  numerics,
Mathematica  also  provides  an  arbitrary-precision  numerical  engine:  if  accuracy  is



important,  Mathematica  excels.  As  McCullough  (2000,  p.296)  notes,  IBy  virtue  of
its variable precision arithmetic and symbolic power, Mathematica:s performance on
these reliability tests far exceeds any finite-precision statistical packageL.

(iv) Cross-platform and large user base
Mathematica  runs  on  a  wide  variety  of  platforms,  including  Mac,  OS X,  Windows,
Linux, SPARC, Solaris, SGI, IBM RISC, DEC Alpha and HP=UX. This is especially
valuable in academia, where co-authorship is common.

What is mathStatica?

mathStatica  is a computer software package! an add-on to Mathematica!that provides
a  sophisticated  toolset  specially  designed  for  doing  mathematical  statistics.  It
automatically  solves  the  types  of  problems  that  researchers  and  students  encounter,  over
and over again,  in mathematical  statistics. The mathStatica  software is bundled free with
this  book  (Basic  version).  It  is  intended  for  use  by  researchers  and  lecturers,  as  well  as
postgraduate  and  undergraduate  students  of  mathematical  statistics,  in  any  discipline  in
which the theory of statistics plays a part.

Assumed Knowledge

How much statistics knowledge is assumed? How much Mathematica knowledge?

Statistics: We assume the reader has taken one year of statistics. The level of the text
is generally similar to Hogg and Craig (1995). The focus, of course, is different, with less
emphasis on theorems and proofs, and more emphasis on problem solving.

Mathematica:  No experience is required.  We do assume the reader has Mathematica
installed (this book comes bundled with a fully-functional  trial copy of Mathematica) and
that  the  user  knows  how  to  evaluate  2+2,  but  that:s  about  it.  Of  course,  there  are
important  Mathematica  conventions,  such  as  a  knowledge  of  bracket  types  ( ),  [ ],  {},
which  are  briefly  discussed  in Chapter  1.  For the  new  user,  the  best  approach  is  to  try  a
few examples and the rest usually follows by osmosis Ã.

As a Course Textbook

This book can be used as a course text in mathematical  statistics or as an accompaniment
to  a  more  traditional  text.  We  have  tried  to  pitch  the  material  at  the  level  of  Hogg  and
Craig (1995). Having said that, when one is armed with mathStatica, the whole notion of
what  is  difficult  changes,  and so  we can often extend  material  to the level  of,  say,  Stuart
and Ord (1991,  1994)  without any  increase in Vdifficulty:.  We assume that the reader has
taken  preliminary  courses  in  calculus,  statistics  and  probability.  Our  emphasis  is  on
problem  solving,  with  less  attention  paid  to  the  presentation  of  theorems  and  their
associated  proofs,  since  the latter  are well-covered  in more traditional  texts.  We make no
assumption about the reader:s knowledge of Mathematica, other than that it is installed on
their computer.
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In the lecture  theatre, lecturers  can use mathStatica  to remove a lot of the annoying
technical calculation often associated with mathematical statistics. For example, instead of
spending  time  and  energy  laboriously  deriving,  step  by  step,  a  nasty  expectation  using
integration  by parts, the lecturer can use mathStatica  to calculate the same expectation in
a few seconds,  in front  of the class.  This frees  valuable  lecture  time to either  explore the
topic  in  more  detail,  or  to  tackle  other  topics.  For  students,  this  book  serves  three  roles:
first,  as  a  text  in  mathematical  statistics;  second,  as  an  interactive  medium  to  explore;
third,  as  a  tool  for  tackling  problems  set  by  their  professors! the  book  comes  complete
with 101 exercises (a solution set for instructors is available at www.mathstatica.com).

mathStatica  has  the  potential  to  enliven  the  educational  experience.  At  the  same
time, it is not a panacea for all problems. Nor should it be used as a substitute for thinking.
Rather,  it  is  a  substitute  for  mechanical  and  dreary  calculation,  hopefully  freeing  the
reader to solve higher-order problems. Armed with this new and powerful toolset, we hope
that others go on to solve ever more challenging problems with consummate ease.
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Chapter 1
Introduction

1.1 Mathematical Statistics with Mathematica

1.1 A A New Approach
The use of computer  software in statistics  is far  from new. Indeed,  hundreds  of statistical
computer  programs  exist.  Yet,  underlying  existing  programs  is  almost  always  a
numerical /graphical  view of the world. Mathematica can easily handle the numerical  and
graphical  sides,  but  it  offers  in  addition  an  extremely  powerful  and  flexible  symbolic
computer  algebra system. The mathStatica  software  package  that accompanies  this  book
builds  upon  that  symbolic  engine  to  create  a  sophisticated  toolset  specially  designed  for
doing mathematical statistics.

While the subject matter  of this text is similar  to a traditional  mathematical  statistics
text,  this  is  not  a  traditional  text.  The reader  will  find  few proofs  and  comparatively  few
theorems.  After  all,  the  theorem /proof  text  is  already  well  served  by  many  excellent
volumes  on  mathematical  statistics.  Nor is  this  a  cookbook  of  numerical  recipes  bundled
into  a  computer  package,  for  there  is  limited  virtue  in  applying  Mathematica  as  a  mere
numerical tool. Instead, this text strives to bring mathematical statistics to life. We hope it
will  make  an  exciting  and  substantial  contribution  to  the  way  mathematical  statistics  is
both practised and taught.

1.1 B Design Philosophy
mathStatica  has  been  designed  with  two  central  goals:  it  sets  out  to  be  general,  and  it
strives to be delightfully simple.

By general,  we mean that it  should not  be limited  to a set  of special  or well-known
textbook distributions.  It  should  not  operate  like  a  textbook appendix  with prepared Fcrib
sheetG  answers.  Rather,  it  should  know  how  to  solve  problems  from  first  principles.  It
should  seamlessly  handle:  univariate  and  multivariate  distributions,  continuous  and
discrete  random  variables,  and  smooth  and  kinked  densities!all  with  and  without
parameters.  It  should  be  able  to  handle  mixtures,  truncated  distributions,  reflected



distributions,  folded  distributions,  and  distributions  of  functions  of  random  variables,  as
well as distributions no-one has ever thought of before. 

By delightfully simple, we mean both (i) easy to use, and (ii) able to solve problems
that seem difficult,  but which  are formally quite simple.  Consider,  for instance,  playing a
devilish game of chess against a strong chess computer: in the middle of the game, after a
short  pause,  the  computer  announces,  MMate  in  16  movesQ.  The  problem  it  has  solved
might seem fantastically difficult, but it is really just a Fdelightfully simpleG finite problem
that  is  conceptually  no  different  than looking  just  two  moves  ahead.  The  salient  point  is
that  as  soon  as  one  has  a  tool  for  solving  such  problems,  the  notion  of  what  is  difficult
changes completely. A pocket calculator is certainly a delightfully simple device: it is easy
to  use,  and  it  can  solve  tricky  problems  that  were  previously  thought  to be  difficult.  But
today,  few  people  bother  to  ponder  at  the  marvel  of  a  calculator  any  more,  and  we  now
generally spend our time either using such tools or trying to solve higher-order conceptual
problems! and so, we are certain, it will be with mathematical statistics too. 

In  fact,  while  much  of  the  material  traditionally  studied  in  mathematical  statistics
courses  may  appear  difficult,  such  material  is  often  really  just  delightfully  simple.
Normally, all we want is an expectation, or a probability, or a transformation. But once we
are  armed  with  say  a  computerised  expectation  operator,  we  can  find  any  kind  of
expectation  including  the  mean,  variance,  skewness,  kurtosis,  mean  deviation,  moment
generating  function,  characteristic  function,  raw  moments,  central  moments,  cumulants,
probability  generating function, factorial moment generating function,  entropy, and so on.
Normally,  many  of  these  calculations  are  not  attempted  in  undergraduate  texts,  because
the mechanics are deemed too hard. And yet, underlying all of them is just the delightfully
simple expectation operator.

1.1 C If You Are New to Mathematica

For those readers who do not own a copy of Mathematica, this book comes bundled with a
free trial copy of Mathematica Version 4. This will enable you to use mathStatica, and try
out and evaluate all the examples in this book. 

If  you  have  never  used  Mathematica  before,  we  recommend  that  you  first  read  the
opening  pages  of  Wolfram (1999)  and  run  through  some examples.  This  will  give  you a
good  feel  for  Mathematica.  Second,  new  users  should  learn  how  to  enter  formulae  into
Mathematica. This can be done via palettes, see 

File Menu  @  Palettes  @  BasicInput,

or via the keyboard (see §1.5 below), or just by copy and pasting examples from this book.
Third,  both  new  and  experienced  readers  may  benefit  from browsing  Appendices  A.1  to
A.7 of this book, which cover a plethora of tips and tricks.

Before proceeding further, please ensure that Mathematica Version 4 (or later)
is installed on your computer.
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1.2 Installation, Registration and Password

1.2 A Installation, Registration and Password
Before starting, please make sure you have a working copy of Mathematica Version 4 (or
later) installed on your computer.

Installing  mathStatica  is  an  easy  4-step  process,  irrespective  of  whether  you  use  a
Macintosh, Windows, or a flavour of UNIX. 

Step 1: Insert the mathStatica CD-ROM into your computer.

Step 2: Copy the following files:

(i) mathStatica.m (file)
(ii) mathStatica (folder êdirectory)

from the mathStatica CD-ROM into the

Mathematica  @  AddOns  @  Applications

folder on your computerGs hard drive. The installation should look something like Fig. 1.

Fig. 1:  Typical installation of mathStatica

Step 3: Get a password

To  use  mathStatica,  you  will  need  a  password.  To  get  a  password,  you  will  need  to
register your copy of mathStatica at the following web site:

www.mathstatica.com

mathStatica is available in two versions: Basic and Gold. The differences are summarised
in Table 1; for full details, see the web site.

§1.2 A INTRODUCTION 3



class description

Basic e Fully functional mathStatica package code
e Included on the CD-ROM
e FREE to buyers of this book
e Single-use license

Gold e All the benefits of Basic, plus f
e Continuous and Discrete Distribution Palettes
e Detailed interactive HELP system
e Upgrades
e Technical support
e and more f

Table 1:  mathStatica!Basic and Gold

Once you have registered your copy, you will be sent a password file called: pass.txt.
Put  this  file  into the  Mathematica  @  AddOns  @  Applications  @  mathStatica
@ Password directory, as shown in Fig. 2.

Fig. 2:  Once you have received "pass.txt", put it into the Password folder

Step 4: Run Mathematica, go to its HELP menu, and select: MRebuild Help IndexQ

ThatGs it! all done. Your installation is now complete.
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1.2 B Loading mathStatica
If  everything  is  installed  correctly,  first  start  up  Mathematica  Version  4  or  later.  Then
mathStatica can be loaded by evaluating:

<< mathStatica.m

or by clicking on a button such as this one:    Start mathStatica

The Book  palette should  then appear, as shown in Fig. 3 (right panel). The Book palette
provides a quick and easy way to access the electronic version of this book, including the
live  hyperlinked  index.  If you have  purchased  the Gold version  of mathStatica,  then the
mathStatica  palette  will  also  appear,  as  shown  in  Fig. 3  (left  panel).  This  provides  the
Continuous and Discrete distribution palettes (covering 37 distributions), as well as
the detailed mathStatica Help system (complete with hundreds of extra examples).

Fig. 3:  The mathStatica  palette (left) and the Book palette (right)

WARNING:  To avoid so-called FcontextG problems, mathStatica should always be loaded
from  a  fresh  Mathematica  kernel.  If  you  have  already  done  some  calculations  in
Mathematica,  you  can  get  a  fresh  kernel  by  either  typing  Quit  in  an  Input  cell,  or  by
selecting Kernel Menu @ Quit Kernel. 

1.2 C Help
Both Basic Help and Detailed Help are available for any mathStatica function:

(i) Basic Help is shown in Table 2.

function description

? Name       show information on Name

Table 2:  Basic Help on function names

For example, to get Basic Help on the mathStatica function CentralToRaw, enter:

? CentralToRaw

CentralToRaw@rD expresses the rth central

moment mr in terms of raw moments m
£
i. To obtain a

multivariate conversion, let r be a list of integers.

(ii) Detailed Help (Gold version only) is available via the mathStatica palette (Fig. 3 ).
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1.3 Core Functions

1.3 A Getting Started
mathStatica  adds about 100 new functions to Mathematica. But most of the time, we can
get by with just four of them:

function description

PlotDensity@ f D Plotting HautomatedL
Expect@x, f D Expectation operator E@XD
Prob@x, fD Probability PHX § xL
Transform@eqn, f D Transformations

Table 3:  Core functions for a random variable X with density f HxL
This  ability  to  handle  plotting,  expectations,  probability,  and  transformations,  with  just
four functions, makes the mathStatica system very easy to use, even for those not familiar
with Mathematica.

To illustrate, let us suppose the continuous random variable X  has probability density
function (pdf)

f HxL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p 
è!!!!!!!!!1-x  

è!!!x ,    for x ' H0, 1L.
In Mathematica, we enter this as:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p
è!!!!!!!!!!!
1 - x

è!!!!
x
; domain@fD = 8x, 0, 1<;

This is known as the ArciSine distribution. Here is a plot of f HxL:
PlotDensity@fD;

0.2 0.4 0.6 0.8 1
x

1

2

3

4

5

6

7
f

Fig. 4:  The ArciSine pdf
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Here  is the cumulative  distribution  function (cdf),  PHX § xL,  which  also provides  the clue
to the naming of this distribution:

Prob@x, fD
2 ArcSinAè!!!x E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p

The mean, E@XD, is:

Expect@x, fD
1
ÅÅÅÅ
2

while the variance of X is:

Var@x, fD
1
ÅÅÅÅ
8

The r th  moment of X is E@Xr D:
Expect@xr, fD

K This further assumes that:  9r > -
1
ÅÅÅÅ
2
=

G@ 1ÅÅÅ2 + rD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!

p G@1 + rD
Now consider the transformation  to a new random variable Y  such that Y =

è!!!!X . By
using the Transform and TransformExtremum functions, the pdf of Y , say gHyL, and
the domain of its support can be found:

g = TransformAy ã
è!!!!
x , fE

2 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p
è!!!!!!!!!!!!!!!y2 - y4

domain@gD = TransformExtremumAy ã
è!!!!
x , fE

8y, 0, 1<
So,  we have  started  out  with a  quite arbitrary pdf  f HxL,  transformed  it  to a new one gHyL,
and  since  both  density  g  and  its  domain  have  been  entered  into  Mathematica,  we  can
also apply the mathStatica  tool set to density g. For example, use PlotDensity[g] to
plot the pdf of Y =

è!!!!X .

§1.3 A INTRODUCTION 7



1.3 B Working with Parameters  ( Assumptions technology ¤ )

mathStatica has been designed to seamlessly support parameters. It does so by taking full
advantage  of  the  new  Assumptions  technology  introduced  in  Version  4  of  Mathematica,
which enables us to make assumptions about parameters.  To illustrate, let us consider the
familiar  Normal  distribution  with  mean  m  and  variance  s2 .  That  is,  let  X ~ NHm, s2 L,
where m ' !  and s > 0. We enter the pdf f HxL in the standard way, but this time we have
some  extra  information  about  the  parameters  m  and  s.  We  use  the  And  function,  &&,  to
add these assumptions to the end of the domain[f] statement:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 ExpA-
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2
E;

domain@fD = 8x, -�, �< && 8m * Reals, s > 0<;
From  now  on,  the  assumptions  about  m  and  s  will  be  FattachedG  to  density  f ,  so  that
whenever we operate on density f  with a mathStatica function, these assumptions will be
applied  automatically  in  the  background.  With  this  new  technology,  mathStatica  can
usually  produce  remarkably  crisp  textbook-style  answers,  even  when  working  with  very
complicated distributions.

The  mathStatica  function,  PlotDensity,  makes  it  easy  to  examine  the  effect  of
changing parameter values. The following input reads: MPlot density f HxL when m is 0, and
s  is  1,  2  and  3Q.  For  more  detail  on  using  the  /.  operator,  see  Wolfram (1999,  Section
2.4.1).

PlotDensity@f ê. 8m Ø 0, s Ø 81, 2, 3<<D;

-6 -4 -2 2 4 6
x

0.1

0.2

0.3

0.4

f

Fig. 5:  The pdf of a Normal random variable, when m = 0 and s = 1(!), 2(!), 3(i  i  i)
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It is well known that E@XD = m and VarHXL = s2 , as we can easily verify:

Expect@x, fD
m

Var@x, fD
s2

Because mathStatica is general in its design, we can just as easily solve problems that are
both less well-known and more FdifficultG, such as finding VarHX2 L : 

Var@x2, fD
2 H2 m2 s2 + s4L

Assumptions technology  is a very important  addition to Mathematica. In order for  it
to work, one should enter as much information about parameters as possible. The resulting
answer will be much neater, it may also be obtained faster, and it may make it possible to
solve  problems  that  could  not  otherwise  be  solved.  Here  is  an  example  of  some
Assumptions statements:

8a > 1, b * Integers, -� < g < p, d * Reals, q > 0<
mathStatica  implements  Assumptions  technology  in  a distribution-specific manner.  This
means the assumptions are attached to the density f Hx; qL and not to the parameter q. What
if we have two distributions,  both using the same parameter?  No problem f suppose the
two pdfGs areHiL f Hx; qL q > 0HiiL gHx; qL q < 0

Then, when we work with density f , mathStatica will assume q > 0; when we work with
density g, it will assume q < 0. For example,HiL Expect@x, fD will assume q > 0HiiL Prob@x, gD will assume q < 0

It  is  important  to  realise  that  the  assumptions  will  only  be  automatically  invoked  when
using  the  suite  of  mathStatica  functions.  By  contrast,  MathematicaGs  built-in  functions,
such as the derivative function, D[f, x], will not automatically assume that q > 0.

1.3 C Discrete Random Variables
mathStatica  automatically  handles  discrete  random variables  in  the same  way.  The  only
difference  is that, when we define the density,  we add a flag to tell Mathematica  that the
random  variable  is  {Discrete}.  To  illustrate,  let  the  discrete  random  variable  X  have
probability mass function (pmf)

f HxL = PHX = xL = J r + x - 1
x

N pr H1 - pLx ,       for x ' 80, 1, 2, f<.
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Here, parameter p  is the probability of success, while parameter r is a positive integer. In
Mathematica, we enter this as:

f = Binomial@r + x - 1, xD pr H1 - pLx;
domain@fD = 8x, 0, �< && 8Discrete< &&80 < p < 1, r > 0, r * Integers< ;

This is known as the Pascal distribution. Here is a plot of f HxL:
PlotDensityAf ê. 9p Ø

1
ÅÅÅÅ
2
, r Ø 10=E;

5 10 15 20 25
x

0.02

0.04

0.06

0.08

f

Fig. 6:  The pmf of a Pascal discrete random variable

Here is the cdf, equal to PHX § xL:
Prob@x, fD
1 -

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@rD G@2 + Floor@xDD  HH1 - pL1+Floor@xD pr G@1 + r + Floor@xDD Hypergeometric2F1@
1, 1 + r + Floor@xD, 2 + Floor@xD, 1 - pDL

The mean E@XD and variance of X are given by:

Expect@x, fD
J-1 +

1
ÅÅÅÅ
p
N r

Var@x, fD
r - p r
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p2
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The probability generating function (pgf) is E@tX D:
Expect@tx, fD
pr H1 + H-1 + pL tL-r

For more detail on discrete random variables, see Chapter 3.

1.3 D Multivariate Random Variables
mathStatica extends naturally to a multivariate setting. To illustrate, let us suppose that X
and Y  have joint pdf f Hx, yL with support x > 0, y > 0:

                f  = 3-2 Hx+yL H3x+y + a H3x - 2L H3y - 2LL;
domain@fD = 88x, 0, �<, 8y, 0, �<< && 8-1 < a < 1<;

where  parameter  a  is  such  that  -1 < a < 1.  This  is  known  as  a  Gumbel  bivariate
Exponential  distribution.  Here is  a plot  of f Hx, yL.  To display  the code that generates  this
plot,  simply  click  on  the  @  adjacent  to  Fig. 7  in  the  electronic  version  of  this  chapter.
Clicking  the  FView AnimationG  button  in the  electronic  notebook  brings  up  an animation
of f Hx, yL, allowing parameter a to vary from -1 to 0 in step sizes of 1 ê20. This provides
a rather neat way to visualise how the shape of the joint pdf changes with a. In the printed
text, the symbol � indicates that an animation is available. 

0

1

2

x

0

1

y

0

0.5

f

0

1

x

Fig. 7:  A Gumbel bivariate Exponential pdf when a = -0.8  �
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Here is the cdf, namely PHX § x, Y § yL:
Prob@8x, y<, fD
+-2 Hx+yL H-1 + +xL H-1 + +yL H+x+y + aL

Here is CovHX, Y L, the covariance between X and Y:

Cov@8x, y<, fD
a
ÅÅÅÅ
4

More generally, here is the variance-covariance matrix:

Varcov@fD
ikjjjj 1 aÅÅÅ4

aÅÅÅ4 1
y{zzzz

Here is the marginal pdf of X:

Marginal@x, fD
+-x

Here is the conditional pdf of Y , given X = x:

Conditional@y, fD
K Here is the conditional pdf  f H y À x L:

+x-2 Hx+yL H+x+y + H-2 + +xL H-2 + +yL aL
Here is the bivariate mgf E@/t1  X + t2  Y D:

mgf = Expect@ 3t1  x + t2  y, fD
K This further assumes that:  8t1 < 1, t2 < 1<

4 - 2 t2 + t1 H-2 + H1 + aL t2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + t1L H-1 + t1L H-2 + t2L H-1 + t2L
Differentiating  the  mgf  is  one  way  to  derive  moments.  Here  is  the  product  moment
E@X2  Y 2 D:

D@mgf, 8t1, 2<, 8t2, 2<D ê. t_ Ø 0 êê Simplify

4 +
9 a
ÅÅÅÅÅÅÅÅ
4
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which we could otherwise have found directly with:

Expect@x2  y2, fD
4 +

9 a
ÅÅÅÅÅÅÅÅ
4

Multivariate transformations pose no problem to mathStatica either. For instance, let
U = YÅÅÅÅÅÅÅÅÅÅÅ1+X  and  V = 1ÅÅÅÅÅÅÅÅÅÅÅ1+X  denote  transformations  of  X  and  Y .  Then  our  transformation
equation is:

eqn = 9u ã
y

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + x

, v ã
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + x

=;
Using  Transform,  we  can  find  the  joint  pdf  of  random  variables  U  and  V,  denoted
gHu, vL:

g = Transform@eqn, fD
+

-2-2 u+vÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅv I4 + a - 2 +
1ÅÅÅÅv a - 2 +

u+vÅÅÅÅÅÅÅÅv a + +
1+uÅÅÅÅÅÅÅÅv H1 + aLM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
v3

while the extremum of the domain of support of the new random variables are:

TransformExtremum@eqn, fD
88u, 0, �<, 8v, 0, 1<<

For more detail on multivariate random variables, see Chapter 6.

1.3 E Piecewise Distributions

Some  density  functions  take  a  bipartite  form.  To  illustrate,  let  us  suppose  X  is  a
continuous random variable, 0 < x < 1, with pdf

f HxL =
loomnoo 2 H c-xÅÅÅÅÅÅÅÅÅÅc L if x < c

2 H x-cÅÅÅÅÅÅÅÅÅÅ1-c L if x ¥ c

where 0 < c < 1. We enter this as:

f = IfAx < c , 2 
c - x
ÅÅÅÅÅÅÅÅÅÅÅÅ
c

, 2 
x - c
ÅÅÅÅÅÅÅÅÅÅÅÅ
1 - c

E;
domain@fD = 8x, 0, 1< && 80 < c < 1<;

This  is  known  as  the  Inverse  Triangular  distribution,  as  is  clear  from  a  plot  of  f HxL,  as
illustrated in Fig. 8.
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PlotDensityAf ê. c Ø 9 1
ÅÅÅÅ
4
,

1
ÅÅÅÅ
2
,

3
ÅÅÅÅ
4
=E;

0.2 0.4 0.6 0.8 1
x

0.5

1

1.5

2

f

Fig. 8:  The Inverse Triangular pdf, when c = 1ÅÅÅÅ4 (!), 1ÅÅÅÅ2 (!), 3ÅÅÅÅ4 (i  i  i)

Here is the cdf, PHX § xL:
Prob@x, fD
IfAx < c, x I2 -

x
ÅÅÅÅ
c
M, c - 2 c x + x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - c

E
Note that the solution depends on whether x < c or x ¥ c. Figure 9 plots the cdf at the same
three values of c used in Fig. 8.
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x
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F

Fig. 9:  The Inverse Triangular cdf, when c = 1ÅÅÅÅ4 (!), 1ÅÅÅÅ2 (!), 3ÅÅÅÅ4 (i  i  i)
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mathStatica  operates on bipartite distributions  in the standard way. For instance, the
mean E@XD is given by:

Expect@x, fD
2 - c
ÅÅÅÅÅÅÅÅÅÅÅÅ
3

while the entropy is given by E@-logH f HXLLD:
Expect@-Log@fD, fD
1
ÅÅÅÅ
2

- Log@2D

1.4 Some Specialised Functions

�  Example 1:  Moment Conversion Functions

mathStatica allows one to express any moment (raw m£ , central m, or cumulant k) in terms
of any other moment (m£ , m, or k). For instance, to express the second central moment (the
variance) m2 = EAHX - E@XD L2 E in terms of raw moments, we enter:

CentralToRaw@2D
m2 Ø -m

£
1

2
+ m

£
2

This is just the well-known result that m2 = E@X2 D - HE@XDL2 . As a further example, here is
the sixth cumulant expressed in terms of raw moments:

CumulantToRaw@6D
k6 Ø -120 m

£
1

6
+ 360 m

£
1

4
m
£
2 - 270 m

£
1

2
m
£
2

2
+ 30 m

£
2

3
- 120 m

£
1

3
m
£
3 +

120 m
£
1 m

£
2 m

£
3 - 10 m

£
3

2
+ 30 m

£
1

2
m
£
4 - 15 m

£
2 m

£
4 - 6 m

£
1 m

£
5 + m

£
6

The  moment  converter  functions  are  completely  general,  and  extend  in  the  natural
manner  to a multivariate  framework. Here is the bivariate  central moment  m2, 3  expressed
in terms of bivariate cumulants:

CentralToCumulant@82, 3<D
m2,3 Ø 6 k1,1 k1,2 + k0,3 k2,0 + 3 k0,2 k2,1 + k2,3

For more detail, see Chapter 2 (univariate) and Chapter 6 (multivariate). "

§1.3 E INTRODUCTION 15



�  Example 2:  Pseudo-Random Number Generation

Let  X  be  any  discrete  random  variable  with  probability  mass  function  (pmf)  f HxL.  Then,
the mathStatica function DiscreteRNG[n, f ] generates n pseudo-random copies of X.
To illustrate, let us suppose X ~ PoissonH6L:

f =
3-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

ê. l Ø 6; domain@fD = 8x, 0, �< && 8Discrete<;
As  usual,  domain[f]  must  always  be  entered  along  with  f,  as  it  passes  important
information onto DiscreteRNG. Here are 30 copies of X:

DiscreteRNG@30, fD
810, 4, 8, 3, 5, 6, 3, 2, 9, 6, 3, 5, 6, 5,
5, 4, 3, 5, 3, 8, 2, 3, 6, 5, 3, 10, 8, 5, 8, 5<

Here, in a fraction of a second, are 50000 more copies of X: 

data = DiscreteRNG@50000, fD; êê Timing

80.39 Second, Null<
DiscreteRNG  is  not  only  completely  general,  but  it  is  also  very  efficient.  We  now
contrast the empirical distribution of data with the true distribution of X:

FrequencyPlotDiscrete@data, fD;
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f

Fig. 10:  The empirical pmf (Ú) and true pmf (Ë)

The triangular dots denote the empirical pmf, while the round dots denote the true density
f HxL.  One  obtains  a  superb  fit  because  DiscreteRNG  is  an  exact  solution.  This  may
make  it  difficult  to  distinguish  the  triangles  from  the  round  dots.  For  more  detail,  see
Chapter 3. "
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�  Example 3:  Pearson Fitting

Karl  Pearson  showed  that  if  we  know  the  first  four  moments  of  a  distribution,  we  can
construct a density function that is consistent with those moments. This can provide a neat
way  to  build  density  functions  that  approximate  a  given  set  of  data.  For  instance,  for  a
given data set, let us suppose that:

mean = 37.875;
m̀234 = 8191.55, 1888.36, 107703.3<;

denoting estimates  of the mean, and of the second, third and fourth central moments. The
Pearson  family  consists  of  7  main  Types,  so  our  first  task  is  to  find  out  which  type  this
data is consistent with. We do this with the PearsonPlot function:

PearsonPlot@m̀234D;
8b1 Ø 0.507368, b2 Ø 2.93538<

0.3 0.6 0.9 1.2 1.5 1.8
b1

7
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5
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3

2

1

b2

N IHUL
IHJL

I

IIIIV
V

VI

Fig. 11:  The b1 , b2  chart for the Pearson system

The big black dot in Fig. 11 is in the Type I zone. Then, the fitted Pearson density f HxL and
its domain are immediately given by:

8f, domain@fD< = PearsonI@mean, m̀234, xD
89.62522 µ 10-8 H94.3127 - 1. xL2.7813H-16.8709 + 1. xL0.407265 , 8x, 16.8709, 94.3127<<

The actual  data used to create this example is grouped data (see Example 3  of Chapter  5)
depicting the number of sick people (freq) at different ages (X): 
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X = 817, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87<;
freq = 834, 145, 156, 145, 123, 103, 86, 71, 55, 37, 21, 13, 7, 3, 1<;

We can easily compare the histogram of the empirical data with our fitted Pearson pdf:

FrequencyGroupPlot@8X, freq<, fD;
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Fig. 12:  The data histogram and the fitted Pearson pdf

Related topics include GramiCharlier expansions, and the Johnson family of distributions.
For more detail, see Chapter 5. "

�  Example 4:  Fisher Information

The Fisher  Information  on  a  parameter  can be constructed  from first  principles  using the
Expect  function.  Alternatively,  we  can  use  mathStaticaGs  FisherInformation
function,  which  automates  this  calculation.  To  illustrate,  let  X ~ InverseGaussianHm, lL
with pdf f HxL:

                f = $%%%%%%%%%%%%%%%%l
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p x3

ExpA-l
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2  x

E;
domain@fD = 8x, 0, �< && 8m > 0, l > 0<;

Then, FisherGs Information on Hm, lL is the H2ä 2L matrix:

FisherInformation@8m, l<, fD
ikjjjjj

lÅÅÅÅÅm3 0

0 1ÅÅÅÅÅÅÅÅ2 l2

y{zzzzz
For more detail on Fisher Information, see Chapter 10. "
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�  Example 5:  Non-Parametric Kernel Density Estimation

Here is some raw data measuring the diagonal length of 100 forged Swiss bank notes and
100 real Swiss bank notes (Simonoff, 1996):

data = ReadList@"sd.dat"D;
Non-parametric  kernel  density  estimation  involves  two  components:  (i)  the  choice  of  a
kernel, and (ii) the selection of a bandwidth. Here we use a Gaussian kernel f :

f =
3- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<;
Next,  we select the bandwidth c. Small  values for c produce a rough estimate  while large
values produce a very smooth estimate. A number of methods exist to automate bandwidth
choice;  mathStatica  implements  both  the  Silverman  (1986)  approach  and  the  more
sophisticated  Sheather  and  Jones  (1991)  method.  For  the  Swiss  bank  note  data  set,  the
SheatheriJones optimal bandwidth (using the Gaussian kernel f ) is:

c = Bandwidth@data, f, Method Ø SheatherJonesD
0.200059

We  can  now  plot  the  smoothed  non-parametric  kernel  density  estimate  using  the
NPKDEPlot[data, kernel, c] function:

NPKDEPlot@data, f, cD;

139 140 141 142

0.1

0.2

0.3

0.4

Fig. 13:  The smoothed non-parametric kernel density estimate (Swiss bank notes)

For more detail, see Chapter 5. "
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�  Example 6:  Unbiased Estimation of Population Moments; Moments of Moments

mathStatica can find unbiased estimators of population moments. For instance, it offers h-
statistics  (unbiased  estimators  of  population  central  moments),  k-statistics  (unbiased
estimators  of  population  cumulants),  multivariate  varieties  of  the  same,  polykays
(unbiased estimators of products of cumulants) and more. Consider the k-statistic kr  which
is an unbiased estimator of the r th  cumulant kr ; that is, E@kr D = kr , for r = 1, 2, f . Here
are the 2 nd  are 3 rd  k-statistics:

k2 = KStatistic@2D
k3 = KStatistic@3D
k2 Ø

-s12 + n s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n
k3 Ø

2 s13 - 3 n s1 s2 + n2 s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL n
As per convention, the solution is expressed in terms of power sums sr = i=1

n Xi
r .

Moments  of  moments:  Because  the  above  expressions  (sample  moments)  are
functions  of  random  variables  Xi ,  we  might  want  to  calculate  population  moments  of
them.  With  mathStatica,  we  can  find  any  moment  (raw,  central,  or  cumulant)  of  the
above expressions. For instance, k3  is meant to have the property that E@k3 D = k3 . We test
this  by  calculating  the  first  raw  moment  of  k3 ,  and  express  the  answer  in  terms  of
cumulants:

RawMomentToCumulant@1, k3P2TD
k3

In  1928,  Fisher  published  the  product  cumulants  of  the  k-statistics,  which  are  now
listed  in  reference  bibles  such  as  Stuart  and  Ord  (1994).  Here  is  the  solution  to
k2, 2 Hk3 , k2 L:

CumulantMomentToCumulant@82, 2<, 8k3P2T, k2P2T<D
288 n k2

5
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

288 H-23 + 10 nL k2
2 k3

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

360 H-7 + 4 nL k2
3 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

36 H160 - 155 n + 38 n2L k3
2 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n

+
36 H93 - 103 n + 29 n2L k2 k4

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

24 H202 - 246 n + 71 n2L k2 k3 k5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +
2 H113 - 154 n + 59 n2L k5

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +

6 H-131 + 67 nL k2
2 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL2 n +

3 H117 - 166 n + 61 n2L k4 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +

6 H-27 + 17 nL k3 k7ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n2 +
37 k2 k8ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n2 +

k10ÅÅÅÅÅÅÅÅn3

This  is  the  correct  solution.  Unfortunately,  the  solutions  given  in  Stuart  and  Ord  (1994,
equation (12.70)) and Fisher (1928) are actually incorrect (see Example 14 of Chapter 7). "
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�  Example 7:  Symbolic Maximum Likelihood Estimation

Although  statistical  software  has  long  been  used  for  maximum  likelihood  (ML)
estimation,  the  focus  of  attention  has  almost  always  been  on  obtaining  ML  estimates  (a
numerical  problem),  rather  than  on  deriving  ML  estimators  (a  symbolic  problem).
mathStatica  makes  it  possible  to  derive  exact  symbolic  ML  estimators  from  first
principles with a computer algebra system.

For  instance,  consider  the  following  simple  problem:  let  HX1 , f, Xn L  denote  a
random  sample  of  size  n  collected  on  X ~ RayleighHsL,  where  parameter  s > 0  is
unknown. We wish to find the ML estimator of s. We begin in the usual way by inputting
the likelihood function into Mathematica:

L = Â
i=1

n
xi
ÅÅÅÅÅÅÅ
s2

 ExpA-
xi2ÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E;
If we try to evaluate the log-likelihood:

Log@LD
LogAÂ

i=1

n
+- xi

2
ÅÅÅÅÅÅÅÅÅ2 s2 xiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s2 E

f  nothing  happens!  (Mathematica  assumes  nothing  about  the  symbols  that  have  been
entered,  so  its  inaction  is  perfectly  reasonable.)  But  we  can  enhance  Log  to  do  what  is
wanted  here  using  the  mathStatica  function  SuperLog.  To  activate  this  enhancement,
we switch it on:

SuperLog@OnD
K SuperLog is now On.

If we now evaluate Log[L] again, we obtain a much more useful result:

logL = Log@LD
-2 n Log@sD + 9

i=1

n

Log@xiD -
i=1
n xi2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

To derive the first-order conditions for a maximum:

FOC = D@logL, sD
-
2 n
ÅÅÅÅÅÅÅÅ

s
+

i=1
n xi2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s3
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f we solve FOC==0 using MathematicaGs Solve function. The ML estimator s`  is given
as a replacement rule Æ for s:

s̀ = Solve@FOC == 0, sDP2T
9s Ø

"################i=1
n xi2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 è!!!n =
The second-order  conditions  (evaluated at  the first-order  conditions)  are  always negative,
which confirms that s`  is indeed the ML estimator:

SOC = D@logL, 8s, 2<D ê. s̀

-
8 n2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅi=1
n xi2

Finally, let us suppose that an observed random sample is 81, 6, 3, 4<:
data = 81, 6, 3, 4<;

Then the ML estimate of s is obtained by substituting this data into the ML estimator s` : 

s̀ ê. 8n Ø 4, xi_ :> dataPiT<
9s Ø

è!!!!!!31
ÅÅÅÅÅÅÅÅÅÅÅÅ
2

=
Figure 14 plots the observed likelihood (for the given data) against values of s, noting the
derived exact optimal solution s` =

è!!!!!!31ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 .

2 s
` 4 6 8

s

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

Fig. 14:  The observed likelihood and s`
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Before continuing, we return Log to its default condition:

SuperLog@OffD
K SuperLog is now Off.

For more detail, see Chapter 11. "

�  Example 8:  Order Statistics

Let random variable X have a Logistic distribution with pdf f HxL:
f =

3-x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + 3-xL2 ; domain@fD = 8x, -�, �<;
Let  HX1 , X2 , f, Xn L  denote  a  sample  of  size  n  drawn  on  X,  and  let  HXH1L , XH2L , f, XHnL L
denote  the  ordered  sample,  so  that  XH1L < XH2L < � < XHnL .  The  pdf  of  the  r th  order
statistic, XHrL , is given by the mathStatica function:

OrderStat@r, fD
H1 + +-xL-r H1 + +xL-1-n+r n!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn - rL! H-1 + rL!

The joint pdf of XHrL  and XHsL , for r < s, is given by:

OrderStat@8r, s<, fD
+xs H1 + +-xr L-r H1 + +xs L-1-n+s H 1ÅÅÅÅÅÅÅÅÅÅÅ1++xr - 1ÅÅÅÅÅÅÅÅÅÅÅ1++xs L-r+s

G@1 + nD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-+xr + +xs L G@rD G@1 + n - sD G@-r + sD

The  OrderStat  function  also  supports  piecewise  pdfGs.  For  example,  let  random
variable X ~ LaplaceHm, sL with pdf f HxL:

                f = IfAx < m,
3

x - mÅÅÅÅÅÅÅÅÅÅs

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 s

,
3- x - mÅÅÅÅÅÅÅÅÅÅs

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s

E;
domain@fD = 8x, -�, �< && 8m * Reals, s > 0<;

Then, the pdf of the r th  order statistic, XHrL , is:

OrderStat@r, fD
IfAx < m,

2-r +
r Hx-mL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs H1 - 1ÅÅÅ2 +

x-m
ÅÅÅÅÅÅÅÅÅs Ln-r

n!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs Hn - rL! H-1 + rL! ,

2-1-n+r +
H1+n-rL H-x+mL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs H1 - 1ÅÅÅ2 +

-x+m
ÅÅÅÅÅÅÅÅÅÅÅÅs L-1+r

n!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs Hn - rL! H-1 + rL! E

The  textbook  reference  solution,  given  in  Johnson  et  al.  (1995,  p.168),  is  alas  incorrect.
For more detail on order statistics, see Chapter 9. "
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1.5 Notation and Conventions

1.5 A Introduction

This  book  brings  together  two  conceptually  different  worlds:  on  the  one  hand,  the
statistics  literature  has  a  set  of  norms  and  conventions,  while  on  the  other  hand
Mathematica  has  its  own  (and  different)  norms  and  conventions  for  symbol  entry,
typefaces and notation. For instance, Table 4 describes the different conventions for upper
and lower case letters, say X and x:

Statistics X denotes a random variable,
x denotes a realisation of that random variable, such as x = 3 .

Mathematica Since Mathematica is case-specific, X and x are interpreted as
completely different symbols, just as different as y is to Z.

Table 4:  Upper and lower case conventions

While  one  could  try  to  artificially  fuse  these  disparate  worlds  together,  the  end  solution
would  most  likely be a forced,  unnatural  and ultimately  irritating experience.  Instead,  the
approach we have adopted is to keep the two worlds separate, in the obvious way:

e In Text cells:   standard statistics notation is used.

e In Input cells:  standard Mathematica notation is used.

Thus,  the Text of  this book reads  exactly  like  a standard mathematical  statistics  text.  For
instance,

MLet X have pdf f HxL =
sechHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p
, x ' !. Find E@X2 D .Q

By contrast,  the  computer  Input  for  the same problem follows  Mathematica  conventions,
so lower case x is used throughout (no capital X), functions use square brackets (not round
ones),  and  the  names  of  mathematical  functions  are  capitalised  so  that  sechHxL  becomes
Sech[x]:

f =
Sech@xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p
; domain@fD = 8x, -�, �<; Expect@x2, fD

p2
ÅÅÅÅÅÅÅ
4

If  it  is  necessary  to  use  Mathematica  notation  in  the  main  text,  this  is  indicated  by
using  Courier  font.  This  section  summarises  these  notational  conventions  in  both
statistics (Part B) and Mathematica  (Part C). Related material includes Appendices A.3 to
A.8.
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1.5 B Statistics Notation

abbreviation description

cdf cumulative distribution function
cf characteristic function
cgf cumulant generating function
CovHXi , Xj L covariance of Xi and Xj

E@XD the expectation of X
iid independent and identically distributed
mgf moment generating function
mgfc central mgf
MHtL mgf : MHtL = E@/t X D
MLE maximum likelihood estimator
MSE mean square error
NHm, s2 L Normal distribution with mean m and variance s2

pdf probability density function
pgf probability generating function
pmf probability mass function
PHtL pgf : PHtL = E@tX D
PHX § xL probability
VarHXL the variance of X
VarcovH L the variance-covariance matrix

Table 5:  Abbreviations

symbol description

! set of real numbers
!2 two-dimensional real plane
!+ set of positive real numbers
X
2÷÷

X
2÷÷

= HX1 , X2 , f, Xm L
S summation operator¤ product operator
7 total derivative
� partial derivative
logHxL natural logarithm of x
HT transpose of matrix HJ n

r N Binomial coefficient

Table 6:  Sets and operators
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symbol description

m the population mean Isame as m
£

1 M
m
£

r r th raw moment                              m
£

r = E@Xr D
mr r th central moment mr = E@HX - mLr D
kr r th cumulant

m
£

r, s, f multivariate raw moment m
£

r, s = E@X1
r X2

s D
mr, s, f multivariate central moment mr, s = EAHX1 - E@X1DLr  HX2 - E@X2 DLsE
kr, s, f multivariate cumulant

m
£ @rD r th factorial moment

m
£ @r, sD multivariate factorial moments

b1 Pearson skewness measure isè!!!!!!
b1 , where b1 = m3

2 êm2
3

b2 Pearson kurtosis measure b2 = m4 êm2
2

p success probability in Bernoulli trials

r or rij correlation between two random variables

sr power sums sr =      i=1
n

Xi
r

m
£

r sample raw moments m
£

r = 1ÅÅÅÅn i=1
n

Xi
r

mr sample central moments    mr = 1ÅÅÅÅn i=1
n IXi - m

£
1 Mr

Sn sample sum, for a sample of size n Hsame as s1 L
X
_

n the sample mean, for a sample of size n Hsame as m
£

1 L
q population parameter

q
`

estimate or estimator of  q

hr h-statistic : E@hr D = mr

kr k-statistic : E@kr D = kr

iq Fisher Information on parameter q

Iq Sample Information on parameter q

~ distributed as; e.g. X ~ Chi-squaredHnL
~
a asymptotically distributed

ö
d

convergence in distribution

ö
p

convergence in probability

Table 7:  Statistics notation
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1.5 C Mathematica Notation
Common: Table 8 lists common Mathematica expressions.

e Note that Ç denotes the Â key.
e Mathematica  only  understands  that  G[x]  is  equal  to  Gamma[x]  if  mathStatica

has been loaded (see Appendix A.8 ).

expression description short cut

p Pi ÇpÇ

� Infinity ÇinfÇ

Â 
è!!!!!!!

-1 ÇiiÇ

/ /x or Exp@xD ÇeeÇ

G G@xD = Gamma[x] ÇGÇ

' Element : 8x ' Reals< ÇelemÇ

lisP4T Part 4 of lis Ç@@Ç or @@
Binomial@n, rD Binomial coefficient : J n

r N
Table 8:  Mathematica notation (common)

Brackets:  In Mathematica, each kind of bracket has a very specific meaning. Table 9 lists
the four main types.

bracket description example8 < Lists lis = 81, 2, 3, 4<@ D Functions y = Exp@xD  not  ExpHxLH L Grouping HyHx + 2L3L4
 not  8yHx + 2L3<4

lisP4T Part 4 of lis Ç@@Ç or @@
Table 9:  Mathematica bracketing

Replacements:  Table  10 lists notation  for  making replacements;  see also Wolfram (1999,
Section 2.4.1). Note that ß is entered as :> and not as :-> . Example:

3 x2 ê. x Ø q

3 q2

operator description short cutê. ReplaceAll
Ø Rule Ç -> Ç or ->

ß RuleDelayed Ç :> Ç or :>

Table 10:  Mathematica replacements
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Greek alphabet (common):

letter short cut name

a ÇaÇ alpha
b ÇbÇ beta
g, G ÇgÇ , ÇGÇ gamma
d, D ÇdÇ , ÇDÇ delta
� ÇceÇ epsilon
q, Q ÇqÇ , ÇQÇ theta
k ÇkÇ kappa
l,     L ÇlÇ , ÇLÇ lambda
m ÇmÇ mu
x ÇxÇ xi
p ÇpÇ pi
r ÇrÇ rho
s, S ÇsÇ , ÇSÇ sigma
f,      F ÇfÇ , ÇFÇ phi
c ÇcÇ chi
y,      Y ÇyÇ , ÇYÇ psi
w, W ÇwÇ , ÇWÇ omega

Table 11:  Greek alphabet (common)

Notation  entry:  MathematicaGs  sophisticated  typesetting  engine  makes  it  possible  to  use
standard  statistical  notation  such  as  x̀  instead  of  typing  xHAT,  and  x1  instead  of  x1  (see
Appendix  A.5 ).  This  makes  the  transition  from paper  to  computer  a  much  more  natural,
intuitive  and  aesthetically  pleasing  experience.  The disadvantage  is  that  we have  to learn
how  to  enter  expressions  like  x̀.  One  easy  way  is  to  use  the  BasicTypesetting  palette,
which  is  available  via  File  Menu  @  Palettes  @  BasicTypesetting.  Alternatively,  Table
12 lists five essential notation short cuts which are well worth mastering.

notation short cut

xÅÅÅÅÅÅÅÅy  x # ê y

xr  x # 6 r

x1  x # - 1

x
2

 x # 7 2

x
3

 x # = 3

Table 12:  Five essential notation short cuts
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These five notation types lomno xÅÅÅÅÅy ,  xr ,  x1 ,  x
2
,  x

3
 
|oo}~o

can  generate  almost  any  expression  used  in  this  book.  For  instance,  the expression  x`  has
the  same  form  as  x2  in  Table  12,  so  we  can  enter  x̀  with  x #7 ^ .  If  the  expression  is  a
well-known  notational  type,  Mathematica  will  represent  it  internally  as  a  FspecialG
function. For instance, the internal representation of x`  is actually:

x̀ êê InputForm

OverHat[x]

Table 13 lists these special  functions! they  provide an alternative  way to enter  notation.
For  instance,  to  enter  x2  we  could  type  in  OverVector[x],  then  select  the  latter  with  the
mouse, and then choose Cell Menu @ Convert to StandardForm. This too yields x2.

notation short cut function name

x+ x # 6 + SuperPlus@xD
x- x # 6 - SuperMinus@xD
x* x # 6 * SuperStar@xD
xu x # 6 u SuperDagger@xD
x+ x # - + SubPlus@xD
x- x # - - SubMinus@xD
x* x # - * SubStar@xD
xêê x # 7 _ OverBar@xD
x2 x # 7 ÇvecÇ OverVector@xD
xè x # 7 ~ OverTilde@xD
x̀ x # 7 ^ OverHat@xD
x° x # 7 . OverDot@xD
xêê x # = _ UnderBar@xD

Table 13:  Special forms

Even  more  sophisticated  structures  can  be  created  with  Subsuperscript  and
Underoverscript, as Table 14 shows.

notation function name

x1
r  Subsuperscript@x, 1, rD

x
a

b
 Underoverscript@x, a, bD

Table 14:  Subsuperscript and Underoverscript
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Entering  m£ r :  This  text  uses  m£ r  to  denote  the  r th  raw  moment.  The  prime  £  above  m  is
entered by typing Â ' Â. This is because the keyboard ' is reserved for other purposes by
Mathematica. Further, notation such as x£  (where the prime comes after the x, rather than
above  it)  should  generally  be  avoided,  as  Mathematica  may  interpret  the  prime  as  a
derivative. This problem does not occur with x£  notation.

x£ êê InputForm

Overscript[x, £]

x£ êê InputForm

Derivative[1][x]

Animations:  In  the  printed  text,  the  symbol  �  is  used  to  indicate  that  an  animation  is
available at the marked point in the electronic version of the chapter.

Magnification:  If  the  on-screen  notation  seems  too  small,  magnification  can  be  used:
Format Menu @ Magnification.

Notes:  Here is an example  of  a note.1 In  the electronic  version  of the text,  notes are  live
links that can be activated with the mouse. In the printed text, notes are listed near the end
of the book in the Notes section.

Timings:  All  timings  in  this  book  are  based  on  Mathematica  Version  4  running  on  a PC
with an 850 MHz Pentium III processor.

Finally,  the  Appendix  provides  several  tips  for  both  the  new  and  advanced  user  on
the  accuracy  of  symbolic  and  numeric  computation,  on  working  with  Lists,  on  using
Subscript  notation,  on  working  with  matrices  and  vectors,  on  changes  to  default
behaviour, and on how to expand the mathStatica framework with your own functions.
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Chapter 2
Continuous Random Variables

2.1 Introduction
Let  the  continuous  random variable  X  be  defined on  a domain  of support  L Õ !.  Then a
function  f : L Ø !+  is  a  probability  density  function  (pdf)  if  it  has  the  following
properties:

(2.1)

f HxL > 0 for all x & L

#
L

f HxL ( x = 1

PHX & SL = #
S

f HxL ( x , for S Õ L

The cumulative distribution function (cdf) of X, denoted FHxL, is defined by

(2.2)FHxL = PHX § xL = #
-�

x
f HwL ( w,       -� < x < �.

The mathStatica  function Prob[x,  f]  calculates  PHX § xL. Random variable  X  is said to
be a continuous random variable  if FHxL is continuous. In fact, although our starting point
in  mathStatica  is  typically  to  enter  a  pdf,  it  should  be  noted  that  the  fundamental
statistical concept is really the cdf, not the pdf. Table 1 summarises some properties of the
cdf for a continuous random variable (a and b are constants).

HiL 0 § FHxL § 1HiiL FHxL is a non-decreasing function of xHiiiL FH-�L = 0, FH�L = 1HivL PHa < X § bL = FHbL - FHaL, for a < bHvL PHX = xL = 0HviL (FHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
(x = f HxL

Table 1:  Properties of the cdf FHxL for a continuous random variable



The expectation of a function uHXL is defined to be:

(2.3)EAuHXLE = #
x

uHxL f HxL ( x

The  mathStatica  function  Expect[u,  f]  calculates  E@uD,  where  u = uHXL.  Table  2
summarises some properties of the expectation operator, where a and b are again constants.

HiL E@aD = aHiiL E@a uHXLD     = a E@uHXLDHiiiL E@uHXL + bD = b + E@uHXLD
HivL EA

i=1

n
ai  XiE = 

i=1

n
ai  E@Xi D

Table 2:  Basic properties of the expectation operator

�  Example 1:  MaxwellIBoltzmann: The Distribution of Molecular Speed in a Gas

The MaxwellIBoltzmann speed distribution describes the distribution of the velocity X  of
a  random  molecule  of  gas  in  a  closed  container.  The  pdf  can  be  entered  directly  from
mathStaticaNs Continuous palette:

f =

è!!!!!!!!!!
2 ê p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s3

x2  &- x2ÅÅÅÅÅÅÅÅÅ
2 s2 ; domain@fD = 8x, 0, �< && 8s > 0<;

From a statistical point of view, the distribution depends on just a single parameter s > 0.
Formally  though,  in  physics,  s =

è!!!!!!!!!!!!!!!!T kB êm  where  kB  denotes  BoltzmannNs  constant,  T
denotes  temperature  in  Kelvin,  and  m  is  the  mass  of  the  molecule.  The  cdf  FHxL  is
PHX § xL:

F = Prob@x, fD
-

"- x2ÅÅÅÅÅÅÅÅÅ2 s2
"#####2ÅÅÅp x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

+ ErfA x
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 s

E
Figure 1 plots the pdf (left panel) and cdf (right panel) at three different values of s.
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Fig. 1:  The MaxwellIBoltzmann pdf (left) and cdf (right), when s = 2, 4, 6
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The average molecular speed is E@XD:
Expect@x, fD
2 $%%%%%%2ÅÅÅÅ

p
s

The average kinetic energy per molecule is EA 1ÅÅÅÅ2  m X2 E:
ExpectA 1

ÅÅÅÅ
2

 m x2, fE ê. s Ø
è!!!!!!!!!!!!!!!!
T kB ê m

3 T kBÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

�  Example 2:  The Reflected Gamma Distribution

Some density functions take a piecewise form, such as:

f HxL =
loomnoo f1 HxL if x < a

f2 HxL if x ¥ a

Such  functions  are  often not  smooth,  with  a kink at  the point x = a.  In Mathematica,  the
natural  way to  enter  such  expressions  is  with the  If[condition  is  true,  then  f1 ,  else  f2]
function. That is,

f = If[x< a, f1, f2];     domain[f] = {x,-�,�} 

where  f1  and  f2  must  still  be  stated.  mathStatica  has  been  designed  to  seamlessly
handle  If  statements,  without  the  need  for  any  extra  thought  or  work.  In  fact,  by  using
this structure, mathStatica can solve many integrals that Mathematica could not normally
solve  by  itself.  To  illustrate,  let  us  suppose  X  is  a  continuous  random  variable  such  that
X = x & ! with pdf

f HxL =

looooomnooooo
H-xLa-1 1x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 G@aD if x < 0

xa-1 1-x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 G@aD if x ¥ 0

where  0 < a < 1.  This  is  known  as  a  Reflected  Gamma  distribution,  and  it  nests  the
standard Laplace distribution as a special case when a = 1. We enter f HxL as follows:

f = IfAx < 0,
H-xLa-1 &x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 G@aD ,

xa-1 &-x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 G@aD E;

domain@fD = 8x, -�, �< && 8a > 0<;
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Here is a plot of f HxL when a = 1 and 3:

PlotDensity@f ê. a Ø 81, 3<D;
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Fig. 2:  The pdf of the Reflected Gamma Distribution, when a = 1 (!) and 3 (I  I  I)

Here is the cdf, PHX § xL:
cdf = Prob@x, fD
IfAx < 0, Gamma@a, -xD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 G@aD , 1 -

Gamma@a, xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 G@aD E
Figure 3 plots the cdf when a = 1 and 3.
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Fig. 3:  The cdf of the Reflected Gamma Distribution Ha = 1 and 3L
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2.2 Measures of Location

2.2 A Mean

Let  the continuous  random variable X  have pdf f HxL.  Then the population  mean, or mean
for short, notated by m or m£ 1 , is defined by

(2.4)m
£

1 =  E@XD = #
x

x f HxL ( x

if the integral converges.

�  Example 3:  The Mean for Sinc2  and Cauchy Random Variables

Let  random variable  X  have  a Sinc2  distribution  with  pdf  f HxL,  and  let  Y  have  a Cauchy
distribution with pdf gHyL:

f =
1
ÅÅÅÅ
p

 
Sin@xD2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x2
; domain@fD = 8x, -�, �<;

g =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p H1 + y2L ; domain@gD = 8y, -�, �<;

Figure 4 compares the pdfNs of the two distributions.
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Fig. 4:  Cauchy pdf (!) and Sinc2  pdf (I I I)

The tails of the Sinc2  pdf are snake-like,  and they contact  the axis repeatedly at non-zero
integer multiples of p.
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The mean of the Sinc2 random variable does not exist:  

Expect@x, fD
The mean of the Cauchy random variable, E@YD, also does not exist:

Expect@y, gD
D Integrate::idiv :

Integral of y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + y2

does not converge on 8-�, �<.
D Integrate::idiv :

Integral of y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + y2

does not converge on 8-�, �<.
-

-�

� yÅÅÅÅÅÅÅÅÅ1+y2  -y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p

2.2 B Mode

Let  random  variable  X  have  pdf  f HxL.  If  f HxL  has  a  local  maximum at  value  xm ,  then we
say  there  is  a  mode  at  xm .  If  there  is  only  one  mode,  then  the  distribution  is  said  to  be
unimodal.  If  the  pdf  is  everywhere  continuous  and  twice  differentiable,  and  there  is  no
corner solution, then a mode is the solution to

(2.5)( f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
(x

= 0, ( 2 f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
(x2 < 0.

Care should always be taken to check for corner solutions.

�  Example 4:  The Mode for a Chi-squared Distribution

Let random variable X ~ Chi-squaredHnL with pdf f HxL:
f =

xnê2-1  &-xê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2nê2  G@ nÅÅÅ

2
D ; domain@fD = 8x, 0, �< && 8n > 0<;

The first-order condition for a maximum is obtained via:

FOC = D@f, xD êê Simplify; Solve@FOC ã 0, xD
D Solve::ifun :  Inverse functions are being

used by Solve, so some solutions may not be found.99x Ø 0
2ÅÅÅÅÅÅÅÅÅÅ-4+n =, 8x Ø -2 + n<=

Consider  the  interior  solution,  xm = n - 2,  for  n > 2.  The  second-order  condition  for  a
maximum, at xm = n - 2, is:
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SOC = D@f, 8x, 2<D ê. x Ø n - 2 êê Simplify

-
2-1- nÅÅÅÅ2 "1- nÅÅÅÅ2 H-2 + nL 1ÅÅÅÅ2 H-4+nL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@ nÅÅÅ2 D
which is negative for n > 2. Hence,  we conclude that xm  is indeed a mode, when n > 2. If
n § 2,  the  mode  is  the  corner  solution  xm = 0.  Figure  5  illustrates  the  two  scenarios  by
plotting the pdf when n = 1.98 and n = 3.
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n = 1.98; Corner mode since n § 2

n = 3; Interior mode since n > 2

Fig. 5:  Corner mode (when n § 2) and interior mode (when n > 2)

2.2 C Median and Quantiles

Let  the  continuous  random  variable  X  have  pdf  f HxL  and  cdf  FHxL = PHX § xL.  Then,  the
median  is  the  value  of  X  that  divides  the  total  probability  into two  equal  halves;  i.e.  the
value x  at which  FHxL = 1ÅÅÅÅ2 .  More generally,  the  p th  quantile  is the value of  X,  say xp ,  at
which  FHxp L = p,  for  0 < p < 1.  Quantiles  are  calculated  by  deriving  the  inverse  cdf,
xp = F-1 HpL.  Ideally,  inversion  should  be  done  symbolically  (algebraically).
Unfortunately,  for  many  distributions,  symbolic  inversion  can be difficult,  either  because
the cdf can not be found symbolically and/or because the inverse cdf can not be found. In
such cases,  one can often resort to numerical  methods.  Symbolic and numerical  inversion
are also discussed in §2.6 B and §2.6 C, respectively.

�  Example 5:  Symbolic Inversion: The Median for the Pareto Distribution

Let random variable X ~ ParetoHa, bL with pdf f HxL:
f = a ba x-Ha+1L; domain@fD = 8x, b, �< && 8a > 0, b > 0<;
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and cdf FHxL:
F = Prob@x, fD
1 - J b

ÅÅÅÅ
x
Na

The median is the value of X at which FHxL = 1ÅÅÅÅ2 :

SolveAF ã
1
ÅÅÅÅ
2
, xE

D Solve::ifun :  Inverse functions are being
used by Solve, so some solutions may not be found.99x Ø 2

1ÅÅÅÅa b==
More generally, if Mathematica can find the inverse cdf, the p th  quantile is given by:

Solve@F ã p, xD
D Solve::ifun :  Inverse functions are being

used by Solve, so some solutions may not be found.88x Ø b H1 - pL-1êa<<
Figure 6 plots the cdf and inverse cdf, when a = 4 and b = 2.
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Fig. 6:  cdf and inverse cdf

�  Example 6:  Numerical Inversion: Quantiles for a BirnbaumISaunders Distribution

Let f HxL  denote the pdf of a BirnbaumISaunders  distribution,  with parameters  a = 1ÅÅÅÅ2  and
b = 4:

f =
&- Hx-bL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 a2 b x Hx + bL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 a

è!!!!!!!!!!!!
2 p b x3ê2 ê. 9a Ø

1
ÅÅÅÅ
2
, b Ø 4=;

domain@fD = 8x, 0, �< && 8a > 0, b > 0<;
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Mathematica  cannot find the cdf symbolically;  that is, Prob[x, f]  fails. Instead,  we can
construct a numerical cdf function NProb:

NProb@w_D := NIntegrate@f, 8x, 0, w<D
For example, FH8L = PHX § 8L is given by:

NProb@8D
0.92135

which  means that  X = 8 is approximately  the 0.92 quantile.  Suppose  we want  to find  the
0.7 quantile: one approach would be to manually try different values of X. As a first guess,
how about X = 6?

NProb@6D
0.792892

Too big. So, try X = 5:

NProb@5D
0.67264

Too  small.  And  so  on.  Instead  of  doing  this  iterative  search  manually,  we  can  use
MathematicaNs  FindRoot  function  to  automate  the  search  for  us.  Here,  we  ask
Mathematica to search for the value of X at which FHxL = 0.7, starting the search by trying
X = 1 and X = 10:

sol = FindRoot@NProb@xD ã 0.7, 8x, 81, 10<<D
8x Ø 5.19527<

This tells us that X = 5.19527 ... is the 0.7 quantile, as we can check by substituting it back
into our numerical FHxL function:

NProb@x ê. solD
0.7

Care is always required with numerical methods, in part because they are not exact, and in
part  because  different  starting  points  can sometimes  lead  to  different hsolutionsN.  Finally,
note  that  numerical  methods  can  only  be  used  if  the  pdf  itself  is  numerical.  Thus,
numerical  methods  cannot  be  used  to  find  quantiles  as  a  function  of  parameters  a  and
b! the method can only work given numerical values for a and b. !
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2.3 Measures of Dispersion

A  number  of  methods  exist  to  measure  the  dispersion  of  the  distribution  of  a  random
variable  X.  The  most  well  known  is  the  variance  of  X,  defined  as  the  second  central
moment

(2.6)VarHXL = m2 = E@HX - mL2 D
where m  denotes the mean E@XD.  The mathStatica  function Var[x,  f] calculates  VarHXL.
The standard  deviation is  the  (positive)  square root  of the  variance,  and is  often  denoted
s.1  Another  measure  is  the  mean  deviation  of  X,  defined  as  the  first  absolute  central
moment

(2.7)E A / X - m / E.
The above  measures  of  dispersion  are  all  expressed in  terms  of  the units  of  X.  This

can  make  it  difficult  to  compare  the  dispersion  of  one  population  with  another.  By
contrast,  the  following  statistics  are  independent  of  the  variableNs  units  of  measurement.
The coefficient of variation is defined by

(2.8)s êm .

GiniEs  coefficient  lies within the unit interval;  it  is discussed  in Example  9. Alternatively,
one  can  often  compare  the  dispersion  of  two  distributions  by  standardising  them.  A
standardised random variable Z has zero mean and unit variance:

(2.9)Z = X-mÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

.

Related measures are è!!!!!!
b1  and b2 , where

(2.10)

è!!!!!!
b1 =

m3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2

3ê2 = EAI X-mÅÅÅÅÅÅÅÅÅÅÅÅÅÅs M3E  

b2 =
m4ÅÅÅÅÅÅÅÅÅ
m2

2 = EAI X-mÅÅÅÅÅÅÅÅÅÅÅÅÅÅs M4 E  

Here, the mi  terms denote central moments, which are introduced in §2.4 A. If a density is
not symmetric about m,  it is said to be skewed. A common measure  of skewness is è!!!!!!

b1 .
If  the  distribution  of  X  is  symmetric  about  m,  then  m3 = E@HX -mL3 D = 0  (assuming  m3
exists).  However,  m3 = 0  does  not  guarantee  symmetry;  Ord  (1968)  provides  examples.
Densities  with long tails  to the right  are called skewed  to the right  and  they tend to have
m3 > 0, while  densities  with long tails to the left are called skewed to the left  and tend to
have m3 < 0. Kurtosis is commonly said to measure the peakedness of a distribution. More
correctly, kurtosis is a measure of both the peakedness (near the centre) and the tail weight
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of a distribution. Balanda and MacGillivray (1988, p.116) define kurtosis as ithe location-
and  scale-free  movement  of  probability  mass  from the shoulders  of a distribution  into its
centre  and  tails.  In  particular,  this  definition  implies  that  peakedness  and  tail  weight  are
best  viewed  as  components  of  kurtosis,  since  any  movement  of  mass  from the  shoulders
into the tails must be accompanied by a movement of mass into the centre if the scale is to
be  left  unchanged.j  The  expression  b2  is  PearsonNs  measure  of  the  kurtosis  of  a
distribution.  For  the  Normal  distribution,  b2 = 3,  and  so  the  value  3  is  often  used  as  a
reference point.

�  Example 7:  Mean Deviation for the Chi-squared(n) Distribution 

Let X ~ Chi-squaredHnL with pdf f HxL:
f =

xnê2-1  &-xê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2nê2  G@ nÅÅÅ

2
D ; domain@fD = 8x, 0, �< && 8n > 0<;

The mean m is:

m = Expect@x, fD
n

The mean deviation  is EA / X - m / E.  Evaluating this  directly using Abs[]  fails  to yield a
solution:

Expect@Abs@x - mD, fD
2-nê2 -

0

�
"-xê2 x-1+ nÅÅÅÅ2 Abs@n - xD -x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@ nÅÅÅ2 D

In  fact,  quite  generally,  Mathematica  Version  4  is  not  very  successful  at  integrating
expressions  containing  absolute  values.  Fortunately,  mathStaticaNs  support  for  If[a,  b,
c] statements provides  a backdoor  way of handling absolute values! to  see this, express
y = / x - m / as:

y = If@x < m, m - x, x - mD;
Then the mean deviation EA / X - m / E is given by:2

Expect@y, fD
4 Gamma@1 + nÅÅÅ2 ,

nÅÅÅ2 D - 2 n Gamma@ nÅÅÅ2 ,
nÅÅÅ2 D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@ nÅÅÅ2 D
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�  Example 8:  b1  and b2  for the Weibull Distribution

Let X ~ WeibullHa, bL with pdf f HxL:
f =

a xa - 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ba &H xÅÅÅÅb La ; domain@fD = 8x, 0, �< && 8a > 0, b > 0<;

Here, a is termed the shape parameter, and b is termed the scale parameter. The mean m is:

m = Expect@x, fD
b GA1 +

1
ÅÅÅÅ
a
E

while the second, third and fourth central moments are:

8m2, m3, m4< = Expect@Hx - mL82, 3, 4<, fD;
Then, b1  and b2  are given by:

8b1, b2< = 9 m3
2

ÅÅÅÅÅÅÅ
m2

3
,

m4
ÅÅÅÅÅÅÅ
m2

2
=

9 I2 G@1 + 1ÅÅÅÅa D3 - 6 G@ 1ÅÅÅa D G@ 2ÅÅÅa DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa2 + G@ 3+aÅÅÅÅÅÅÅÅa DM2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI-G@1 + 1ÅÅÅÅa D2 + G@ 2+aÅÅÅÅÅÅÅÅa DM3 ,

-
3 G@ 1ÅÅÅa D IG@ 1ÅÅÅa D3-4 a G@ 1ÅÅÅa D G@ 2ÅÅÅa D+4 a2 G@ 3ÅÅÅa DMÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa4 + G@ 4+aÅÅÅÅÅÅÅÅa D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI-G@1 + 1ÅÅÅÅa D2 + G@ 2+aÅÅÅÅÅÅÅÅa DM2 =
Note that both b1  and b2  only depend on the shape parameter a; the scale parameter b has
disappeared, as per intuition. Figure 7 plots b1  and b2  for different values of parameter a.
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Fig. 7:  b1  and b2  for the Weibull distribution (plotted as a function of parameter a)
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Note that the symbols m2 , m3  and m4  are hreservedN for use by mathStaticaNs moment
converter functions. To avoid any confusion, it is best to Unset them:

m = .; m2 =.; m3 =.; m4 =.;

prior to leaving this example. !

�  Example 9:  The Lorenz Curve and the Gini Coefficient

ClearAll@a, b, p, x, u, f, FD
Let  X  be  a  positive  random  variable  with  pdf  f HxL  and  cdf  FHxL,  and  let  p = FHxL.  The
Lorenz curve is the graph of LHpL against p, where

(2.11)LHpL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅE@XD  2
0

p
F-1 HuL ( u

and where F-1 H ÿ L denotes the inverse cdf. In economics, the Lorenz curve is often used to
measure  the  extent  of  inequality  in  the  distribution  of  income.  To  illustrate,  suppose
income X is Pareto distributed with pdf f HxL:

f = a ba x-Ha+1L; domain@fD = 8x, b, �< && 8a > 0, b > 0<;
and cdf FHxL:

F = Prob@x, fD
1 - J b

ÅÅÅÅ
x
Na

The inverse cdf is found by solving the equation p = FHxL in terms of x:

Solve@p ã F, xD
D Solve::ifun :  Inverse functions are being

used by Solve, so some solutions may not be found.88x Ø b H1 - pL-1êa<<
Equation (2.11) requires that the mean of X exists:

mean = Expect@x, fD
D This further assumes that:  8a > 1<

a b
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + a

k so we shall impose the tighter restriction a > 1. We can now evaluate (2.11):
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LC =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
mean

 Integrate@b H1 - uL-1êa, 8u, 0, p<D
H-1 + aL I aÅÅÅÅÅÅÅÅÅ-1+a + a H1-pL-1êa H-1+pLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-1+a M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a

Note  that  the  solution  does  not  depend  on  the  location  parameter  b.  The  solution  can  be
simplified further:

LC = FullSimplify@ LC, 80 < p < 1, a > 1<D
1 - H1 - pL1- 1ÅÅÅÅa

The  Lorenz  curve  is  a  plot  of  LC  as  a  function  of  p,  as  illustrated  in  Fig. 8.  The
horizontal axis HpL measures quantiles of the population sorted by income; that is, p = 0.25
denotes  the  poorest  25%  of  the  population.  The  vertical  axis,  LHpL,  measures  what
proportion of societyNs total income accrues to the poorest  p  people. In the case of Fig. 8,
where a = 2, the poorest 50% of the population earn only 29% of the total income: 

LC ê. 8a Ø 2, p Ø .50<
0.292893

The 45° line, LHpL = p, represents a society with absolute income equality. By contrast, the
line  LHpL = 0  represents  a  society  with  absolute  income  inequality:  here,  all  the  income
accrues to just one person.

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

LHpL
S

T

Lorenz
curve

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

LHpL

Fig. 8:  The Lorenz Curve for a Pareto distribution Ha = 2L �
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The Gini coefficient is often used in economics to quantify the extent of inequality in
the  distribution  of  income.  The  advantage  of  the  Gini  coefficient  over  the  variance  as  a
measure  of  dispersion  is  that  the  Gini  coefficient  is  unitless  and  lies  within  the  unit
interval. Let S denote the shaded area in Fig. 8, and let T denote the area below the Lorenz
curve.  The  Gini  coefficient  (GC)  is  defined  by  the  ratio  GC = SÅÅÅÅÅÅÅÅÅÅÅS+T = SÅÅÅÅÅÅÅÅ1ê2 = 2 S.  That  is,
GC = twice  the shaded area.  Since it is easy to compute area T, and  since S = 1ÅÅÅÅ2 - T, we
use GC = 2 S = 1 - 2 T. Then, for our Pareto example, the Gini coefficient is:

1 - 2 Integrate@ LC, 8p, 0, 1<, Assumptions Ø a > 1D êê
Simplify

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + 2 a

This  corresponds  to a Gini  coefficient of 1ÅÅÅÅ3  for  Fig. 8 where  a = 2. If a = 1, then GC = 1
denoting  absolute  income  inequality.  As  parameter  a  increases,  the  Lorenz  curve  shifts
toward  the  45°  line,  and  the  Gini  coefficient  tends  to  0,  denoting  absolute  income
equality.  !

2.4 Moments and Generating Functions

2.4 A Moments

The r th  raw moment of the random variable X  is denoted by m£ r  IXM, or m£ r  for short, and is
defined by

(2.12)m
£

r = E@Xr D .

Note that m£ 0 = 1, since E@X0 D = E@1D = 1. The first moment, m£ 1 = E@XD, is the mean of X,
and it is also denoted m. 

The r th  central moment mr  is defined by

(2.13)mr = EAHX - mLrE
where m = E@XD. This is also known as the r th  moment about the mean. Note that m0 = 1,
since  EAHX - mL0 E = E@1D.  Similarly,  m1 = 0,  since  EAHX - mL1 E = E@XD - m .  The  second
central moment,  m2 = EAHX - mL2 E, is known as the variance  of X,  and is denoted VarHXL.
The  standard  deviation  of  X  is  the  (positive)  square  root  of  the  variance,  and  is  often
denoted  s.  Moments  can  also  be  obtained  via  generating  functions;  see  §2.4  B. Further,
the various types of moments can be expressed in terms of one another; this is discussed in
§2.4 G.
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�  Example 10:  Raw Moments for a Standard Normal Random Variable

Let X ~ NH0, 1L with pdf f HxL:
f =

&- x2ÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<;
The r th  raw moment E@Xr D is given by:

sol = Expect@xr, fD
D This further assumes that:  8r > -1<

2
1ÅÅÅÅ2 H-2+rL H1 + H-1LrL G@ 1+rÅÅÅÅÅÅÅ2 D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!
p

Then, the first 15 raw moments are given by:

sol ê. r Ø Range@15D
80, 1, 0, 3, 0, 15, 0, 105, 0, 945, 0, 10395, 0, 135135, 0<

The  odd  moments  are  all  zero,  because  the  standard  Normal  distribution  is  symmetric
about zero. !

2.4 B The Moment Generating Function

The moment  generating  function  (mgf)  of  a random variable  X  is a  function that  may be
used  to  generate  the  moments  of  X.  In  particular,  the  mgf  MX HtL  is  a  function  of  a  real-
valued  dummy variable  t.  When  no  confusion  is  possible,  we  denote  MX HtL  by  MHtL.  We
first consider whether or not the mgf exists, and then show how moments may be derived
from it, if it exists.

Existence:  Let  X  be  a  random  variable,  and  t & !  denote  a  dummy  variable.  Let  tê
and  tê  denote  any  two  real-valued  constants  such  that  tê < 0  and  tê > 0;  thus,  the  open
interval Htê, têL includes zero in its interior. Then, the mgf is given by

(2.14)MHtL = EA1 t X E
provided E@1 t X D & !+  for all t  in the chosen interval tê < t < tê. The condition that MHtL be
positive  real  for  all  t & Htê, têL  ensures  that  MHtL  is  differentiable  with  respect  to  t  at  zero.
Note that when t = 0, MH0L is always equal to 1. However, MHtL may fail to exist for t � 0.

Generating  moments:  Let  X  be  a  random  variable  for  which  the  mgf  MHtL  exists.
Then, the r th  raw moment of X  is obtained by differentiating the mgf r times with respect
to t, followed by setting t = 0 in the resulting formula:
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(2.15)m
£

r = ( rMHtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
( t r

3333333333 t = 0
 .

Proof:  If  MHtL  exists,  then  MHtL  is  hr-timesN  differentiable  at  t = 0 (for  integer  r > 0)  and
( E@1 t X DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

( t = EA ( 1 t X
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

( t E for all t & Htê, têL (Mittelhammer (1996, p.142)). Hence,

        ( r E@1 t X DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
( t r

3333333333 t = 0
= EA ( r 1 t X

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
( t r E 3333333333 t = 0

= EAXr 1t X E 3333333333 t = 0
= EAXr E  Ñ

Using  mathStatica,  the  expectation  E@1t X D  can  be  found  in  the  usual  way  with
Expect.  However,  before  using  the  obtained  solution  as  the  mgf  of  X,  one  must  check
that the mgf definition (2.14) is satisfied; i.e. that MHtL is positive real for all t & Htê, têL.
�  Example 11:  The mgf of the Normal Distribution

Let X ~ NormalHm, s2 L. Derive the mgf of X, and derive the first 4 raw moments from it.

Solution: Input the pdf of X:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 ExpA-
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E;
domain@fD = 8x, -�, �< && 8m 1 Reals, s > 0<;

Evaluating (2.14), we find: 

M = Expect@&t x, fD
"t m+ t2 s2ÅÅÅÅÅÅÅÅÅÅÅ2

By inspection, M & !+  for all t & !, and M = 1 when t = 0. Thus, M corresponds to the mgf
of X. Then, to determine say m£ 2  from M, we apply (2.15) as follows:

D@M, 8t, 2<D ê. t Ø 0

m2 + s2

More generally, to determine m£ r , r = 1, k, 4, from M:

Table@ D@M, 8t, r<D ê. t Ø 0, 8r, 4<D
8m, m2 + s2, m3 + 3 m s2, m4 + 6 m2 s2 + 3 s4<
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�  Example 12:  The mgf of the Uniform Distribution

Let X ~ UniformH0, 1L. Derive the mgf of X, and derive the first 4 raw moments from it.

Solution: Input the pdf of X, and derive M:

f = 1; domain@fD = 8x, 0, 1< ; M = Expect@&t x, fD
-1 + "t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t

Figure 9 plots M in the neighbourhood of t = 0.
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Fig. 9:  Function M for -1 < t < 1

Clearly,  M & !+  in  a  neighbourhood  of  values  about  t = 0.  At  the  particular  value  t = 0,
the plot seems to indicate that M = 1. If we input M/.tØ0, Mathematica replaces t with 0
to yield 0/0:

M ê. t Ø 0

D Power::infy :  Infinite expression 1
ÅÅÅÅ
0

encountered.

D �::indet :  
Indeterminate expression 0 ComplexInfinity encountered.

Indeterminate

To  correctly  determine  the  value  of  M  at  t = 0,  LNHôpitalNs  rule  should  be  applied.  This
rule is incorporated into MathematicaNs Limit function:

Limit@M, t Ø 0D
1

Thus,  M = 1 when t = 0, as required. Since all requirements  of the mgf definition are now
satisfied, M is the mgf of X. 
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To determine the first 4 raw moments of X, we again apply (2.15), but this time in tandem
with the Limit function:

Table@ Limit@ D@M, 8t, r<D , t Ø 0D, 8r, 4<D
9 1

ÅÅÅÅ
2
, 1

ÅÅÅÅ
3
, 1

ÅÅÅÅ
4
, 1

ÅÅÅÅ
5
=

More generally, E@Xr D = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + r

, as we can verify with Expect@xr, fD. !

�  Example 13:  The mgf of the Pareto Distribution?

Let X be Pareto distributed with shape parameter a > 0 and location parameter b > 0. Does
the mgf of X exist?

Solution: Input the pdf of X via the mathStatica palette:

f = a ba x-Ha+1L; domain@fD = 8x, b, �< && 8a > 0, b > 0<;
The solution to MHtL = E@1t X D is given by mathStatica as:

M = Expect@&t x, fD
a ExpIntegralE@1 + a, -b tD

If  we  consult  MathematicaNs  on-line  help  system  on  ExpIntegralE,  we  see  that  the
ExpIntegralE function is complex-valued  if the value of its second argument,  -b t, is
negative.  Since  b > 0,  M  will  be  complex-valued  for  any  positive  value  assigned  to  t.  To
illustrate,  suppose  parameters  a  and  b  are  given  specific  values,  and  M  is  evaluated  for
various values of t > 0:

M ê. 8a Ø 5, b Ø 1< ê. t Ø 8.2, .4, .6, .8<
81.28704 - 0.0000418879 Â, 1.66642 - 0.00134041 Â,
2.17384 - 0.0101788 Â, 2.85641 - 0.0428932 Â<

Hence,  the  requirement  that  M  must  be positive  real  in  an open  interval  that  includes  the
origin  is  not  satisfied.  Therefore,  the  mgf  of  X  does  not  exist.  The  non-existence  of  the
mgf  does  not  necessarily  mean  that  the  moments  do  not  exist.  The  Pareto  is  a  case  in
point, for from:

Expect@xr, fD
D This further assumes that:  8a > r<

a br
ÅÅÅÅÅÅÅÅÅÅÅÅ
a - r

k we see that the raw moment m£ r  exists, under the given conditions. !
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2.4 C The Characteristic Function

As Example 13 illustrated, the mgf of a random variable does not have to exist. This may
occur  if  1t x  is  unbounded  (see  (2.14)).  However,  the  function  1Â t x ,  where  Â  denotes  the
unit  imaginary  number,  does not  suffer  from unboundedness.  On  an Argand diagram,  for
any  t & !,  1Â t x  takes  values  on  the  unit  circle.  This  leads  to  the  so-called  characteristic
function (cf) of random variable X, which is defined as

(2.16)CHtL = E@1 Â t X D .

The cf of a random variable exists for any choice of t & ! that we may wish to make; note
CH0L = 1.  If  the  mgf  of  a  random  variable  exists,  the  relationship  between  the  cf  and  the
mgf is simply CHtL = MHÂ tL.  Analogous to (2.15),  raw moments  can be obtained from the
cf via

(2.17)m
£

r = Â-r ( rCHtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
( t r

3333333333 t = 0

provided m£ r  exists.

�  Example 14:  The cf of the Normal Distribution

Let X ~ NHm, s2 L. Determine the cf of X.

Solution: Input the pdf of X:

f   =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 ExpA-
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E;
domain@fD = 8x, -�, �< && 8m 1 Reals, s > 0<;

Since  we  know  from  Example  11  that  the  mgf  exists,  the  cf  of  X  can  be  obtained  via
CHtL = MHÂ tL.  This  sometimes  works  better  in  Mathematica  than  trying  to  evaluate
Expect@"Â t x, fD directly:

cf = Expect@&t x, fD ê. t Ø Â t

"Â t m- t2 s2ÅÅÅÅÅÅÅÅÅÅÅ2

Then, the first 4 moments are given by:

Table@Â-r  D@cf, 8t, r<D ê. t Ø 0, 8r, 4<D êê Simplify

8m, m2 + s2, m3 + 3 m s2, m4 + 6 m2 s2 + 3 s4<
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�  Example 15:  The cf of the Lindley Distribution

Let the random variable X  be Lindley distributed with parameter d > 0. Derive the cf, and
derive the first 4 raw moments from it.

Solution: Input the pdf of X from the mathStatica palette:

f =
d2

ÅÅÅÅÅÅÅÅÅÅÅÅ
d + 1

Hx + 1L &-d x; domain@fD = 8x, 0, �< && 8d > 0<;
The cf is given by

cf = Expect@&Â t x, fD
D This further assumes that:  8Im@tD == 0<

d2 H1 - Â t + dL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + dL H-Â t + dL2

The condition on t  output by mathStatica  is not relevant here, for we restrict  the dummy
variable t to the real number line. The first 4 raw moments of X are given by:

Table@Â-r  D@cf, 8t, r<D ê. t Ø 0, 8r, 4<D êê Simplify

9 2 + d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d + d2 ,

2 H3 + dL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d2 H1 + dL , 6 H4 + dL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d3 H1 + dL , 24 H5 + dL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d4 H1 + dL =

�  Example 16:  The cf of the Pareto Distribution

Let  X  be  Pareto  distributed  with  shape  parameter  a = 4  and  location  parameter  b = 1.
Derive the cf, and from it, derive those raw moments which exist.

Solution: The Pareto pdf is:

f = a ba x-Ha+1L; domain@fD = 8x, b, �< && 8a > 0, b > 0<;
When a = 4 and b = 1, the solution to the cf of X is:

cf = Expect@&Â t x, f ê. 8a Ø 4, b Ø 1<D
1
ÅÅÅÅ
6

H"Â t H6 - Â t H-2 + t H-Â + tLLL + t4 Gamma@0, -Â tDL
From Example 13, we know that the mgf of X does not exist. However, the moments of X
up to order r < a = 4 do exist, which we obtain from the cf by applying (2.17):

Table@ Limit@Â-r  D@cf, 8t, r<D, t Ø 0D, 8r, 4<D
9 4

ÅÅÅÅ
3
, 2, 4, �=

Notice  that  we  have  utilised  Limit  to  obtain  the  moments  here,  so  as  to  avoid  the  0/0
problem discussed in Example 12. !

§2.4 C CONTINUOUS  RANDOM  VARIABLES 51



2.4 D Properties of Characteristic Functions (and mgfFs)

§2.4 B and §2.4 C illustrated how the mgf and cf can be used to generate the moments of a
random variable. A second (and more important) application of the mgf and cf is to prove
that  a  random  variable  has  a  specific  distribution.  This  methodology  rests  on  the
Uniqueness Theorem,  which we present here using characteristic  functions; of course, the
theorem also applies to moment generating  functions,  provided the mgf exists, since then
CHtL = MHÂ tL.
Uniqueness Theorem: There is a one-to-one correspondence between the cf and the pdf of
a random variable.

Proof:  The  pdf  determines  the  cf  via  (2.16).  The cf  determines  the  pdf  via  the  Inversion
Theorem below.

The Uniqueness Theorem means that if two random variables X and Y  have the same
distribution,  then  X  and  Y  must  have  the  same  mgf.  Conversely,  if  they  have  the  same
mgf,  then  they  must  have  the  same  distribution.  The  following  results  can  be  especially
useful  when  applying  the  Uniqueness  Theorem.  We  present  these  results  as  the  MGF
Theorem,  which  holds  provided the  mgf exists.  A similar  result  holds,  of course, for  any
cf, with t replaced by Â t.

MGF Theorem: Let random variable X  have mgf MX HtL, and let a and b denote constants.
Then

MX+a HtL = 1 t a  MX HtL    Proof:  MX+a HtL = E@1t HX+aL D = 1 t a  MX HtL
Mb X HtL = MX Hb tL Proof:  Mb X HtL = E@1t Hb XL D = E@1Ht bL X D = MX Ht bL
Ma+b X HtL = 1t a  MX Hb tL Proof:  via above.

Further,  let HX1 , k, Xn L be independent random variables with mgfNs MXi HtL, i = 1, k, n,
and let Y = i=1

n Xi . Then

MY HtL = ¤
i=1

n
MXi HtL Proof:  via independence (see Table 3 of Chapter 6).

If we can match the functional form of MY HtL with a well-known moment generating
function,  then  we  know  the  distribution  of  Y .  This  matching  is  usually  done  using  a
textbook  that  lists  the  mgfNs  for  well-known  distributions.  Unfortunately,  the  matching
process is often neither easy nor obvious.  Moreover, if the pdf of Y is not well-known (or
not  listed  in  the  textbook),  the  matching  may not  be possible.  Instead of  trying  to  match
MY HtL  in a textbook appendix,  we can (in  theory)  derive  the pdf  that is  associated with it

52 CHAPTER  2 §2.4 D



by means of the Inversion Theorem. This is particularly important  if the derived cf is not
of a standard (or common) form. Recall that the characteristic function (cf) is defined by

(2.18)CHtL = #
-�

�
1 Â t x  f HxL ( t .

Then, the Inversion Theorem is given by:

Inversion Theorem: The characteristic function CHtL uniquely determines the pdf f HxL via

(2.19)f HxL = 1ÅÅÅÅÅÅÅÅÅ2 p
 #

-�

�
1I Â t x  CHtL ( t

Proof: See Roussas (1997, p.142) or Stuart and Ord (1994, p.126).

If  the  mgf  exists,  one  can  replace  CHtL  with  MHÂ tL  in  (2.19).  Inverting  a  characteristic
function  is  often  computationally  difficult.  With  Mathematica,  one  can  take  two
approaches: symbolic inversion and numerical inversion. 

Symbolic inversion:  If we  think of  (2.18)  as the  Fourier  transform  f HxL Ø CHtL,  then
(2.19)  is  the  inverse  Fourier  transform  CHtL Ø f HxL  which  can  be  implemented  in
Mathematica via:

InverseFourierTransform[ cf,  t,  x,  FourierParametersØ{1,1}]

To  further  automate  this  mapping,  we  shall  create  a  function  InvertCF@t Ø x, cfD.
Moreover,  we shall  allow this function  to take  an optional  third  argument,  InvertCF[t
Ø  x,  cf,  assume],  which  we  can  use  to  make  assumptions  about  x,  such  as  x > 0,  or
x & Reals. Here is the code for InvertCF: 

InvertCF[t_ Ø x_, cf_, Assum_:{}] := 
  Module[{sol}, 
    sol = InverseFourierTransform[cf, t, x, 
                            FourierParametersØ{1,1}]; 
    If[Assum === {}, sol, FullSimplify[sol, Assum]]]

Numerical  inversion:  There  are  many  characteristic  functions  that  Mathematica
cannot  invert  symbolically.  In  such  cases,  we  can  resort  to  numerical  methods.  We  can
automate  the  inversion  (2.19)  CHtL Ø f HxL  using  numerical  integration,  by  constructing  a
function NInvertCF[t Ø x, cf]:

NInvertCF@t_ Ø x_, cf_D :=
1

ÅÅÅÅÅÅÅÅ
2 p

 NIntegrate@ &-Â t x  cf, 8t, -�, 0, �<,
Method Ø DoubleExponentialD

The syntax {t,-�,0,�} tells Mathematica to check for singularities at 0.
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�  Example 17:  Linnik Distribution

The distribution whose characteristic function is

(2.20)CHtL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1 + » t »a , t & !,   0 < a § 2

is  known  as  a  Linnik  distribution;  this  is  also  known  as  an  a-Laplace  distribution.  The
standard Laplace distribution is obtained when a = 2. Consider the case a = 3ÅÅÅÅ2 : 

cf =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Abs@tD3ê2 ;

Inverting the cf symbolically yields the pdf f HxL:
f = InvertCF@t Ø x, cfD

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 è!!!3 p7ê2  MeijerGA99 1

ÅÅÅÅÅÅÅ
12

, 1
ÅÅÅÅ
3
, 7

ÅÅÅÅÅÅÅ
12

=, 8<=,
990, 1

ÅÅÅÅÅÅÅ
12

, 1
ÅÅÅÅ
3
, 1

ÅÅÅÅ
3
, 7

ÅÅÅÅÅÅÅ
12

, 2
ÅÅÅÅ
3
, 5

ÅÅÅÅ
6
=, 9 1

ÅÅÅÅ
6
, 1

ÅÅÅÅ
2
==, x6

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
46656

E
where domain[f]={x,-�,�}. Figure 10 compares the a = 3ÅÅÅÅ2  pdf to the a = 2 pdf.

-3 -2 -1 1 2 3
x

0.2

0.4

0.6

pdf

a =
3
ÅÅÅÅÅ2

a = 2

Fig. 10:  The pdf of the Linnik distribution, when a = 3ÅÅÅÅ2 and 2

�  Example 18:  The Sum of Uniform Random Variables

Let  HX1 , k, Xn L  be independent  UniformH0, 1L  random variables,  each  with characteristic
function CHtL = 1Â t -1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÂ t . It follows from the MGF Theorem that the cf of Y = i=1

n Xi  is:

cf =
ikjjjj &Â t - 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â t

y{zzzz
n

;
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The  pdf  of  Y  is  known  as  the  IrwinIHall  distribution,  and  it  can  be  obtained  in
Mathematica,  for  a  given  value  of  n,  by  inverting  the  characteristic  function  cf.  For
instance, when n = 1, 2, 3, the pdfNs are, respectively, f1, f2, f3:

8f1, f2, f3< = InvertCF@t Ø y, cf ê. n Ø 81, 2, 3<, y > 0D
9 1

ÅÅÅÅ
2

H1 + Sign@1 - yDL, 1
ÅÅÅÅ
2

Hy + Abs@-2 + yD - 2 Abs@-1 + yDL,
1
ÅÅÅÅ
4

Hy2 + 3 H-1 + yL2 Sign@1 - yD +H-3 + yL2 Sign@3 - yD + 3 H-2 + yL2 Sign@-2 + yDL=
Figure  11  plots  the  three  pdfNs.  When  n = 1,  we  obtain  the  UniformH0, 1L  distribution,
n = 2 yields a Triangular distribution, while n = 3 already looks somewhat bell-shaped.
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Fig. 11:  The pdf of the sum of n UniformH0, 1L random variables, when n = 1, 2, 3

�  Example 19:  Numerical Inversion

Consider the distribution whose characteristic function is:

cf = &- t2ÅÅÅÅÅÅ2 + $%%%%%%p
ÅÅÅÅ
2

t
i
kjjjjjErfA t

ÅÅÅÅÅÅÅÅÅÅè!!!!
2

E - Sign@tDy{zzzzz;
Alas,  Mathematica  Version  4  cannot  invert  this  cf  symbolically;  that  is,
InvertCF[tØx,cf]  fails.  However,  by  using  the  NInvertCF  function  defined
above,  we  can  numerically  invert  the  cf  at  a  specific  point  such  as  x = 2.9,  which  yields
the pdf evaluated at x = 2.9:

NInvertCF@t Ø 2.9, cfD
0.0467289 + 0. Â

By doing this at many points, we can plot the pdf:
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Plot@ NInvertCF@t Ø x, cfD, 8x, -10, 10<,
AxesLabel Ø 8"x", "pdf"<, PlotRange Ø 80, .21<D;
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Fig. 12:  The pdf, now obtained by numerically inverting the cf

2.4 E Stable Distributions

According  to  the  Central  Limit  Theorem,  the  sum  of  a  large  number  of  iid  random
variables  with finite variance converges to a Normal distribution (which is itself a special
member of the stable family) when suitably standardised. If the finite variance assumption
is  dropped,  one  obtains  a  Generalised  Central  Limit  Theorem,  which  states  that  the
resulting  limiting distribution  must  be  a  member  of  the stable  class.  The word  hstableN  is
used  because,  informally  speaking,  when  iid  members  of  a  stable  family  are  added
together,  the shape  of the distribution  does not  change.  Stable  distributions  are becoming
increasingly important in empirical work. For example, in finance, financial returns are the
sum of  an  enormous  number  of  separate  trades that  arrive  continuously  in  time.  Yet,  the
distribution of financial returns often has fatter tails and more skewness than is consistent
with  Normality;  by  contrast,  non-Gaussian  stable  distributions  can  often  provide  a  better
description of the data. For more detail on stable distributions, see Uchaikin and Zolotarev
(1999), Nolan (2001), and McCulloch (1996).

Formally,  a  stable  distribution  SHa, b, c, aL  is  a  4-parameter  distribution  with
characteristic function CHtL given by

(2.21)CHtL =

looooomnooooo
expikjja Â t - c / t /a 8 1 + Â b signHtL tanH pÅÅÅÅ2  aL <y{zz if a � 1

expikjja Â t - c / t /  8 1 + Â b signHtL 2ÅÅÅÅp  log / t /<y{zz if a = 1
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where 0 < a § 2, I1 § b § 1, c > 0 and a & !. Parameter a is known as the hcharacteristic
exponentN  and  controls  tail  behaviour,  b  is  a  skewness  parameter,  c  is  a scale  parameter,
and a is a location parameter. Since the shape parameters a  and b are of primary interest,
we will let SHa, bL denote SHa, b, 1, 0L. Then CHtL reduces to

(2.22)CHtL =

looooomnooooo
expikjj - / t /a 8 1 + Â b signHtL tanH pÅÅÅÅ2 aL < y{zz if a � 1

expikjj- / t / 8 1 + Â b signHtL 2ÅÅÅÅp  log / t /< y{zz if a = 1

with support,

(2.23)support f HxL =
looomnooo
!+ if a < 1 and b = -1
!- if a < 1 and b = 1
! otherwise

If a § 1, the mean does not exist; if 1 < a < 2, the mean exists, but the variance does not;
if  a = 2  (the  Normal  distribution),  both  the  mean  and  the  variance  exist.  A  symmetry
property  is  that  f Hx; a, bL = f H-x; a, - bL.  Thus,  if  the  skewness  parameter  b = 0,  we
have f Hx; a, 0L = f H-x; a, 0L, so  that the pdf is symmetrical  about zero. In Mathematica,
we shall stress the dependence of the cf on its parameters a and b by defining the cf (2.22)
as a Mathematica function of a and b, namely cf[a,b]:

Clear@cfD
cf@a_, b_D := ExpA-Abs@tDa J1 + Â b Sign@tD *

IfAa == 1,
2
ÅÅÅÅ
p
Log@Abs@tDD, TanA p

ÅÅÅÅÅÅ
2

 aEE NE
In  the  usual  fashion,  inverting  the  cf  yields  the  pdf.  Surprisingly,  there  are  only  three
known stable pdfNs that can be expressed in terms of elementary functions, and they are:

(i)   The Normal Distribution: Let a = 2; then the cf is:

cf@2, bD
"-Abs@tD2

which  simplifies  to  1-t2  for  t & !.  Inverting  the  cf  yields  a  Normal  pdf  (the
InvertCF function was defined in §2.4 D above):

f = InvertCF@t Ø x, cf@2, bDD
"- x2ÅÅÅÅÅÅ4

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!

p
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(ii)  The Cauchy Distribution: Let a = 1 and b = 0; then the cf and pdf are:

cf@1, 0D
"-Abs@tD
f = InvertCF@t Ø x, cf@1, 0DD

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p + p x2

(iii) The Levy Distribution: Let a = 1ÅÅÅÅ2 , b = -1; then the cf is:

cfA 1
ÅÅÅÅ
2
, -1E

"-è!!!!!!!!!!!!!!!!!Abs@tD H1-Â Sign@tDL
which, when inverted, yields the Levy pdf:

f = InvertCFAt Ø x, cfA 1
ÅÅÅÅ
2
, -1E, x > 0E

domain@fD = 8x, 0, �<;
"- 1ÅÅÅÅÅÅÅ2 x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p x3ê2
Here is a plot of the Levy pdf:

PlotDensity@f, 8x, 0, 6<D;

1 2 3 4 5 6
x

0.1

0.2

0.3

0.4

f

Fig. 13:  The Levy pdf

The  Levy  distribution  may  also  be  obtained  as  a  special  case  of  the
InverseGamma(g, b) distribution with g = 1ÅÅÅÅ2  and b = 2.
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È Only Three Known pdf?s?

It is often claimed that, aside from the Normal, Cauchy and Levy, no other stable pdf can
be  expressed  in  terms  of  known  functions.  This  is  not  quite  true:  it  depends  on  which
functions are known. Hoffman-Jørgenson (1993) showed that some stable densities can be
expressed  in  terms  of  hypergeometric  p  Fq  functions,  while  Zolotarev  (1995)  showed
more  generally  that  some  stable  pdfNs  can  be  expressed  in  terms  of  MeijerG  functions.
Quite  remarkably,  Mathematica  can  often  derive  symbolic  stable  pdfNs  in  terms  of  p  Fq

functions,  without  any  extra  help!  To  illustrate,  suppose  we  wish  to  find  the  pdf  of
SH 1ÅÅÅÅ2 , 0L. Inverting the cf in the standard way yields:

ff = InvertCFAt Ø x, cfA 1
ÅÅÅÅ
2
, 0E, x 1 RealsE

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p Abs@xD7ê2  

J-2 Abs@xD3ê2 HypergeometricPFQA81<, 9 3
ÅÅÅÅ
4
, 5

ÅÅÅÅ
4
=, -

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
64 x2

E +è!!!!!!!2 p x2 JCosA 1
ÅÅÅÅÅÅÅÅ
4 x

E + Sign@xD SinA 1
ÅÅÅÅÅÅÅÅ
4 x

ENN
Since  Mathematica  does  not  handle  densities  containing  Abs[x]  very  well,  we  shall
eliminate the absolute value term by considering the x < 0 and x > 0 cases separately:

f- = Simplify@ ff ê. Abs@xD Ø -x, x < 0D;
f+ = Simplify@ ff, x > 0D;

and then re-express the SH 1ÅÅÅÅ2 , 0L stable density as:

f = If@x < 0, f-, f+D; domain@fD = 8x, -�, �<;
Note  that we are now working with a stable pdf in symbolic form that is neither Normal,
Cauchy,  nor  Levy.  Further,  because  it  is  a  symbolic  entity,  we  can  apply  standard
mathStatica functions in the usual way. For instance, Expect[x,f] correctly finds that
the  integral  does  not  converge,  while  the  cdf  FHxL = PHX § xL  is  obtained  in  the  familiar
way, as a symbolic entity!

F = Prob@x, fD
IfAx < 0, Â

ikjjjFresnelCA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

è!!!x E - FresnelSA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

è!!!x Ey{zzz +

HypergeometricPFQ@8 1ÅÅÅ2 , 1<, 8 3ÅÅÅ4 ,
5ÅÅÅ4 ,

3ÅÅÅ2 <, - 1ÅÅÅÅÅÅÅÅÅÅ64 x2 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 p x
,

1 - FresnelCA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

è!!!x E - FresnelSA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

è!!!x E +

HypergeometricPFQ@8 1ÅÅÅ2 , 1<, 8 3ÅÅÅ4 ,
5ÅÅÅ4 ,

3ÅÅÅ2 <, - 1ÅÅÅÅÅÅÅÅÅÅ64 x2 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 p x
E
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Figure 14 plots the pdf and cdf.
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Fig. 14:  The SH 1ÅÅÅÅ2 , 0L pdf and cdf

More  generally,  examples  fall  into  two  classes:  those  that  can  be  inverted
symbolically,  and  those  that  can  only  be  inverted  numerically.  To  illustrate,  we  shall
consider SH 1ÅÅÅÅ2 , bL using symbolic methods; then SH1, bL via numerical methods, and finally
SH 3ÅÅÅÅ2 , bL with both numerical and symbolic methods, all plotted when b = 0, 1ÅÅÅÅ2 , 1. Figures
15I17 illustrate  these cases:  as usual,  the  code to generate  these diagrams is given  in the
electronic version of the text, along with some discussion.

2.4 F Cumulants and Probability Generating Functions
The cumulant  generating  function  is  the  natural  logarithm  of the  mgf.  The r th  cumulant,
kr , is given by

(2.24)kr =
( r  logIMHtLM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ( t r

3333333333 t = 0

provided MHtL exists. Unlike the raw and central moments, cumulants can not generally be
obtained  by  direct  integration.  To  find  them,  one  must  either  derive  them  from  the
cumulant generating function, or use the moment conversion functions of §2.4 G.

The probability generating function (pgf) is

(2.25)PHtL = EAtX E
and is mostly used when working with discrete random variables defined on the set of non-
negative integers  80, 1, 2, k<. The pgf  provides a way to determine the probabilities.  For
instance:

(2.26)PHX = rL = 1ÅÅÅÅÅÅÅr!
 ( r PHtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

( t r

3333333333 t = 0
,   r = 0, 1, 2, k .

The  pgf  can  also  be  used  as  a  factorial  moment  generating  function.  For  instance,  the
factorial moment

m
£ @rD = EAX@rD E  = EAXHX - 1L � HX - r + 1LE 

may be obtained from PHtL as follows:
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Fig. 15:  SH 1ÅÅÅÅ2 , bL with b = 0, 1ÅÅÅÅ2 , 1 (bold, plain, dashed)
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Fig. 16:  SH1, bL with b = 0, 1ÅÅÅÅ2 , 1 (bold, plain, dashed) 

-3 -2 -1 0 1 2 3
x

0.05

0.1

0.15

0.2

0.25

f

Fig. 17:  SH 3ÅÅÅÅ2 , bL with b = 0, 1ÅÅÅÅ2 , 1 (bold, plain, dashed) 
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(2.27)m
£ @rD = EAX@rD E = ( r PHtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

( t r

3333333333 t = 1

where  we  note  that  t  is  set  to  1  and  not  0.  To  convert  from  factorial  moments  to  raw
moments, see the FactorialToRaw function of §2.4 G.

2.4 G Moment Conversion Formulae

One can express any moment  (m£ , m,  or k) in terms of any other moment (m£ , m,  or k).  To
this  end,  mathStatica  provides  a  suite  of  functions  to  automate  such  conversions.  The
supported conversions are:

function description

RawToCentral@rD m
£

r  in  terms  of  mi

RawToCumulant@rD m
£

r  in  terms  of  ki

CentralToRaw@rD mr  in  terms  of  m
£

i

CentralToCumulant@rD mr  in  terms  of  ki

CumulantToRaw@rD kr  in  terms  of  m
£

i

CumulantToCentral@rD kr  in  terms  of  mi

and
RawToFactorial@rD m

£
r  in  terms  of  m

£ @iD
FactorialToRaw@rD m

£ @rD in  terms  of  m
£

i

Table 3:  Univariate moment conversion functions

For instance, to express the 2 nd  central moment (the variance) m2 = EAH X - m L2 E in terms
of raw moments m£ i , we enter: 

CentralToRaw@2D
m2 Ø -m

£
1

2
+ m

£
2

This  is just the well-known result  that m2 = E@X2 D - HE@XDL2 .  Here are the first  6 central
moments in terms of raw moments:

Table@CentralToRaw@iD, 8i, 6<D êê TableForm

m1 Ø 0

m2 Ø -m
£
1

2
+ m

£
2

m3 Ø 2 m
£
1

3
- 3 m

£
1 m

£
2 + m

£
3

m4 Ø -3 m
£
1

4
+ 6 m

£
1

2
m
£
2 - 4 m

£
1 m

£
3 + m

£
4

m5 Ø 4 m
£
1

5
- 10 m

£
1

3
m
£
2 + 10 m

£
1

2
m
£
3 - 5 m

£
1 m

£
4 + m

£
5

m6 Ø -5 m
£
1

6
+ 15 m

£
1

4
m
£
2 - 20 m

£
1

3
m
£
3 + 15 m

£
1

2
m
£
4 - 6 m

£
1 m

£
5 + m

£
6
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Next, we express the 5 th  raw moment in terms of cumulants:

sol = RawToCumulant@5D
m
£
5 Ø k1

5 + 10 k1
3 k2 + 15 k1 k2

2 + 10 k1
2 k3 + 10 k2 k3 + 5 k1 k4 + k5

which is an expression in ki , for i = 1, k, 5. Here are the inverse relations:

inv = Table@CumulantToRaw@iD, 8i, 5<D; inv êê TableForm

k1 Ø m
£
1

k2 Ø -m
£
1

2
+ m

£
2

k3 Ø 2 m
£
1

3
- 3 m

£
1 m

£
2 + m

£
3

k4 Ø -6 m
£
1

4
+ 12 m

£
1

2
m
£
2 - 3 m

£
2

2
- 4 m

£
1 m

£
3 + m

£
4

k5 Ø 24 m
£
1

5
- 60 m

£
1

3
m
£
2 + 30 m

£
1 m

£
2

2
+ 20 m

£
1

2
m
£
3 - 10 m

£
2 m

£
3 - 5 m

£
1 m

£
4 + m

£
5

Substituting the inverse relations back into sol yields m£ 5  again:

sol ê. inv êê Simplify

m
£
5 Ø m

£
5

Working  habout  the  meanN  (i.e.  taking  k1 = 0)  yields  the  CentralToCumulant
conversions:

Table@ CentralToCumulant@rD, 8r, 5<D
8m1 Ø 0, m2 Ø k2, m3 Ø k3, m4 Ø 3 k2

2 + k4, m5 Ø 10 k2 k3 + k5<
The  inverse  relations  are  given  by  CumulantToCentral.  Here  is  the  5 th  factorial
moment m

£ @5D = E AXHX - 1L HX - 2L HX - 3L HX - 4LE  expressed in terms of raw moments:

FactorialToRaw@5D
m
£ @5D Ø 24 m

£
1 - 50 m

£
2 + 35 m

£
3 - 10 m

£
4 + m

£
5

This is easy to confirm by noting that:

x Hx - 1L Hx - 2L Hx - 3L Hx - 4L êê Expand

24 x - 50 x2 + 35 x3 - 10 x4 + x5

The inverse relations are given by RawToFactorial:

RawToFactorial@5D
m
£
5 Ø m

£ @1D + 15 m
£@2D + 25 m

£ @3D + 10 m
£ @4D + m

£ @5D
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È The Converter Functions in Practice

Sometimes,  we  know  how  to  derive  one  class  of  moments  (say  raw  moments),  but  not
another  (say  cumulants).  In  these  situations,  the  converter  functions  come  to  the  rescue,
for  they  enable  us  to  derive  the  unknown  moments  in  terms  of  the  moments  that  can  be
calculated.  This  section  illustrates  how  this  can  be  done.  The  general  approach  is:  First,
express  the desired moment  (say k5 ) in terms of moments  that we can calculate  (say raw
moments). Then, evaluate each raw moment m£ i  for the relevant distribution.

�  Example 20:  Cumulants of X ~ BetaHa, bL
Let random variable X ~ BetaHa, bL with pdf f HxL:

f =
xa-1  H1 - xLb-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Beta@a, bD  ; domain@fD = 8x, 0, 1< && 8a > 0, b > 0< ;

We  wish  to  find  the  fourth  cumulant.  To  do  so,  we  can  use  the  cumulant  generating
function approach, or the moment conversion approach.

(i) The cumulant generating function is:

cgf = Log@Expect@&t x, fDD
Log@Hypergeometric1F1@a, a + b, tDD

Then, the fourth cumulant is given by (2.24) as:

D@cgf, 8t, 4<D ê. t Ø 0 êê FullSimplify

6 a b Ha3 + a2 H1 - 2 bL + b2 H1 + bL - 2 a b H2 + bLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHa + bL4 H1 + a + bL2 H2 + a + bL H3 + a + bL

(ii) Moment conversion approach: Express the fourth cumulant in terms of raw moments:

sol = CumulantToRaw@4D
k4 Ø -6 m

£
1

4
+ 12 m

£
1

2
m
£
2 - 3 m

£
2

2
- 4 m

£
1 m

£
3 + m

£
4

Here,  each  term  m£ r  denotes  m£ r HXL = E@Xr D,  and  hence  can  be  evaluated  with  the
Expect  function.  In  the  next  input,  we  calculate  each  of  the  expectations  that  we
require:

sol ê. m
£
r_ ß Expect@xr, fD êê FullSimplify

k4 Ø
6 a b Ha3 + a2 H1 - 2 bL + b2 H1 + bL - 2 a b H2 + bLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHa + bL4 H1 + a + bL2 H2 + a + bL H3 + a + bL

which is the same answer. !
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2.5 Conditioning, Truncation and Censoring

2.5 A Conditional / Truncated  Distributions

Let  random  variable  X  have  pdf  f HxL,  with  cdf  FHxL = PHX § xL.  Further,  let  a  and  b  be
constants lying within the support of the domain. Then, the conditional density is

(2.28)f Hx / a < X § bL = f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅFHbL - FHaL    Doubly truncated

(2.29)f Hx / X > aL = f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - FHaL   (let b = �)      Truncated below

(2.30)f Hx / X § bL = f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
FHbL        (let a = -�)    Truncated above

These  conditional  distributions  are  also  sometimes  known  as  truncated  distributions.  In
each  case,  the  conditional  density  on  the  left-hand  side  is  expressed  in  terms  of  the
unconditional  (parent)  pdf  f HxL  on  the  right-hand  side,  which  is  adjusted  by  a  scaling
constant in the denominator so that the density still integrates to unity.

Proof of (2.30): The conditional probability that event W1  occurs, given event W2 , is

PH W1 / W2 L = PHW1 > W2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPHW2 L   provided PHW2 L � 0.

\ PHX § x / X § bL = PHX § x > X § bLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
PHX § bL = PHX§ xLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

PHX§ bL   provided x § b.

\ FHx / X § bL = FHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅFHbL . Differentiating both sides with respect to x yields (2.30). Ñ

�  Example 21:  A hTruncated AboveN Standard Normal Distribution

ClearAll@f, F, g, bD
Let X ~ NH0, 1L with pdf f HxL:

f =
&- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 ; domain@fD = 8x, -�, �< ;
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and cdf FHxL:
F@x_D = Prob@x, fD;

Let gHxL = f Hx / X § bL = f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
FHbL  denote a standard Normal pdf truncated above at b:

g =
f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
F@bD ; domain@gD = 8x, -�, b< && 8b 1 Reals<;

Figure 18 plots gHxL at three different values of b.
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ÅÅÅÅÅ
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3

3
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Fig. 18:  A standard Normal pdf truncated above at b = - 1ÅÅÅÅ2 , 1ÅÅÅÅ3 , � 

2.5 B Conditional Expectations

Let  X  have  pdf  f HxL.  We  wish  to  find  the  conditional  expectation  Ef AuHXL / a < X § bD,
where the notation Ef @ ÿ D indicates that the expectation is taken with respect to the random
variable X whose pdf is f HxL. From (2.28), it follows that

(2.31)Ef AuHXL / a < X § bE =
#a

b
uHxL f HxL (x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅFHbL - FHaL .

With  mathStatica,  an  easier  method  is  to  first  derive  the  conditional  density  via  (2.28),
say gHxL = f Hx » a < X § bL with domain@gD = 8x, a, b<. Then,

(2.32)Ef AuHXL / a < X § bE = Eg AuHXLE .
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�  Example 22:  Mean and Variance of a hTruncated AboveN Normal

Continuing  Example  21,  we have  X ~ NH0, 1L  with pdf  f HxL  (the parent  distribution),  and
gHxL = f Hx / X § bL  (a  truncated  above  distribution).  We  wish  to  find  Ef @X / X § bD .  The
solution is Eg @XD:

Expect@x, gD
-

"- b2ÅÅÅÅÅÅ2 "#####2ÅÅÅpÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + ErfA bÅÅÅÅÅÅÅè!!!!2 E

Because  gHxL  is  htruncated  aboveN  while  f HxL  is  not,  it  must  always  be  the  case  that
Eg @XD < Ef @XD.  As  b  becomes  hlargeN,  the  truncation  becomes  less  severe,  so
Eg @XD Ø Ef @XD.  Thus,  for  our  example,  as  b Ø �,  Eg @XD Ø 0  from below,  as  per  Fig. 19
(left  panel).  At  the  other  extreme,  as  b Ø -�,  the  45°  line  forms  an  upper  bound,  since
Eg @XD § b, if X § b. 
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Fig. 19:  Conditional mean (left) and variance (right) as a function of b

Similarly,  the  variance  of  a  truncated  distribution  must  always  be  smaller  than  the
variance  of  its  parent  distribution,  because  the  truncated  distribution  is  a  constrained
version of  the parent.  As b  becomes hlargeN,  this  constraint  becomes insignificant,  and so
Varg HXL Ø Var f HXL  from  below.  By  contrast,  as  b  tends  toward  the  lower  bound  of  the
domain,  truncation  becomes  more  and  more  binding,  causing  the  conditional  variance  to
tend to 0, as per Fig. 19 (right panel). The conditional variance VarHX / X § bL is:

Var@x, gD
1 -

2 "-b2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p I1 + ErfA bÅÅÅÅÅÅÅè!!!!2 EM2 -

b "- b2ÅÅÅÅÅÅ2 "#####2ÅÅÅpÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + ErfA bÅÅÅÅÅÅÅè!!!!2 E

Finally, we Clear some symbols:

ClearAll@f, F, gD
k to prevent notational conflicts in future examples. !
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2.5 C Censored Distributions

Consider the following examples:
(i) The  demand  for  tickets  to  a  concert  is  a  random  variable.  Actual  ticket  sales,

however, are bounded by the fixed capacity of the concert hall.
(ii) Similarly,  electricity  consumption  (a  random  variable)  is  constrained  above  by  the

capacity of the grid.
(iii) The  water  level  in  a  dam  fluctuates  randomly,  but  it  can  not  exceed  the  physical

capacity of the dam.
(iv) In  some  countries,  foreign  exchange  rates  are  allowed  to  fluctuate  freely  within  a

band,  but  if  they  reach  the  edge  of  the  band,  the  monetary  authority  intervenes  to
prevent the exchange rate from leaving the band.

Examples  (i)  and  (ii)  draw  the  distinction  between  observed  data  (e.g.  ticket  sales,
electricity  supply)  and  unobserved  demand  (some  people  may  have  been  unable  to
purchase tickets). Examples (iii) and (iv) fall into the general class of stochastic processes
that  are  bounded  by  reflecting  (sticky)  barriers;  see  Rose  (1995).  All  of  these  examples
(iIiv) can be modelled using censored distributions.

Let random variable X  have  pdf f HxL  and cdf FHxL, and let  c  denote  a constant  lying
within  the support  of the domain. Then, Y  has  a censored distribution,  censored below at
point c, if

(2.33)Y =
loomnoo c if X § c

X if X > c

Figure 20 compares  the pdf of X  (the parent  distribution)  with the pdf of Y  (the censored
distribution). While X has a continuous pdf, the density of Y  has both a discrete part and a
continuous part.  Here, all values of X  smaller than c get  compacted onto a single point c:
thus, the point c occurs with positive probability FHcL.

c
y

pdf of Y

c
x

pdf of X

Fig. 20:  Parent pdf (top) and censored pdf (bottom)

The  definitions  for  a  hcensored  aboveN  distribution,  and  a  hdoubly  censoredN  distribution
(censored above and below) follow in similar fashion.
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�  Example 23:  A hCensored BelowN Normal Distribution

ClearAll@f, cD
Let X ~ NH0, 1L with pdf f HxL, and let Y =

loomnoo c if X § c

X if X > c
  .  We enter all this as: 

f =
&- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<; y = If@x § c, c, xD;
Then, E@YD is:

Expect@y, fD
"- c2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
+
1
ÅÅÅÅ
2
c ikjjj1 + ErfA c

ÅÅÅÅÅÅÅÅÅè!!!2 Ey{zzz
Note  that this expression is equal to f HcL + c FHcL, where FHcL is the cdf of X  evaluated at
the censoring point c. Similarly, VarHY L is:

Var@y, fD
1
ÅÅÅÅ
4

i
kjjjjjj2 + c2 -

2 "-c2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p

+

i
kjjjjjj-2 - 2 c "- c2ÅÅÅÅÅÅ2 $%%%%%%2ÅÅÅÅ

p

y
{zzzzzz ErfA c

ÅÅÅÅÅÅÅÅÅè!!!2 E - c2 ErfA c
ÅÅÅÅÅÅÅÅÅè!!!2 E2y{zzzzzz

Figure 21 plots E@Y D and VarHY L as a function of the censoring point c.

-3 -2 -1 1 2
c

1

2

E@YD

VarHY L

Fig. 21:  The mean and variance of Y , plotted at different values of c
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2.5 D Option Pricing

Financial  options are an interesting application  of censored distributions.  To illustrate, let
time  t = 0  denote  today,  let  8SHtL, t ¥ 0<  denote  the  price  of  a  stock  at  time  t,  and  let  ST

denote  the  stock  price  at  a  fixed  future  hexpiryN  date  T > 0.  A  European  call  option  is  a
financial asset that gives its owner the right (but not the obligation) to buy stock at time T
at  a  fixed price  k  (called the  strike price).  For  example,  if  you own an Apple  call  option
expiring  on 19 July with strike k = $100, it  means you have the right to buy one share  in
Apple Computer at a price of $100 on July 19. If, on July 19, the stock price ST  is greater
than k = $100, the value of your option on the expiry date is ST - k; however, if ST  is less
than $100, it would not be worthwhile to purchase at $100, and so your option would have
zero value. Thus, the value of a call option at expiry T is:

(2.34)VT =
loomnoo ST - k if ST > k

0 if ST § k

We  now  know  the  value  of  an  option  at  expiry!what  then  is  the  value  of  this  option
today,  at  t = 0,  prior  to  expiry?  At  t = 0,  the  current  stock  price  SH0L  is  always  known,
while  the  future  is  of  course  unknown.  That  is,  the  future  price  ST  is  a  random  variable
whose  pdf  f HsT L  is  assumed  known.  Then,  the  value  V = V H0L  of  the  option  at  t = 0  is
simply  the expected value of VT ,  discounted for the time value of money between expiryHt = TL and today Ht = 0L:

(2.35)V = VH0L = 1-r T  E@VT D
where r denotes the risk-free interest rate. This is the essence of option pricing, and we see
that it rests crucially on censoring the distribution of future stock prices, f HsT L.
�  Example 24:  BlackIScholes Option Pricing (via Censored Distributions)

The BlackIScholes (1973) option pricing model is now quite famous, as acknowledged by
the 1997  Nobel Memorial  Prize in economics.3 For  our purposes,  we just require  the pdf
of  future  stock  prices  f HsT L.  This,  in  turn,  requires  some  stochastic  calculus;  readers
unfamiliar  with  stochastic  calculus  can jump directly  to (2.38)  where  f HsTL  is stated,  and
proceed from there.

If  investors are risk  neutral, 4 and  stock prices follow a geometric  Brownian motion,
then

(2.36)(SÅÅÅÅÅÅÅÅÅÅS = r ( t + s ( z

with drift r and instantaneous standard deviation s, where z is a Wiener process. By ItoNs
Lemma, this can be expressed as the ordinary Brownian motion

(2.37)( logHSL = Jr - s2
ÅÅÅÅÅÅÅÅÅÅÅ2 N ( t + s ( z
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so  that  ( logHST L ~ NI Ir - s2
ÅÅÅÅÅÅÅÅ2 M T, s2  TM.  Expressing  ( logHST L  as  logHST L - logHSH0LL,  it

then follows that

(2.38)logHST L ~ NHa, b2 L      where   
loomnoo a = logHSH0LL + Jr - s2

ÅÅÅÅÅÅÅÅÅ2 N T  

b = s 
è!!!!T

That is, ST ~ LognormalHa, b2 L, with pdf f HsT L:
f =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sT b

è!!!!!!!
2 p

 ExpA-
HLog@sTD - aL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 b2
E;

domain@fD = 8sT, 0, �< && 8a 1 Reals, b > 0<;
The value of the option at expiry, VT, may be entered via (2.34) as:

VT = If@sT > k, sT - k, 0D;
while the value V = V H0L of a call option today is given by (2.35):

V = &-r T Expect@VT , fD
1
ÅÅÅÅ
2

"-r T

ikjjj-k ikjjj1 + ErfA a - Log@kD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 b

Ey{zzz + "a+ b2ÅÅÅÅÅÅ2
ikjjj1 + ErfA a + b2 - Log@kD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 b
Ey{zzzy{zzz

where a and b were defined in (2.38). This result is, in fact, identical to the BlackIScholes
solution, though our derivation here via expectations is quite different (and much simpler)
than the solution via partial differential  equations used by Black and Scholes. Substituting
in for a and b, and denoting todayNs stock price SH0L by p, we have:

Value = V ê. 9 a Ø Log@pD +
ikjjjr -

s2

ÅÅÅÅÅÅÅ
2

y{zzz T, b Ø s
è!!!!
T =;

For  example,  if  the  current  price  of  Apple  stock  is  p = SH0L = $104,  the  strike  price  is
k = $100, the interest rate is 5%, the volatility is 44% per annum (s = .44), and there are
66 days left to expiry (T = 66ÅÅÅÅÅÅÅÅÅ365 ), then the value today (in $) of the call option is: 

Value ê. 9p Ø 104, k Ø 100, r Ø .05, s Ø .44, T Ø
66

ÅÅÅÅÅÅÅÅÅÅ
365

=
10.2686

More generally, we can plot the value of our call option as a function of the current stock
price p, as shown in Fig. 22.
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Fig. 22:  Value of a call option as a function of todayNs stock price

As  p Ø 0,  we  become  certain  that  ST < k.  Referring  to  (2.34),  this  means  that  as  p Ø 0,
V Ø 0, as Fig. 22 shows. By contrast, as p Ø �, PHST > kL Ø 1, so we become certain that
ST > k,  and  thus  V Ø 1-r T  E@ST - kD .  The  latter  is  equal  to  p - 1-r T  k,  as  the  reader  can
verify with Expect@sT - k, fD  and then substituting  in for  a  and b. This explains  the
asymptotes in Fig. 22.

Many  interesting  comparative  static  calculations  are  now  easily  obtainable  with
Mathematica; for example, we can find the rate of change of option value with respect to
s as a symbolic entity with D[Value,s]//Simplify . !

2.6 Pseudo-Random Number Generation
This  section  discusses  different  ways  to  generate  pseudo-random  drawings  from a  given
distribution.  If  the  distribution  happens  to  be  included  in  MathematicaNs  Statistics
package, the easiest approach is often to use the Random[distribution] function included
in that  package  (§2.6 A). Of  course,  this  is not  a general  solution,  and  it breaks  down as
soon as one encounters a distribution that is not in that package.

In the remaining parts  of this section (§2.6 B I D), we discuss procedures that allow,
in principle,  any distribution  to be sampled.  We first  consider  the Inverse Method,  which
requires that both the cdf and inverse cdf can be computed, using either symbolic (§2.6 B)
or  numerical  (§2.6 C)  methods.  Finally,  §2.6 D  discusses  the  Rejection  Method,  where
neither  the  cdf  nor  the  inverse  cdf  is  required.  Random  number  generation  for  discrete
random variables is discussed in Chapter 3.

2.6 A MathematicaFs Statistics Package

The  Mathematica  statistics  packages,  ContinuousDistributions`  and
NormalDistribution`, provide built-in pseudo-random number generation for well-
known  distributions  such  as  the  Normal,  Gamma,  and  Cauchy.  If  we  want  to  generate
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pseudo-random numbers from one of these well-known distributions, the simplest solution
is to use these packages. They can be loaded as follows: 

<< Statistics`

Suppose we want to generate pseudo-random drawings from a GammaHa, bL distribution:

f =
xa-1  &-xêb
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@aD ba ; domain@fD = 8x, 0, �< && 8a > 0, b > 0<;
If a = 2 and b = 3, a single pseudo-random drawing is obtained as follows:

dist = GammaDistribution@2, 3D ; Random@distD
8.61505

while 10000 pseudo-random values can be generated with:

data = RandomArray@dist, 10000D;
The  mathStatica  function,  FrequencyPlot,  can  be  used  to  compare  this  hempiricalN
data with the true pdf f HxL:

FrequencyPlot@data, f ê. 8a Ø 2, b Ø 3<D;

0 5 10 15 20 25 30
x

0

0.02

0.04

0.06

0.08

0.1

0.12

f

Fig. 23:  The empirical pdf (!) and true pdf (I  I  I)

While  it  is  certainly  convenient  to  have  pre-written  code  for  special  well-known
distributions,  this  approach  must,  of  course,  break  down  as  soon  as  we  consider  a
distribution that is not in the package. Thus, more general methods are needed.
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2.6 B Inverse Method (Symbolic)

Let random variable X have pdf f HxL, cdf p = FHxL and inverse cdf x = F-1 HpL, and let u be
a pseudo-random drawing from UniformH0, 1L. Then a pseudo-random drawing from f HxL
is given by

(2.39)x = F-1 HuL 
In order for the Inverse Method  to work efficiently,  the inverse function F-1 H ÿ L should be
computationally tractable. Here is an example with the Levy distribution, with pdf f HxL:

f =
&- 1ÅÅÅÅÅÅÅ2 x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p x3ê2 ; domain@fD = 8x, 0, �< ;

The cdf FHxL is given by:

F = Prob@x, fD
1 - ErfA 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 è!!!x E
while the inverse cdf is:

inv = Solve@u ã F, xD êê Flatten

D Solve::ifun :  Inverse functions are being
used by Solve, so some solutions may not be found.9x Ø

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 InverseErf@0, 1 - uD2 =

When  u = Random@D,  this  rule  generates  a  pseudo-random  Levy  drawing  x.  More
generally,  if  the  inverse  yields  more  than  one  possible  solution,  we would  have  to  select
the  appropriate  solution  before  proceeding.  We  now  generate  10000  pseudo-random
numbers from the Levy pdf, by replacing u with Random@D:

data = TableA
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 InverseErf@0, 1 - Random@DD2 , 810000<E; êê Timing

82.36 Second, Null<
It  is  always  a  good  idea  to  check  the  data  set  before  continuing.  The output  here  should
only consist of positive real numbers. To check, here are the last 10 values:

Take@data, -10D
86.48433, 0.229415, 3.70733, 4.53735, 0.356657,
0.646354, 1.09913, 0.443604, 1.17306, 0.532637<
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These numbers seem fine. We use the mathStatica function FrequencyPlot to inspect
fit, and superimpose the parent density f HxL on top:

FrequencyPlot@data, 80, 10, .1<, fD;
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Fig. 24:  The empirical pdf (!) and true pdf (I  I  I)

Some caveats:  The Inverse  Method can  only work  if  we can  determine both  the cdf
and  its  inverse.  Inverse  functions  are  tricky,  and  Mathematica  may  occasionally
experience  some  difficulty  in  this  regard.  Also,  since  one  ultimately  has  to  work  with  a
numerical  density  (i.e.  numerical  parameter  values)  when  generating  pseudo-random
numbers, it is often best to specify parameter values at the very start! this makes it easier
to calculate both the cdf and the inverse cdf.

2.6 C Inverse Method (Numerical)

If  it is difficult  or impossible  to find the inverse  cdf symbolically,  we can resort  to doing
so numerically.  To illustrate, let random variable X  have a half-Halo distribution with pdf
f HxL:

f =
2
ÅÅÅÅ
p

 
"#########################
1 - Hx - 2L2 ; domain@fD = 8x, 1, 3<;

with cdf FHxL:
F = Prob@x, fD
H-2 + xL è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!-H-3 + xL H-1 + xL + ArcCos@2 - xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p
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Mathematica  cannot  invert  this  cdf  symbolically;  that  is,  Solve[uãF,x]  fails.
Nevertheless,  we  can  derive  the  inverse  cdf  using  numerical  methods.  We  do  so  by
evaluating  HF, xL  at a  finite number  of different  values of x,  and then use interpolation to
fill in the gaps in between these known points. How then do we decide at which values of
x  we should  evaluate  HF, xL? This is  the same type of problem that MathematicaNs Plot
function  has  to solve each  time it  makes a  plot.  So,  following Abbott  (1996),  we use the
Plot  function  to  automatically  select  the  values  of  x  at  which  HFHxL, xL  is  to  be
constructed,  and  then  record  these  values  in  a  list  called  lis.  The  larger  the  number  of
PlotPoints, the more accurate will be the end result: 

lis = 8<;
Plot@ Hss = F; AppendTo@lis, 8ss, x<D; ssL, 8x, 1, 3<,

PlotPoints Ø 2000,
PlotRange Ø All, AxesLabel Ø 8"x", "F"<D;
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Fig. 25:  The cdf FHxL plotted as a function of x

MathematicaNs  Interpolation  function  is  now  used  to  fill  in  the  gaps  between  the
chosen  points.  We  shall  take  the  Union  of  lis  so  as  to  eliminate  duplicate  values  that
the  Plot  function  can  sometimes  generate.  Here,  then,  is  our  numerical  inverse  cdf
function:

InverseCDF = Interpolation@Union@lisDD
InterpolatingFunction@881.89946 µ 10-14, 1.<<, <>D

Here are 60000 pseudo-random drawings from the half-Halo distribution:

data = Table@ InverseCDF@ Random@D D, 860000<D;êê Timing

81.1 Second, Null<
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Figure 26 compares this pseudo-random data with the true pdf f HxL:
FrequencyPlot@data, 81, 3, .02<, fD;
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Fig. 26:  The empirical pdf (!) and true half-Halo pdf (I  I  I)

2.6 D Rejection Method

Our objective is to generate pseudo-random numbers from some pdf f HxL. Sometimes, the
Inverse Method may fail: typically, this happens because the cdf or the inverse cdf has an
intractable  functional  form.  In  such  cases,  the  Rejection  Method can  be very helpful! it
provides  a  way  to  generate  pseudo-random  numbers  from  f HxL  (which  we  do  not  know
how to do) by generating pseudo-random numbers from a density gHxL (which we do know
how to generate). Density gHxL should have the following properties:

u gHxL is defined over the same domain as f HxL, and

u there exists a constant c > 0 such that f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅgHxL § c for all x. That is, c = supJ f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅgHxL N.
Let  xg  denote  a  pseudo-random  drawing  from  gHxL,  and  let  u  denote  a  pseudo-random
drawing from the UnifomH0, 1L distribution. Then, the Rejection Method generates pseudo-
random drawings from f HxL in three steps:

The Rejection MethodH1L Generate xg and u.H2L If u § 1ÅÅÅÅÅc  
f Hxg LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅgHxg L , accept xg  as a random selection from f HxL.H3L Else, return to step H1L.
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To illustrate, let f HxL denote the pdf of a BirnbaumISaunders distribution, with parameters
a and b. This distribution has been used to represent the lifetime of components. We wish
to generate pseudo-random drawings from f HxL when say a = 1ÅÅÅÅ2 , b = 4:

f =
&- Hx-bL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 a2 b x Hx + bL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 a

è!!!!!!!!!!!!
2 p b x3ê2 ê. 9a Ø

1
ÅÅÅÅ
2
, b Ø 4=;

domain@fD = 8x, 0, �< && 8a > 0, b > 0<;
The  Inverse  Method  will  be  of  little  help  to  us  here,  because  Mathematica  Version  4
cannot find the cdf of this distribution. Instead,  we try the Rejection Method. We start by
choosing  a  density  gHxL.  Suitable  choices  for  gHxL  might  include  the  Lognormal  or  the
Levy  (§2.6  B)  or  the  Chi-squaredHnL,  because  each  of  these  distributions  has  a  similar
shape to f HxL; this is easy to verify with a plot. We use Chi-squaredHnL here, with n = 4:

g =
xnê2-1  &-xê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2nê2  G@ nÅÅÅ

2
D ê. n Ø 4; domain@gD = 8x, 0, �<;

Note  that  gHxL  is  defined  over  the  same  domain  as  f HxL.  Moreover,  we  can  easily  check
whether c = supJ f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅgHxL N exists, by doing a quick plot of f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅgHxL .

5 10 15 20 25 30
x

0.2
0.4
0.6
0.8

1
1.2
1.4

f êg

Fig. 27:  f HxLÅÅÅÅÅÅÅÅÅÅÅÅgHxL  plotted as a function of x

This  suggests that c is roughly equal to 1.45. We can find the value of c  more accurately
using numerical methods:

c = FindMaximumA f
ÅÅÅÅ
g
, 8x, 3, 6<EP1T

1.4739

We  can  easily  generate  pseudo-random  drawings  xg  from  gHxL  using  MathematicaNs
Statistics package:

<< Statistics`

dist = ChiSquareDistribution@4D; xg = Random@distD
18.8847
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By  step  (2)  of  the  Rejection  Method,  we  accept  xg  as  a  random  selection  from  f HxL  if
u § QHxg L, where QHxg L = 1ÅÅÅÅÅc  

f Hxg LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅgHxg L . We enter QHxL into Mathematica as follows: 

Q@x_D =
1
ÅÅÅÅ
c

 
f

ÅÅÅÅÅÅ
g

êê Simplify

29.5562 "-8êx H4 + xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x5ê2
Steps (1) I (3) can now be modelled in just one line, by setting up a recursive function. In
the  following  input,  note  how  xg  (a  pseudo-random  Chi-squared  drawing)  is  used  to
generate xf  (a pseudo-random BirnbaumISaunders drawing): 

xf :=Hxg = Random@distD; u = Random@D; If@u § Q@xgD, xg, xfDL
So, let us try it out k here are 10000 pseudo-random BirnbaumISaunders drawings:

data = Table@xf, 810000<D;
Check the fit:

FrequencyPlot@data, fD;
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Fig. 28:  The empirical pdf (!) and true pdf (I  I  I)

The Rejection  Method  is  most  useful  when  working  with densities  f HxL  that  are  not
covered by MathematicaNs Statistics package, and for which the symbolic Inverse Method
does not work. When using the Rejection Method, density gHxL should be chosen so that it
is  easy  to  generate  from,  and  is  as  similar  in  shape  to  f HxL  as  possible.  It  is  also  worth
checking that, at each stage of the process, output is numerical.
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2.7 Exercises
1. Let continuous random variable X  have a semi-Circular (half-Halo)  distribution with

pdf  f HxL = 2 
è!!!!!!!!!!!!!1 - x2 ë p  and  domain  of  support  x & H-1, 1L.  Plot  the  density  f HxL.

Find the cdf PHX § xL and plot it. Find the mean and the variance of X.

2. Azzalini  (1985)  showed  that  if  random  variable  X  has  a  pdf  f HxL  that  is  symmetric
about  zero,  with  cdf  FHxL,  then  2 f HxL FHl xL  is  also  a  pdf,  for  parameter  l & !.  In
particular,  when X  is NH0, 1L,  the density  gHxL = 2 f HxL FHl xL is known as AzzaliniNs
skew-Normal  distribution.  Find  gHxL.  Plot  density  gHxL  when  l = 0, 1 and 2. Find  the
mean and variance. Find upper and lower bounds on the variance.

3. Let X ~ LognormalHm, sL. Find the r th  raw moment, the cdf, p th  quantile, and mode. 

4. Let  f HxL  denote  a  standard  Normal  pdf;  further,  let  pdf  gHxL = H2 pL-1  H1 + cosHxLL,
with  domain  of  support  x & HIp, pL.  Compare  f HxL  with  gHxL  by  plotting  both  on  a
diagram.  From  the  plot,  which  distribution  has  greater  kurtosis?  Verify  your  choice
by calculating PearsonNs measure of kurtosis.

5. Find the y th  quantile for a standard Triangular distribution. Hence, find the median. 

6. Let X ~ InverseGaussianHm, sL with pdf f HxL.  Find the first 3 negative moments  (i.e.
E@X-1D, E@X-2D, E@X-3D). Find the mgf, if it exists.

7. Let  X  have  pdf  f HxL = Sech@xD êp,  x & !,  which  is  known  as  the  Hyperbolic  Secant
distribution. Derive the cf, and then the first 12 raw moments. Why are the odd-order
moments zero?

8. Find the characteristic function of X2 , if X ~ NHm, s2 L.
9. Find the cdf of the stable distribution SH 2ÅÅÅÅ3 , -1L as an exact symbolic entity.

10. The distribution of IQ in Class E2 at Rondebosch Boys High School is X ~ NHm, s2 L.
Mr  Broster,  the  class  teacher,  decides  to  break  the  class  into  two streams:  Stream  1
for those with IQ > w, and Stream 2 for those with IQ § w. 
(i) Find the average (expected) IQ in each stream, for any chosen value of w.
(ii) If m = 100 and s = 16, plot (on one diagram) the average IQ in each stream as a

function of w.
(iii) If m = 100 and s = 16, how should Mr Broster choose w if he wants: 

(a) the same number of students in each stream? 
(b) the average IQ of Stream 1 to be twice the average of Stream 2?
For each case (a)I(b), find the average IQ in each stream.

11. Apple Computer is planning to host a live webcast of the next Macworld Conference.
Let random variable X  denote the number of people (measured in thousands) wanting
to watch  the live  webcast,  with pdf f HxL = 1ÅÅÅÅÅÅÅÅÅ144 1-xê12 x,  for x > 0. Find  the expected
number of people  who want  to watch the webcast.  If AppleNs  web server can handle
at most  c  simultaneous  live streaming connections  (measured in thousands),  find the
expected number of people who will be able to watch the webcast as a function of c.
Plot the solution as a function of c.

12. Generate  20000  pseudo-random  drawings  from  AzzaliniNs  Hl = 1L  skew-Normal
distribution (see Exercise 2), using the exact inverse method (symbolic).
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Chapter 3
Discrete Random Variables

3.1 Introduction
In  this  chapter,  attention turns  to  random variables  induced  from experiments  defined  on
countable, or enumerable, sample spaces. Such random variables are termed discrete; their
values can be mapped in one-to-one correspondence with the set of integers. For example,
the experiment  of tossing a coin has two possible  outcomes,  a head and a tail,  which can
be  mapped  to  0  and  1,  respectively.  Accordingly,  random  variable  X,  taking  values
x ! 80, 1<, represents the experiment and is discrete.

The distinction between discrete and continuous random variables is made clearer by
considering  the  cumulative  distribution  function  (cdf).  For  a  random variable  X  (discrete
or continuous), its cdf FHxL, as a function of x, is defined as

(3.1)FHxL = PHX § xL, for all x ! !.

Now inspect the following cdf plots given in Fig. 1.

-1 1 2 3 4 5
x

1

Discrete

-1 1 2 3 4 5
x

1

Continuous

Fig. 1:  Discrete and Continuous cumulative distribution functions

The left-hand panel depicts the cdf of a discrete random variable. It appears in the form of
a  step  function.  By  contrast,  the  right-hand  panel  shows  the  cdf  of  a  continuous  random
variable. Its cdf is everywhere continuous.



È List Form and Function Form

The discrete random variable X  depicted in Fig. 1 takes values 0, 1, 2, 3, with probability
0.48,  0.24,  0.16,  0.12,  respectively.  We  can  represent  these  details  about  X  in two ways,
namely List Form and Function Form. Table 1 gives List Form.

PHX = xL : 0.48 0.24 0.16 0.12
x : 0 1 2 3

Table 1:  List Form

We enter List Form as:

f1 = 80.48, 0.24, 0.16, 0.12<;
domain@f1D = 8x, 80, 1, 2, 3<< && 8Discrete<;

Table 2 gives Function Form.

PHX = xL = 12ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ25 Hx + 1L ; x ! 80, 1, 2, 3<
Table 2:  Function Form

We enter Function Form as:

f2 =
12

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
25 Hx + 1L ;

domain@f2D = 8x, 0, 3< && 8Discrete<;
Both List Form (f1 ) and Function Form (f2 ) express the same facts about X, and both are
termed  the  probability  mass  function  (pmf)  of  X.  Notice  especially  the  condition
{Discrete}  added  to  the  domain  statements.  This  is  the  device  used  to  tell
mathStatica  that  X  is  discrete.  Importantly,  appending  the  discreteness  flag  is  not

optional; if it is omitted, mathStatica will interpret the random variable as continuous.

The suite of mathStatica functions can operate on a pmf whether it is in List Form or
Function Form!as we shall see repeatedly throughout this chapter. Here, for example, is
a plot of the pmf of X from the List Form:
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PlotDensity@f1D;

0 1 2 3
x
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0.2

0.3

0.4

f1

Fig. 2:  The pmf of X

As a further illustration, here is the mean of X, using f2 :

Expect@x, f2D
23
ÅÅÅÅÅÅÅ
25

In general, the expectation of a function uHXL, where X  is a discrete random variable,
is defined as

(3.2)E@uHXLD = 
x

uHxL PHX = xL
where summation is over all values x of X. For example, here is E@cosHXLD using f1 :

Expect@Cos@xD, f1D
0.42429

§3.2 examines aspects of probability through the experiment of XthrowingY a die. §3.3
details  the  more  popular  discrete  distributions  encountered  in  practice  (see  the  range
provided  in  mathStaticaYs  Discrete  palette).  Mixture  distributions  are  examined  in  §3.4,
for  they  provide  a  means  to  generate  many  further  distributions.  Finally,  §3.5  discusses
pseudo-random number generation of discrete random variables.

There  exist  many  fine  references  on  discrete  random  variables.  In  particular,  Fraser
(1958)  and  Hogg  and  Craig  (1995)  provide  introductory  material,  while  Feller  (1968,
1971) and Johnson et al. (1993) provide advanced treatments.
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3.2 Probability: ;Throwing? a Die
The study of probability  is often motivated  by experiments  such as coin tossing,  drawing
balls  from an  urn,  and  throwing  dice.  Many fascinating  problems  have  been posed using
these  simple,  easily  replicable  physical  devices.  For  example,  Ellsberg  (1961)  used  urn
drawings  to  show  that  there  are  (at  least)  two  different  types  of  uncertainty:  one  can  be
described  by  (the  usual  concept  of)  probability,  the  other  cannot  (ambiguity).  More
recently,  Walley (1991,  1996)  illustrated  his controversial  notion of imprecise probability
by  using  drawings  from  a  bag  of  marbles.  Probability  also  attracts  widespread  popular
interest:  it  can  be  used  to  analyse  games  of  chance,  and  it  can  help  us  analyse  many
intriguing paradoxes.  For further  discussion of many popular problems in probability,  see
Mosteller  (1987).  For  discussion  of  probability  theory,  see,  for  example,  Billingsley
(1995) and Feller (1968, 1971).

In  this,  and  the  next  two  sections,  we  examine  discrete  random  variables  whose
domain of support  is the set (or  subset) of the non-negative  integers.  For discrete random
variables  of  this  type,  there  exist  generating  functions  that  can  be  useful  for  analysing  a
variableYs properties. For a discrete random variable X  taking non-negative integer values,
the probability generating function (pgf) is defined as

(3.3)PHtL = EAtX E = 
x=0

�
tx PHX = xL

which  is  a  function  of  dummy  variable  t;  it  exists  for  any  choice  of  t § 1.  The  pgf  is
similar  to  the  moment  generating  function  (mgf);  indeed,  subject  to  existence  conditions
(see  §2.4 B),  the  mgf MHtL = E@expHt XLD  is  equivalent  to  PHexpHtLL.  Likewise,  PHexpHÂ tLL
yields the characteristic function (cf). The pgf generates probabilities via the relation,

(3.4)PHX = xL = 1ÅÅÅÅÅÅÅÅ
x!  +x PHtLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ+ tx

)))))))))) t = 0
for x ! 80, 1, 2, b<.

�  Example 1:  Throwing a Die

Consider  the  standard  six-sided  die  with  faces  labelled  1  through  6.  If  X  denotes  the
upmost face resulting from throwing the die onto a flat surface, such as a table-top, then X
may be thought of as a discrete random variable with pmf given in Table 3.

PHX = xL : 1ÅÅÅÅ6
1ÅÅÅÅ6

1ÅÅÅÅ6
1ÅÅÅÅ6

1ÅÅÅÅ6
1ÅÅÅÅ6

x : 1 2 3 4 5 6

Table 3:  The pmf of X

This pmf presupposes that the die is fair. The pmf of X may be entered in either List Form:

f = TableA 1
ÅÅÅÅ
6
, 86<E;

domain@fD = 8x, Range@6D< && 8Discrete<;

84 CHAPTER  3 §3.2 



b or Function Form:

g =
1
ÅÅÅÅ
6
;

domain@gD = 8x, 1, 6< && 8Discrete<;
The pgf  of  X  may be derived  from either  representation  of the  pmf;  for  example,  for  the
List Form representation:

pgf = Expect@tx, fD
1
ÅÅÅÅ
6
t H1 + t + t2 + t3 + t4 + t5L

The probabilities can be recovered from the pgf using (3.4):

TableA 1
ÅÅÅÅÅÅÅÅ
x!

 D@pgf, 8t, x<D, 8x, 1, 6<E ê. t Ø 0

9 1
ÅÅÅÅ
6
, 1

ÅÅÅÅ
6
, 1

ÅÅÅÅ
6
, 1

ÅÅÅÅ
6
, 1

ÅÅÅÅ
6
, 1

ÅÅÅÅ
6
=

�  Example 2:  The Sum of Two Die Rolls

Experiments  involving  more  than one  die have often been contemplated.  For example, in
1693,  Samuel  Pepys  wrote  to  Isaac  Newton  seeking  an  answer  to  a  die  roll  experiment,
apparently  posed  by  a  Mr  Smith.  SmithYs  question  concerned  the  chances  of  throwing  a
minimum  number  of  sixes  with  multiple  dice:  at  least  1  six  from  a  throw  of  a  box
containing 6 dice, at least 2 sixes from another box containing 12 dice, and 3 or more sixes
from a third box filled with 18 dice. We leave this problem as an exercise for the reader to
solve  (see  §3.3 B  for  some  clues).  The  correspondence  between  Newton  and  Pepys,
including NewtonYs solution, is given in Schell (1960).

The  experiment  we  shall  pose  is  the  sum  S  obtained  from tossing  two  fair  dice,  X1
and X2 .  The outcomes of X1  and X2  are independent,  and their distribution is identical to
that of X given in Example 1. We wish to derive the pmf of S = X1 + X2 . In order to do so,
consider its pgf:

PS HtL = EAtS E = EAtX1 + X2 E.
By  independence  E@tX1 + X2 D = E@tX1 D E@tX2 D  and  by  identicality  E@tX1 D = E@tX2 D = E@tX D,
so PS HtL = E@tX D2 . In Mathematica, the pgf of S is simply:

pgfS = pgf
2

1
ÅÅÅÅÅÅÅ
36

t2 H1 + t + t2 + t3 + t4 + t5L2
Now the domain of support of S is the integers from 2 to 12, so by (3.4) the pmf of S, say
hHsL, in List Form, is:
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h = TableA 1
ÅÅÅÅÅÅÅÅ
s!

 D@pgfS, 8t, s<D, 8s, 2, 12<E ê. t Ø 0

9 1
ÅÅÅÅÅÅÅ
36

, 1
ÅÅÅÅÅÅÅ
18

, 1
ÅÅÅÅÅÅÅ
12

, 1
ÅÅÅÅ
9
, 5

ÅÅÅÅÅÅÅ
36

, 1
ÅÅÅÅ
6
, 5

ÅÅÅÅÅÅÅ
36

, 1
ÅÅÅÅ
9
, 1

ÅÅÅÅÅÅÅ
12

, 1
ÅÅÅÅÅÅÅ
18

, 1
ÅÅÅÅÅÅÅ
36

=
domain@hD = 8s, Range@2, 12D< && 8Discrete<
8s, 82, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12<< && 8Discrete<

�  Example 3:  The Sum of Two Unfair Dice

Up until now, any die we have XthrownY has been fair or, rather, assumed to be fair. It can
be fun to consider the impact on an experiment when an unfair die is used! With an unfair
die,  the  algebra  of  the  experiment  can  rapidly  become  messy,  but  it  is  in  such  situations
that  Mathematica  typically  excels.  There  are  two well-known  methods  of  die corruption:
loading  it  (attaching  a  weight  to  the  inside  of  a  face)  and  shaving  it  (slicing  a  thin layer
from  a face).  In  this  example,  we  contemplate  a  shaved  die.  A shaved  die is  no longer  a
cube,  and  its  total  surface  area  is  less  than  that  of  a  fair  die.  Shaving  upsets  the  relative
equality  in  surface  area  of  the  faces.  The  shaved  face,  along  with  its  opposing  face,  will
have  relatively  more  surface  area  than  all  the  other  faces.  Consider,  for  instance,  a  die
whose  1-face  has  been shaved.  Then  both  the 1-face  and  the 6-face  (opposing  faces  of  a
die  sum  to  7)  experience  no  change  in  surface  area,  whereas  the  surface  area  of  all  the
other faces is reduced.1 Let us denote the increase in the probability of a 1 or 6 by d. Then
the probability of each of 2, 3, 4 and 5 must decrease by d ê2 H0 § d < 1 ê3L. The List Form
pmf of X, a 1-face shaved die, is thus:

f = 9 1
ÅÅÅÅ
6

+ d,
1
ÅÅÅÅ
6

-
d
ÅÅÅÅ
2
,

1
ÅÅÅÅ
6

-
d
ÅÅÅÅ
2
,

1
ÅÅÅÅ
6

-
d
ÅÅÅÅ
2
,

1
ÅÅÅÅ
6

-
d
ÅÅÅÅ
2
,

1
ÅÅÅÅ
6

+ d=;
domain@fD = 8x, Range@6D< && 8Discrete<;

We now repeat the experiment given in Example 2, only this time we use dice which
are 1-face shaved. We may derive the List Form pmf of S exactly as before:

pgf = Expect@tx, fD; pgfS = pgf
2
;

h = TableA 1
ÅÅÅÅÅÅÅÅ
s!

 D@pgfS, 8t, s<D, 8s, 2, 12<E ê. t Ø 0 êê
Simplify

9 1
ÅÅÅÅÅÅÅ
36

H1 + 6 dL2, 1
ÅÅÅÅÅÅÅ
18

+
d
ÅÅÅÅ
6

- d2, 1
ÅÅÅÅÅÅÅ
12

-
3 d2
ÅÅÅÅÅÅÅÅÅÅÅ
4

, 1
ÅÅÅÅÅÅÅ
18

H2 - 3 d - 9 d2L,
1

ÅÅÅÅÅÅÅ
36

H5 - 12 d - 9 d2L, 1
ÅÅÅÅ
6

+ 3 d2, 1
ÅÅÅÅÅÅÅ
36

H5 - 12 d - 9 d2L,
1

ÅÅÅÅÅÅÅ
18

H2 - 3 d - 9 d2L, 1
ÅÅÅÅÅÅÅ
12

-
3 d2
ÅÅÅÅÅÅÅÅÅÅÅ
4

, 1
ÅÅÅÅÅÅÅ
18

+
d
ÅÅÅÅ
6

- d2, 1
ÅÅÅÅÅÅÅ
36

H1 + 6 dL2=
domain@hD = 8s, Range@2, 12D< && 8Discrete<;
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Figure  3  depicts  the  pmf  of  S  using  both  fair  and  unfair  dice.  Both  distributions  are
symmetric about their mean, 7, with a greater probability with shaved 1-face dice of sums
of 2, 7 and 12. Moreover, as the distribution now appears fatter-tailed under shaved 1-face
dice,  we  would  expect  the  variability  of  its  distribution  to  increase!a  fact  that  can  be
verified by executing Var@s, h ê. d Ø 80, 0.1<D.

PlotDensity@h ê. d Ø 80, 0.1<D;
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Fig. 3:  The pmf of S for fair dice (Ë) and 1-face shaved dice (Ú)  �

�  Example 4:  The Game of Craps

The game of craps is a popular casino game. It involves a player throwing two dice, one or
more  times,  until  either  a  win or  a  loss  occurs.  The  player  wins  on  the  first  throw  if  the
dice sum is 7 or 11. The player loses on the first throw if a sum of either 2, 3 or 12 occurs.
If on the first throw the player neither  wins nor loses, then the sum of the dice is referred
to as the point. The game proceeds with the player throwing the dice until either the point
occurs, in which case the player wins, or a sum of 7 occurs, in which case the player loses.
When  the  dice  are  fair,  it  can  be  shown  that  the  probability  of  the  player  winning  is
244 ê495 > 0.49293.

It  is  an  interesting  task  to  verify  the  probability  of  winning  the  game  with
Mathematica.  However,  for  the  purposes  of  this  example,  we  use  simulation  methods  to
estimate  the  probability  of  winning.  The  following  inputs  combine  to  simulate  the
outcome  of  one  game! returning  1  for  a  win,  and  0  for  a  loss.  First,  here  is  a  simple
function that simulates the roll of a fair die:

TT := Random@Integer, 81, 6<D
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Next  is a  function that simulates  the first  throw  of the game, deciding whether  to stop  or
simulate further throws:

Game := Hs = TT + TT;

Which@s ã 7 »» s ã 11, 1,

�               s ã 2 »» s ã 3 »» s ã 12, 0,

True, MoreThrows@sDDL
Finally, if more than one throw is needed to complete the game:

MoreThrows@p_D := Hs = TT + TT;

Which@s ã p, 1,

s ã 7, 0,

True, MoreThrows@pDDL
Notice  that  the  MoreThrows  function  calls  itself  if  a  win  or  loss  does  not  occur.  In
practice  this will not result  in an infinite recurrence because the probability that the game
continues  forever  is  zero.  Let  our  estimator  be  the  proportion  of  wins  across  a  large
number of games. Here is a simulated estimate of the probability of winning a game:

SampleMean@ Table@Game, 8100000<D D êê N

0.49162

As a further  illustration of simulation, suppose that a gambler starting with an initial
fortune  of  $5  repeatedly  wagers  $1  against  an  infinitely  rich  opponent! the
House!until  his  fortune  is  lost.  Assuming  that  a  win  pays  1  to  1,  the  progress  of  his
fortune from one game to the next can be represented by the function:

fortune@x_D := x - 1 + 2 Game

For example, here is one particular sequence of 10 games:

NestList@fortune, 5, 10D
85, 4, 5, 4, 3, 4, 5, 6, 5, 4, 3<

After  these  games,  his  fortune  has  dropped to $3, but  as he is not yet  ruined,  he can still
carry  on  gaming!  Now  suppose  we  wish  to  determine  how  many  games  the  player  can
expect  to  play until  ruin.  To solve  this,  we  take  as  our  estimator  the  average  length  of  a
large  number  of  matches.  Here  we simulate  just  100  matches,  and  measure  the  length  of
each match:

matchLength = Table@
NestWhileList@fortune, 5, PositiveD êê Length, 8100<D - 1

84059, 7, 37, 3193, 5, 5, 171, 45, 35, 15, 61, 573, 15, 125, 39, 67, 33,
13, 73, 11, 287, 27, 89, 49, 13, 3419, 2213, 4081, 11, 89, 697, 127,
179, 125, 33, 31, 9, 59, 973, 51, 5, 53, 613, 13, 13, 19, 19, 105, 53,
29, 163, 561, 107, 11, 25, 5, 435, 35, 7, 21, 27, 33, 19, 147, 61, 339,
101, 53, 239, 51, 23, 23, 403, 439, 6327, 7, 85, 5, 35, 107, 125, 49,
83, 33, 17, 439, 29, 15, 49, 9, 103, 13, 35, 43, 107, 145, 9, 45, 27, 81<
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Then our estimate is:

SampleMean@matchLengthD êê N

334.16

In  fact,  the  simulator  estimator  has  performed  reasonably  well  in  this  small  trial,  for  the
exact solution to the expected number of games until ruin can be shown to equal:

5 í J 251
ÅÅÅÅÅÅÅÅÅÅ
495

-
244
ÅÅÅÅÅÅÅÅÅÅ
495

N êê N

353.571

For details on the gamblerYs ruin problem see, for example, Feller (1968, Chapter 14). %

3.3 Common Discrete Distributions
This  section  presents  a  series  of  discrete  distributions  frequently  applied  in  statistical
practice:  the  Bernoulli,  Binomial,  Poisson,  Geometric,  Negative  Binomial,  and
Hypergeometric  distributions.  Each  distribution  can  be  input  into  Mathematica  with  the
mathStatica Discrete palette. The domain of support for all of these distributions is the set
(or subset) of non-negative integers.

3.3 A The Bernoulli Distribution
The  Bernoulli  distribution  (named  for  Jacques  Bernoulli,  1654h1705)  is  a  fundamental
building  block  in  statistics.  A  Bernoulli  distributed  random  variable  has  a  two-point
support, 0 and 1, with probability p that it takes the value 1, and probability 1 - p that it is
zero-valued.  Experiments  with  binary  outcomes  induce  a  Bernoulli  distributed  random
variable;  for  example,  the  ubiquitous  coin  toss  can  be  coded  0 = tail  and  1 = head,  with
probability one-half Hp = 1ÅÅÅÅ2 L assigned to each outcome if the coin is fair.

If  X  is  a  Bernoulli  distributed  random  variable,  its  pmf  is  given  by  PHX = xL =
px H1 - pL1-x ,  where  x ! 80, 1<,  and  parameter  p  is  such  that  0 < p < 1;  p  is  often  termed
the success probability. From mathStaticaYs Discrete palette:

f = p
x  H1 - pL1-x

;

domain@fD = 8x, 0, 1< && 80 < p < 1< && 8Discrete<;
For example, the mean of X is:

Expect@x, fD
p

Although  simple  in  structure,  the  Bernoulli  distribution  forms  the  backbone  of  many
important statistical models encountered in practice.
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�  Example 5:  A Logit Model for the Bernoulli Response Probability

Suppose that sick patients are given differing amounts of a curative drug, and they respond
to treatment  after a fixed period of time as either 1 = cured or 0 = sick. Assume response
X ~ BernoulliHpL. Let  y  denote the amount of the drug given to a patient.  Presumably the
probability  p  that  a  patient  is  cured  depends  on  y,  all  other  factors  held  fixed.  This
probability is assumed to be governed, or modelled, by the logit relation: 

p =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + +-Ha + b yL ;

Here,  a ! !  and  b ! !  are  unknown  parameters  whose  values  we  wish  to  deduce  or
estimate.  This will enable us to answer, for example, the following type of question: iIf a
patient  receives  a  dose  y* ,  what  is  his  chance  of  cure?k.  To  illustrate,  here  is  a  set  of
artificial data on n = 20 patients:

x = 0 : 7 17 14 3 15 19 11 6 20 12
x = 1 : 46 33 19 32 43 34 51 16 35 30

Table 4:  Dosage given (artificial data)

At  the  end  of  the  treatment,  10  patients  responded  0 = sick  (the  top  row),  while  the
remaining  10  patients  were  cured  (the  bottom  row).  The  dosage  y  that  each  patient
received appears in the body of the table. We may enter this data as follows:

dose = 8 7, 17, 14, 3, 15, 19, 11, 6, 20, 12,

46, 33, 19, 32, 43, 34, 51, 16, 35, 30<;
response = 8 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1<;
The observed log-likelihood function is (see Chapter 11 and Chapter 12 for further details):

obslogL = Log@Times üü Hf ê. 8y Ø dose, x Ø response<LD;
We use FindMaximum to find the maximum of the log-likelihood with respect to values
for the unknown parameters:

sol = FindMaximum@obslogL, 8a, 0<, 8b, 0<DP2T
8a Ø -7.47042, b Ø 0.372755<

Given the data, the parameters of the model (a and b) have been estimated at the indicated
values.  The fitted  model for  the probability p  of a cure  as a function of dosage level y  is
given by:
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p ê. sol

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + (7.47042-0.372755 y

The fitted p (the smooth curve) along with the data (the circled points) are plotted in Fig. 4.
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Fig. 4:  Data and fitted p

Evidently, the fitted curve shows that if a patient receives a dosage of 20 units of the drug,
then they have almost a 50% chance of cure (execute Solve[(p/.sol)ã0.5,y]). Of
course,  room  for  error  must  exist  when  making  a  statement  such  as  this,  for  we  do  not
know the true values of the parameters a and b, nor whether the logistic formulation is the
correct functional form.

Clear@pD
3.3 B The Binomial Distribution
Let  X1 , X2 , b, Xn  be  n  mutually  independent  and  identically  distributed  BernoulliHpL
random  variables.  The  discrete  random  variable  formed  as  the  sum  X = i=1

n Xi  is
distributed as a Binomial random variable with index n and success probability p, written
X ~ BinomialHn, pL;  the  domain  of  support  of  X  is  the  integers  H0, 1, 2, b, nL.  The  pmf
and its support may be entered directly from mathStaticaYs Discrete palette:

f = Binomial@n, xD px H1 - pLn-x
;

domain@fD = 8x, 0, n< &&80 < p < 1, n > 0, n 0 Integers< && 8Discrete<;
The Binomial derives its name from the expansion of Hp + qLn , where q = 1 - p. Here

is the graph of the pmf, with p fixed at 0.4 and the index n taking values 10 (circles) and
20 (triangles):
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PlotDensity@f ê. 8p Ø 0.4, n Ø 810, 20<<D;
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Fig. 5:  Probability mass functions of X: n = 10, p = 0.4 (Ë); n = 20, p = 0.4 (Ú)

The Binomial cdf, PHX § xL for x ! !, appears complicated:

Prob@x, fD
1 -JH1 - pL-1+n-Floor@xD p1+Floor@xD G@1 + nD Hypergeometric2F1A1,

1 - n + Floor@xD, 2 + Floor@xD, p
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + p

EN íHG@n - Floor@xDD G@2 + Floor@xDDL
Figure 6 plots the cdf! it has the required step function appearance.
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Fig. 6:  The cdf of X: n = 10, p = 0.4
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The mean,  variance and  other  higher  order  moments  of a Binomial  random variable  may
be computed directly using Expect. For example, the mean E@XD is:

m = Expect@x, fD
n p

The variance of X is given by:

v = Var@x, fD
-n H-1 + pL p

Although  the  expression  for  the  variance  has  a  minus  sign  at  the  front,  the  variance  is
strictly positive because of the restriction on p.

Moments may also be obtained via a generating function method. Here, for example,
is  the  central  moment  generating  function  E@expHt HX - mLLD = 3-t m  E@expHt XLD.  In
mathStatica:

mgfc = +-t m
Expect@+t x

, fD
(-n p t H1 + H-1 + (tL pLn

Using  mgfc,  the  i th  central  moment  mi = E@HX - mLi D  is  obtained  by  differentiation  with
respect  to  t  (i  times),  and  then setting  t  to zero.  To illustrate,  when  computing  PearsonYs
measure of kurtosis b2 = m4 ê m2

2 :

D@mgfc, 8t, 4<D ê. t Ø 0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

v2
êê FullSimplify

-1 + 3 H-2 + nL H-1 + pL p
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n H-1 + pL p
ClearAll@m, vD

The Binomial  distribution  has  a number  of linkages  to  other  statistical  distributions.
For  example,  if  X ~ BinomialHn, pL  with mean  m = np  and  variance s2 = n pH1 - pL,  then
the standardised discrete random variable

Y = X - npÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!
n pH1-pL

has  a  limiting  NH0, 1L  distribution,  as  n  becomes  large.  In  some  settings,  the  Binomial
distribution  is  itself  a  limiting  distribution;  cf.  the  Ehrenfest  Urn.  The  Binomial
distribution  is  also  linked  to  another  common  discrete  distribution! the  Poisson
distribution!which is discussed in §3.3 C.
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�  Example 6:  The Ehrenfest Urn

In  physics,  the  Ehrenfest  model  describes  the  exchange  of  heat  between  two  isolated
bodies.  In  probabilistic  terms,  the  model  can  be  formulated  according  to  urn  drawings.
Suppose there are two urns, labelled A and B, containing, in total, m balls. Starting at time
t = 0 with some initial  distribution of balls,  the experiment  proceeds at each t ! 81, 2, b<
by randomly drawing a ball (from the entire collection of m balls) and then moving it from
its  present  urn  into  the  other.  This  means  that  if  urn A  contains  k ! 80, 1, 2, b, m<  balls
(so  B  contains  m - k  balls),  and  if  the  chosen  ball  is  in  urn  A,  then  there  are  now  k - 1
balls in A and m - k + 1 in B. On the other hand, if the chosen ball was in B, then there are
now k + 1 balls in A and one fewer in B. Let Xt  denote the number of balls in urn A at time
t.  Then,  Xt+1  depends  only  on  Xt ,  its  value  being  either  one  more  or  one  less.  Because
each variable in the sequence  8Xt < = HX1 , X2 , X3 , bL depends  only on its immediate  past,8Xt <  is  said  to  form  a  Markov  chain.  The  conditional  pmf  of  Xt+1 ,  given  that  Xt = k,
appears Bernoulli-like, with support points k + 1 and k - 1. 

When the chosen ball comes from urn B, we have

(3.5)PIXt+1 = k + 1 . Xt = kM = m - kÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m

= 1 - kÅÅÅÅÅÅ
m

while if the chosen ball comes from urn A, we have

(3.6)PIXt+1 = k - 1 . Xt = kM = kÅÅÅÅÅÅ
m

.

The  so-called  limiting  distribution  of  the  sequence  8Xt <  is  often  of  interest;  it  is
sometimes  termed  the  long-run  unconditional  pmf  of  Xt .2  It  is  given  by  the  list  of
probabilities  p0 , p1 , p2 , b, pm ,  and  may be  found  by  solving  the  simultaneous  equation
system,

(3.7)pk = 
j=0

m

pj PIXt+1 = k » Xt = jM, k ! 80, 1, 2, b, m<
along with the adding-up condition,

(3.8)p0 + p1 + p2 + � + pm = 1.

Substituting  (3.5)  and  (3.6)  into  equations  (3.7)  yields,  with  some  work,  the  equation
system written as a function of m:

Ehrenfest@m_D := JoinA
TableApk ã J1 -

k - 1
ÅÅÅÅÅÅÅÅÅÅÅÅ
m

N pk-1 +
k + 1
ÅÅÅÅÅÅÅÅÅÅÅÅ
m

 pk+1, 8k, 1, m - 1<E,
9p0 ã

p1
ÅÅÅÅÅÅÅ
m
, pm ã

pm-1
ÅÅÅÅÅÅÅÅÅÅÅ
m

, 2
i=0

m

pi ã 1=E
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To illustrate, let m = 5 be the total number of balls distributed  between the two urns.
The long-run pmf is obtained as follows:

Solve@Ehrenfest@5D, Table@pi, 8i, 0, 5<DD
99p0 Ø

1
ÅÅÅÅÅÅÅ
32

, p1 Ø
5

ÅÅÅÅÅÅÅ
32

,

p2 Ø
5

ÅÅÅÅÅÅÅ
16

, p3 Ø
5

ÅÅÅÅÅÅÅ
16

, p4 Ø
5

ÅÅÅÅÅÅÅ
32

, p5 Ø
1

ÅÅÅÅÅÅÅ
32

==
Now consider the BinomialHm, 1ÅÅÅÅ2 L distribution, whose pmf is given by:

f = Binomial@m, xD J 1
ÅÅÅÅ
2
Nm ;

domain@fD = 8x, 0, m< && 8Discrete<;
Computing all probabilities finds: 

Table@f ê. m Ø 5, 8x, 0, 5<D
9 1

ÅÅÅÅÅÅÅ
32

, 5
ÅÅÅÅÅÅÅ
32

, 5
ÅÅÅÅÅÅÅ
16

, 5
ÅÅÅÅÅÅÅ
16

, 5
ÅÅÅÅÅÅÅ
32

, 1
ÅÅÅÅÅÅÅ
32

=
which  is equivalent  to the  limiting distribution  of the  Ehrenfest  Urn when  m = 5. In fact,
for arbitrary m, the limiting distribution of the Ehrenfest Urn is BinomialHm, 1ÅÅÅÅ2 L. %

3.3 C The Poisson Distribution
The  Poisson  distribution  is  an  important  discrete  distribution,  with  vast  numbers  of
applications in statistical  practice. It is particularly relevant when the event of interest has
a  small  chance  of  occurrence  amongst  a  large  population;  for  example,  the  daily number
of automobile accidents in Los Angeles, where there are few accidents relative to the total
number  of  trips  undertaken.  In  fact,  a  link  between  the  Binomial  distribution  and  the
Poisson  can  be made  by  allowing the  Binomial  index  n  to  become large  and  the success
probability p to become small, but simultaneously maintaining finiteness of the mean (see
Example  2  of  Chapter  8).  The  Poisson  often  serves  as  an approximation  to  the  Binomial
distribution.  For detailed material  on the Poisson distribution  see,  amongst  others,  Haight
(1967) and Johnson et al. (1993, Chapter 4).

A discrete random variable X with pmf:

f =
+-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

;

domain@fD = 8x, 0, �< && 8l > 0< && 8Discrete<;
is  said  to be Poisson  distributed  with parameter  l > 0;  in short,  X ~ PoissonHlL.  Figure  7
plots the pmf when l = 5 and l = 10.
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PlotDensity@f ê. l Ø 85, 10<D;
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Fig. 7:  Poisson pmf: l = 5 (Ë), l = 10 (Ú)

From the graph,  we see that the mass of the distribution shifts  to the right as parameter  l
increases. The Poisson mean is given by:

Expect@x, fD
l

Curiously, the Poisson variance:

Var@x, fD
l

b is identical to the mean. This feature alone serves to distinguish the Poisson from many
other discrete distributions.  Moreover,  all cumulants of X  are equal to l, as can be shown
by using the cumulant generating function:

cgf = Log@Expect@+t x
, fDD

Log@(H-1+(tL lD
To illustrate, here are the first 10 cumulants of X:

Table@D@cgf, 8t, i<D, 8i, 10<D ê. t Ø 0

8l, l, l, l, l, l, l, l, l, l<
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�  Example 7:  Probability Calculations

Let X ~ PoissonH4L denote the number of ships arriving at a port each day. Determine:
(i) the probability that four or more ships arrive on a given day, and 
(ii) repeat part (i) knowing that at least one ship arrives.

Solution: Begin by entering in XYs details:

f =
+-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

ê. l Ø 4; domain@fD = 8x, 0, �< && 8Discrete<;
(i) The required probability simplifies to PHX ¥ 4L = 1 - PHX § 3L. Thus:

pp = 1 - Prob@3, fD êê N

0.56653

(ii) We require the conditional  probability PHX ¥ 4 . X ¥ 1L. For two events  A and B, the
conditional probability of A given B is defined as

                PHA . BL = PHA 1 BLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
PHBL , provided PHBL > 0.

In  our  case,  A = 8X ¥ 4<  and  B = 8X ¥ 1<,  so  A 1 B = 8X ¥ 4<.  We  already  have
PHX ¥ 4L,  and  PHX ¥ 1L  may  be  found  in  the  same  manner.  The  conditional
probability is thus:

pp
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Prob@0, fD
0.5771

�  Example 8:  A Conditional Expectation

Suppose X ~ PoissonHlL. Determine the conditional mean of X, given that X is odd-valued.

Solution: Enter in the details of X:

f =
+-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

; domain@fD = 8x, 0, �< && 8l > 0< && 8Discrete<;
We require E@X . X ! 81, 3, 5, b<D. This requires the pmf of X . X ! 81, 3, 5, b<; namely,
the distribution of X given that X is odd-valued, which is given by:

f1 =
f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Sum@Evaluate@fD, 8x, 1, �, 2<D ;

domain@f1D = 8x, 1, �, 2< && 8l > 0< && 8Discrete<;
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Then, the required expectation is:

Expect@x, f1D
l Coth@lD

3.3 D The Geometric and Negative Binomial Distributions

È The Geometric Distribution

A Geometric  experiment  has  similar  properties  to a Binomial  experiment,  except  that  the
experiment  is stopped when  the first  success is  observed.  Let p  denote  the probability  of
success  in repeated independent  Bernoulli  trials.  We are now interested  in the probability
that  the  first  success  occurs  on  the  x th  trial.  Then  X  is  said  to  be  a  Geometric  random
variable with pmf:

(3.9)PHX = xL = p H1 - pLx-1 , x ! 81, 2, 3, b<, 0 < p < 1.

This can be entered with mathStaticaYs Discrete palette: 

f = p H1 - pLx-1
;

domain@fD = 8x, 1, �< && 80 < p < 1< && 8Discrete<;
Here, for example, is a plot of the pmf when p = 0.6:

PlotDensity@f ê. p Ø .6, AxesOrigin Ø 83 ê 4, 0<D;
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Fig. 8:  The pmf of the Geometric distribution Hp = 0.6L
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È The Waiting-Time Negative Binomial Distribution

A  Waiting-Time  Negative  Binomial  experiment  has  similar  properties  to  the  Geometric
experiment,  except that  the experiment  is now stopped when a fixed number  of successes
occur. As before, let p denote the probability of success in repeated independent Bernoulli
trials. Of interest is the probability that the r th  success occurs on the y th  trial. Then Y  is a
Waiting-Time Negative Binomial random variable with pmf,

(3.10)PHY = yL = Jy - 1
r - 1 N pr H1 - pLy-r

for y ! 8r, r + 1, r + 2, b< and 0 < p < 1. We enter this as:

h = Binomial@y - 1, r - 1D p
r H1 - pLy-r

;

domain@hD = 8y, r, �< && 80 < p < 1, r > 0< && 8Discrete<;
The mean E@Y D and variance are, respectively:

Expect@y, hD
r
ÅÅÅÅ
p

Var@y, hD
r - p r
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p2

È The Negative Binomial Distribution

As  its  name  would  suggest,  the  Waiting-Time  Negative  Binomial  distribution  (3.10)  is
closely  related  to  the  Negative  Binomial  distribution.  In  fact,  the  latter  may  be  obtained
from the former by transforming Y  Ø X, such that X = Y - r:

f = Transform@x ã y - r, hD
H1 - pLx pr Binomial@-1 + r + x, -1 + rD

with domain:

domain@fD = TransformExtremum@x ã y - r, hD
8x, 0, �< && 80 < p < 1, r > 0< && 8Discrete<

as given in the Discrete palette. When r is an integer, the distribution is sometimes known
as the Pascal distribution. Here is its pgf:

Expect@tx, fD
pr H1 + H-1 + pL tL-r
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3.3 E The Hypergeometric Distribution

ClearAll@T, n, r, xD
Urn  models  in  which  balls  are  repeatedly  drawn  without  replacement  lead  to  the
Hypergeometric  distribution.  This contrasts  to  sampling  with  replacement  which  leads  to
the Binomial  distribution.  To illustrate  the former,  suppose  that an urn contains  a total  of
T  balls, r of which are red H1 § r < TL. The experiment proceeds by drawing one-by-one a
sample  of  n  balls  from  the  urn  without  replacement  H1 § n < TL.3  Interest  lies  in
determining the pmf of X, where X is the number of red balls drawn.

The domain  of  support  of  X  is  x ! 80, 1, b, minHn, rL<,  where  minHn, rL  denotes  the
smaller  of  n  and  r.  Next,  consider  the  probability  of  a  particular  sequence  of  n  draws,
namely x red balls followed by n - x other colours:

ikjjj rÅÅÅÅÅÅ
T

ä r-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T-1

ä�ä r-x+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T-x+1

y{zzz ikjjj T-rÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T-x

ä T-r-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T-x-1

ä�ä T-r-Hn-x-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T-x-Hn-x-1L y{zzz

= r!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHr-xL!  HT-rL!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHT-r-n+xL!  HT-nL!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T!

=
ikjjjjT - n

r - x

y{zzzzì ikjj T

r
y{zz.

In total,  there  are I n
x M  arrangements  of x  red  balls  amongst  the  n  drawn,  each  having the

above probability. Hence, the pmf of X is

f HxL = ikjj n

x
y{zz ikjj T - n

r - x
y{zzí ikjj T

r
y{zz

where x ! 80, 1, b, minHn, rL<. We may enter the pmf of X as:

f =
Binomial@n, xD Binomial@T - n, r - xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Binomial@T, rD ;

domain@fD = 8x, 0, n< && 8Discrete<;
We  have  set  domain[f]={x,0,n},  rather  than  {x,0, Min[n,r]},  because
mathStatica does not support the latter. This alteration does not affect the pmf.4

The Hypergeometric  distribution  gets its  name from the  appearance  of  the Gaussian
hypergeometric function in its pgf:

pgf = Expect@tx, fD
HG@1 - n + TD Hypergeometric2F1Regularized@-n,

-r, 1 - n - r + T, tDL ê HBinomial@T, rD G@1 + rDL
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Here are the mean and variance of X:

Expect@x, fD
n r
ÅÅÅÅÅÅÅÅ
T

Var@x, fD
n r Hn - TL Hr - TL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + TL T2

�  Example 9:  The Number of Ace Cards

Obtain the pmf of the distribution of the number of ace cards in a poker hand. Then plot it.

Solution: In this example, the XurnY is the deck of T = 52 playing cards, and the Xred ballsY
are  the  ace  cards,  so  r = 4.  There  are  n = 5  cards  in  a  hand.  Therefore,  the  pmf  of  the
number of ace cards in a poker hand is given by:

Table@f ê. 8T Ø 52, n Ø 5, r Ø 4<, 8x, 0, 4<D
9 35673

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54145

, 3243
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
10829

, 2162
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54145

, 94
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54145

, 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54145

=
which we may plot as:

PlotDensity@f ê. 8T Ø 52, n Ø 5, r Ø 4<, 8x, 0, 4<,
AxesOrigin Ø 8-0.25, 0<D;
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Fig. 9:  The pmf of X, the number of ace cards in a poker hand
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3.4 Mixing Distributions
At  times,  it  may  be  necessary  to  use  distributions  with  unusual  characteristics,  such  as
long-tailed  behaviour  or  multimodality.  Unfortunately,  it  can  be  difficult  to  write  down
from  scratch  the  pdf/pmf  of  a  distribution  with  the  desired  characteristic.  Fortunately,
progress  can  usually  be  made  with  the  method  of  mixing  distributions.  Two  prominent
approaches  to  mixing  are  presented  here:  component-mixing  (§3.4 A)  and  parameter-
mixing  (§3.4 B).  The  first  type,  component-mixing,  forms  distributions  from  linear
combinations  of  other  distributions.  It  is  a  method  well-suited  for  generating  random
variables  with  multimodal  distributions.  The  second  type,  parameter-mixing,  relaxes  the
assumption  of  fixed  parameters,  allowing  them  to  vary  according  to  some  specified
distribution.

3.4 A Component-Mix Distributions
Component-mix distributions are formed from linear combinations of distributions. To fix
notation, let the pmf of a discrete random variable Xi  be fi HxL = PHXi = xL for i = 1, b, n,
and  let  wi  be a  constant  such  that  0 < wi < 1 and i=1

n wi = 1. The linear  combination  of
the component random variables defines the n-component-mix random variable,

(3.11)X ~ w1  X1 + w2  X2 + � + wn  Xn

and its pmf is given by the weighted average

(3.12)f HxL = 
i=1

n

wi  fi HxL.
Importantly,  the domain of support of X  is taken to be all points x contained in the union
of  support  points  of  the  component  distributions.5  Titterington  et  al.  (1985)  deals
extensively with distributions formed from component-mixes.

�  Example 10:  A Poisson Two-Component-Mix

Let X1 ~ PoissonH2L and X2 ~ PoissonH10L be independent,  and set w1 = w2 = 1ÅÅÅÅ2 . Plot the
pmf of the two-component-mix X ~ w1  X1 + w2  X2 .

Solution: The general form of the pmf of X can be entered directly from (3.12):

f1 =
+-q qx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

; f2 =
+-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

; f = w1  f1 + w2  f2;

As both X1  and X2  are supported on the set of non-negative integers,  then this is also the
domain of support of X. As the parameter  restrictions are unimportant in this instance, the
domain of support of X may be entered into Mathematica simply as:

domain@fD = 8x, 0, �< && 8Discrete<;
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The plot we require is:

PlotDensityAf ê. 9q Ø 2, l Ø 10, w1 Ø
1
ÅÅÅÅ
2
, w2 Ø

1
ÅÅÅÅ
2
=E;
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Fig. 10:  The pmf of a PoissonhPoisson component-mix

For our chosen mixing weights, the pmf of X  is bimodal, a feature not shared by either of
the  components.  We  return  to  the  Poisson  two-component-mix  distribution  in  §12.6,
where maximum likelihood estimation of its parameters is considered. %

È Zero-Inflated Distributions

A survey of individual consumption patterns can often return an excessively large number
of  zero  observations  on  consumption  of  items  such  as  cigarettes.  Zero-Inflated

distributions  can  be used  to  model  such  variables.  They  are  just  a  special  case  of  (3.11),
and are formed from the two-component-mix,

(3.13) X ~ w1  X1 + w2  X2 = H1 - wL X1 + w X2

where,  because  w1 + w2 = 1,  we  can  express  the  mix  with  a  single  weight  w.  In  this
component-mix,  zero-inflated  distributions  correspond  to  nominating  X1  as  a  degenerate
distribution  with all  its  mass at  the origin;  that is, PHX1 = 0L = 1. The distribution  of X  is
therefore a modification of the distribution of X2 . If the domain of support of X2  does not
include  zero,  then  this  device  serves  to  add  zero  to  the  domain  of  support  of  X.  On  the
other  hand,  if  X2  can  take  value  zero,  then  PHX = 0L > PHX2 = 0L  because  w  is  such  that
0 < w < 1. In both scenarios, the probability of obtaining a zero is boosted.
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�  Example 11:  The Zero-Inflated Poisson Distribution

Consider  the  two-component-mix  (3.13)  with PHX1 = 0L = 1,  and  X2 ~ PoissonHlL.  In  this
case, X has the so-called Zero-Inflated Poisson distribution, or ZIP for short. The pmf of X
is

PHX = xL =
looomnooo

1 - w + w 3-l if x = 0

w 3-l  lx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x!
if x ! 81, 2, b<

where  0 < w < 1  and  l > 0.  To  obtain  the  pgf,  we  only  require  the  pgf  of  X2 ,  denoted
P2 HtL, since

(3.14)

PHtL =   
x=0

�
tx  PHX = xL

=   H1 - wL + w
x=0

�
tx  PHX2 = xL

=   H1 - wL + w P2 HtL .

For our example, the pgf of X2 ~ PoissonHlL is:

f2 =
+-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

;

domain@f2D = 8x, 0, �< && 8l > 0< && 8Discrete<;
pgf

2
= Expect@tx, f2D

(H-1+tL l

Then, by (3.14), the pgf of X is:

pgf = H1 - wL + w pgf
2

1 - w + (H-1+tL l w

Taking, for example, w = 0.5 and l = 5, PHX = 0L is quite substantial:

pgf ê. 8w Ø 0.5, l Ø 5, t Ø 0<
0.503369

b when compared to the same chance for its Poisson component alone:

pgf
2
ê. 8l Ø 5, t Ø 0< êê N

0.00673795
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3.4 B Parameter-Mix Distributions
When the distribution of a random variable X  depends upon a parameter q, the (unknown)
true value of q is usually assumed fixed in the population. In some instances, however, an
argument  can  be  made  for  relaxing  parameter  fixity,  which  yields  our  second  type  of
mixing distribution: parameter-mix distributions.

Two key  components  are required  to  form a  parameter-mix  distribution,  namely the
conditional distribution of the random variable given the parameter, and the distribution of
the parameter  itself.  Let f Hx . Q = qL  denote the density  of X . HQ = qL,  and let gHqL denote
the  density  of  Q.  With  this  notation,  the  so-called  XgHqL  parameter-mix  of  f Hx . Q = qLY  is
written as

(3.15)f Hx . Q = qL Ï
Q

gHqL
and is equal to

(3.16)EQ A f Hx . Q = qLE
where  EQ @ D  is  the  usual  expectation  operator,  with  its  subscript  indicating  that  the
expectation  is  taken  with  respect  to  the  distribution  of  Q.  The  solution  to  (3.16)  is  the
unconditional distribution of X, which is the statistical model of interest. For instance,

BinomialHN, pL Ï
N

PoissonHlL
denotes a BinomialHN, pL distribution in which parameter N  (instead of being fixed) has a
PoissonHlL  distribution.  In  this  fashion,  many  distributions  can  be  created  using  a
parameter-mix  approach;  indeed  the  parameter-mix  approach  is often  used  as a  device in
its  own  right  for  developing  new  distributions.  Table  5  lists  five  parameter-mix
distributions (only the first three are discrete distributions).

Negative Binomial Hr, pL =  PoissonHLL Ï
L

GammaIr, 1-pÅÅÅÅÅÅÅÅÅÅ
p
M

Holla Hm, lL =  PoissonHLL Ï
L

InverseGaussianHm, lL
PólyahAeppli Hb, lL =  PoissonHQL Ï

Q
GammaHA, bL Ï

A

PoissonHlL
Student"s tHnL =  NormalH0, S2 L Ï

S2
InverseGammaH nÅÅÅÅ2 , 2ÅÅÅÅn L

Noncentral Chi-squared Hn, lL =  Chi-squaredHn + 2 KLÏ
K

PoissonH lÅÅÅÅ2 L
Table 5:  Parameter-mix distributions

For  extensive  details  on  parameter-mixing,  see  Johnson  et  al.  (1993,  Chapter  8).  The
following examples show how to construct parameter-mix distributions with mathStatica.
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�  Example 12:  A BinomialhPoisson Mixture

Find the distribution of X, when it is formed as BinomialHN, pL Ï
N

PoissonHlL.
Solution:  Of  the  two  Binomial  parameters,  index  N  is  permitted  to  vary  according  to  a
PoissonHlL  distribution,  while  the  success  probability  p  remains  fixed.  Begin  by  entering
the  key  components.  The  first  distribution,  say  f HxL,  is  the  conditional  distribution
X . HN = nL ~ BinomialHn, pL:

f = Binomial@n, xD px  H1 - pLn-x
;

domain@fD = 8x, 0, n< &&80 < p < 1, n > 0, n 0 Integers< && 8Discrete<;
The second is the parameter distribution N ~ PoissonHlL:

g =
+-l ln

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n!

;

domain@gD = 8n, 0, �< && 8l > 0< && 8Discrete<;
From  (3.16),  we  require  the  expectation  EN @BinomialHN, pLD.  The  pmf  of  the  parameter-
mix distribution is then found by entering:

Expect@f, gD
(-p l Hp lLx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x!

The mixing distribution is discrete and has a Poisson form: X ~ PoissonHp lL. %

�  Example 13:  A BinomialhBeta Mixture: The BetahBinomial Distribution

Consider a Beta parameter-mix of the success probability of a Binomial distribution:

BinomialHn, PL Ï
P

BetaHa, bL .

The conditional distribution X . HP = pL ~ BinomialHn, pL is:

f = Binomial@n, xD px H1 - pLn-x
;

domain@fD = 8x, 0, n< &&80 < p < 1, n > 0, n 0 Integers< && 8Discrete<;
The distribution of the parameter P ~ BetaHa, bL is:

g =
p
a-1  H1 - pLb-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Beta@a, bD ; domain@gD = 8p, 0, 1< && 8a > 0, b > 0<;
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We obtain the parameter-mix distribution by evaluating EP @ f Hx . P = pLD as per (3.16):

Expect@f, gD
Binomial@n, xD G@b + n - xD G@a + xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Beta@a, bD G@a + b + nD
This  is  a  BetahBinomial  distribution,  with  domain  of  support  on  the  set  of  integers80, 1, 2, b, n<. The distribution is listed in the Discrete palette. %

�  Example 14:  A GeometrichExponential Mixture: The Yule Distribution

Consider an Exponential parameter-mix of a Geometric distribution:

GeometricH3-W L Ï
W

ExponentialI 1ÅÅÅÅÅ
l
M .

For a fixed value w of W, the conditional distribution is Geometric with the set of positive
integers  as  the  domain  of  support.  The  GeometricYs  success  probability  parameter  p  is
coded as p = 3-w , which will lie between 0 and 1 provided w > 0. Here is the conditional
distribution X . HW = wL ~ GeometricH3-w L:

f = p H1 - pLx-1 ê. p Ø +-w
;

domain@fD = 8x, 1, �< && 8w > 0< && 8Discrete<;
Parameter W is such that W ~ ExponentialI 1ÅÅÅÅÅ

l
M:

g = l +-l w
;

domain@gD = 8w, 0, �< && 8l > 0<;
The parameter-mix distribution is found by evaluating:

Expect@f, gD
l G@xD G@1 + lD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@1 + x + lD
This is a Yule distribution, with domain of support on the set of integers 81, 2, 3, b<, with
parameter  l > 0.  The  Yule  distribution  is  also  given  in  mathStaticaYs  Discrete  palette.
The  Yule  distribution  has  been  applied  to  problems  in  linguistics.  Another  distribution
with  similar  areas  of  application  is  the  Riemann  Zeta  distribution.  It  too  may  be  entered
from mathStaticaYs Discrete palette. The Riemann Zeta distribution has also been termed
the  Zipf  distribution,  and  it  may  be  viewed  as  the  discrete  analogue  of  the  continuous
ParetoHa, 1L distribution; see Johnson et al. (1993, Chapter 11) for further details. %
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�  Example 15:  Modelling the Change in the Price of a Security (Stocks, Options, etc.)

Let  the  continuous  random  variable  Y  denote  the  change  in  the  price  of  a  security
(measured in natural logarithms) using daily data. In economics and finance, it is common
practice to assume that Y ~ NH0, s2 L. Alas, empirically, the Normal model tends to under-
predict  both  large  and  small  price  changes.  That  is,  many  empirical  densities  of  price
changes  appear  to  be both  more  peaked  and  have  fatter  tails  than a  Normal  pdf  with the
same variance; see, for instance,  Merton (1990,  p.59).  In light of this, we need to replace
the  Normal  model  with  another  model  that  exhibits  the  desired  behaviour.  Let  there  be t
transactions  in any given day, and let Yi ~ NH0, w2 L, i ! 81, b, t<, represent the change in
price  on  the  i th  transaction.6  Thus,  the  daily  change  in  price  is  obtained  as
Y = Y1 + Y2 + � + Yt ,  a  sum of  t  random  variables.  For  Yi  independent  of  Yj  Hi � jL,  we
now have Y ~ NH0, t w2 L, with pdf f HyL:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
t  w 

è!!!!!!!
2 p

 ExpA-
y2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 t w2

E;
domain@fD = 8y, -�, �< && 8w > 0, t > 0, t 0 Integers<;

Parameter-mixing  provides  a  resolution  to  the  deficiency  of  the  Normal  model.
Instead of treating t as a fixed parameter, we are now going to treat it as a discrete random
variable  T = t.  Then,  Y  is  a  random-length  sum  of  T  random  variables,  and  is  in  fact  a
member of the Stopped-Sum class of distributions; see Johnson et al. (1993, Chapter 9). In
parameter-mix  terms,  f  is  the  conditional  model  Y . HT = tL.  For  the  purposes  of  this
example, let the parameter distribution T ~ GeometricHpL, with density gHtL:

g = p H1 - pLt-1
;

domain@gD = 8t, 1, �< && 80 < p < 1< && 8Discrete<;
The desired mixture is

NH0, T w2 L Ï
T

GeometricHpL = ET A f Hy . T = t LE
which we can attempt to solve as:

Expect@f, gD
/
t=1

�
(- y2ÅÅÅÅÅÅÅÅÅÅÅÅ2 t w2 H1 - pL-1+t p
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

è!!!t w

This does not evaluate further, in this case, as there is no closed form solution to the sum.
However,  we  can  proceed  by  using  numerical  methods.7  Figure  11  illustrates.  In  the  left
panel,  we  see  that  the  parameter-mix  pdf  (the  solid  line)  is  more  peaked  in  the
neighbourhood of the origin than a Normal pdf (the dashed line). In the right panel (which
zooms-in  on  the  distributionYs  right  tail),  it  is  apparent  that  the  tails  of  the  pdf  are  fatter
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than  a  Normal  pdf.  The  parameter-mix  distribution  exhibits  the  attributes  observed  in
empirical practice.
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and fatter in the tails

Fig. 11:  Parameter-mix pdf (!) versus Normal pdf (h  h  h) 

If a closed form solution is desired, we could simply select a different model for gHtL;
for  example,  a  Gamma  or  a  Rayleigh  distribution  works  nicely.  While  the  latter  are
continuous  densities,  they yield the same qualitative  results.  For other  models of changes
in security prices see, for example, Fama (1965) and Clark (1973). %

3.5 Pseudo-Random Number Generation

3.5 A Introducing DiscreteRNG
Let  a  discrete  random  variable  X  have  domain  of  support  W = 8x : x0 , x1 , b<,  with  cdf
FHxL = PHX § xL and pmf f HxL = PHX = xL such that x!W  f HxL = 1. This section tackles the
problem  of  generating  pseudo-random  copies  of  X.  One  well-known  approach  is  the
inverse method: if u is a pseudo-random drawing from the UniformH0, 1L, the (continuous)
uniform distribution defined on the unit interval, then x = F-1 HuL is a pseudo-random copy
of  X.  Of  course,  this  method  is  only  desirable  if  the  inverse  function  of  F  is
computationally tractable, and this, unfortunately, rarely occurs. In this section, we present
a  discrete  pseudo-random  number  generator  entitled  DiscreteRNG  that  is  virtuous  in
two  respects.  First,  it  is  universal! it  applies  in  principle  to  any  discrete  univariate
distribution  without  alteration.  This is achieved by  constructing F-1 HuL as  a lookup table,
instead  of  trying  to  do  so  symbolically.  Second,  this  approach  is  surprisingly  efficient.
Given  that  pluralism  and  efficiency  are  usually  mutually  incompatible,  the  attainment  of
both goals is particularly pleasing. Detailed discussion of the function appears in Rose and
Smith (1997).

The mathStatica  function DiscreteRNG[n, f] generates n pseudo-random copies
of a discrete  random variable  X,  with pmf f .  It  allows f  to take  either  Function Form or
List Form. We illustrate its use with both input types by example.
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�  Example 16:  The Poisson Distribution

Suppose that X ~ PoissonH6L. Then, in Function Form, its pmf f HxL is:

f =
+-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

ê. l Ø 6;

domain@fD = 8x, 0, �< && 8Discrete<;
Here, then, are 10 pseudo-random copies of X:

DiscreteRNG[10, f]

85, 6, 9, 3, 5, 9, 2, 8, 5, 7<
and here are a few more:

data = DiscreteRNG@50000, fD; êê Timing

80.38 Second, Null<
Notice  that  it  took  DiscreteRNG  a  fraction  of  a  second  to  produce  50000  PoissonH6L
pseudo-random numbers!

In order to check how effective DiscreteRNG is in replicating the true distribution,
we  contrast  the  relative  empirical  distribution  of  the  generated  data  with  the  true
distribution of X  using the mathStatica function FrequencyPlotDiscrete. The two
distributions are overlaid as follows:

FrequencyPlotDiscrete@data, fD;
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Fig. 12:  Comparison of the empirical pmf (Ú) to the Poisson(6) pmf (Ë) 

The  triangles  give  the  generated  empirical  pmf,  while  the  circles  represent  the  true
Poisson(6) pmf. The fit is superb. %
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�  Example 17:  A Discrete Distribution in List Form

The previous  example  dealt  with Function  Form input.  DiscreteRNG  can  also be used
for List Form input. Suppose that random variable X is distributed as follows:

PHX = xL : 0.1 0.4 0.3 0.2
x : -1 3 ê2 p 4.4

Table 6:  The pmf of X

XYs details in List Form are:

f = 80.1, 0.4, 0.3, 0.2<;
domain@fD = 9x, 9-1,

3
ÅÅÅÅ
2
, p, 4.4== && 8Discrete<;

Here are eight pseudo-random numbers from the distribution:

DiscreteRNG@8, fD
81.5, 3.14159, 1.5, 4.4, 3.14159, 4.4, 4.4, 3.14159<

And here are a few more:

data = DiscreteRNG@50000, fD; êê Timing

80.39 Second, Null<
The empirical pmf overlaid with the true pmf is given by:

FrequencyPlotDiscrete@data, fD;
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Fig. 13:  Comparison of empirical pmf (Ú) to true pmf (Ë)

Once again, the fit is superb. %

§3.5 A DISCRETE  RANDOM  VARIABLES 111



�  Example 18:  HollaYs Distribution

Because  DiscreteRNG  is  a  general  solution,  it  can  generate  random  numbers,  in
principle,  from any  discrete  distribution,  not  just  the  limited  number  of  distributions  that
have been pre-programmed into MathematicaYs Statistics package. Consider, for example,
HollaYs distribution (see Table 5 for its parameter-mix derivation):

f =
1

ÅÅÅÅÅÅÅÅ
x!

 
i
k
jjjjjjj+lêm  $%%%%%%2ÅÅÅÅ

p
 
è!!!!

l

J 2
ÅÅÅÅ
l

+
1

ÅÅÅÅÅÅÅ
m2

N 1ÅÅÅÅ
4

 H1-2 xL
 BesselKA 1

ÅÅÅÅ
2

- x, $%%%%%%%%%%%%%%%%%%%%%%%%l J2 +
l

ÅÅÅÅÅÅÅ
m2

N Ey{
zzzzzzz;

domain@fD = 8x, 0, �< && 8m > 0, l > 0< && 8Discrete<;
It would be a substantial undertaking to attempt to generate pseudo-random numbers

from HollaYs distribution using the inverse method. However, for given values of m and l,
DiscreteRNG has no trouble in performing the task. Here is the code to produce 50000
pseudo-random copies:

data = DiscreteRNG@50000, f ê. 8m Ø 1, l Ø 4<D; êê Timing

80.39 Second, Null<
We again compare the empirical distribution to the true distribution:

FrequencyPlotDiscrete@data, f ê. 8m Ø 1, l Ø 4<D;
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Fig. 14:  Comparison of empirical pmf (Ú) to HollaYs distribution (Ë)
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È Computationl Efficiency

MathematicaYs  Statistics`DiscreteDistributions`  package  includes  the
Poisson distribution used in Example 16, so we can compare the computational  efficiency
of  MathematicaYs  generator  to  mathStaticaYs  generator.  After  loading  the  Statistics  add-
on:

<<Statistics`

generate  50000  copies  from  Poisson(6)  using  the  customised  routine  contained  in  this
package:

dist = PoissonDistribution@6D;
RandomArray@dist, 850000<D; êê Timing

877.67 Second, Null<
By  contrast,  mathStatica  takes  just  0.38  seconds  (see  Example  16)  to  generate  the  same
number of copies. Thus, for this example, DiscreteRNG is around 200 times faster than
MathematicaYs Statistics  package,  even though DiscreteRNG  is  a general  solution  that
has  not  been  specially  optimised  for  the  Poisson.  In  further  comparative  experiments
against  the  small  range  of  discrete  distributions  included  in  the  Mathematica  Statistics
package,  Rose  and  Smith  (1997)  report  complete  efficiency  dominance  for
DiscreteRNG.

3.5 B Implementation Notes
DiscreteRNG  works  by  internally  constructing  a  numerical  lookup  table  of  the
specified  discrete  random  variableYs  cdf.8  When  generating  many  pseudo-random
numbers  from a particular discrete  distribution,  it therefore makes sense to ask for all  the
desired pseudo-random numbers in one go, rather than repeatedly constructing the lookup
table.  The  contrast  in  performance  is  demonstrated  by  the  following  timings  for  a
Riemann Zeta distribution:

f =
x-Hr+1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Zeta@1 + rD ê. r Ø 3;

domain@fD = 8x, 1, �< && 8Discrete<;
The first  input below calls DiscreteRNG  1000  times,  whereas  the second  generates  all
1000 in just one call and is clearly far more efficient:

Table@DiscreteRNG@1, fD, 81000<D; êê Timing

812.31 Second, Null<
DiscreteRNG@1000, fD; êê Timing

80. Second, Null<
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A numerical lookup table is naturally limited to a finite number of elements. Thus, if
the  discrete  random  variable  has  an  infinite  number  of  points  of  support  (as  in  the
Riemann  Zeta  case),  then  the  tail(s)  of  the  distribution  must  be  censored.  The  default  in
DiscreteRNG  is  to  automatically  censor  the  left  and  right  tails  of  the  distribution  in
such  a  way  that  less  than  � = 10-6  of  the  density  mass  is  disturbed  at  either  tail.  The
related  mathStatica  function  RNGBounds  identifies  the  censoring  points  and  calculates
the  probability  mass  that  is  theoretically  affected  by  censoring.  For  example,  for
X ~ Riemann ZetaH3L:

RNGBounds@fD
^ The density was not censored below.

^ Censored above at  x =  68 . This can affect  

9.58084µ10-7  of the density mass.

The printed output  tells us that when DiscreteRNG  is used at its default settings, it can
generate  copies  of  X  from  the  set  W* = 81, b, 68<.  By  censoring  at  68,  outcomes
W* = 869, 70, 71, b<  are reported  as 68. Thus,  the censored  mass is not lost;  it is merely
shifted  to  the  censoring  point.  The  density  mass  shifted  in  this  way  corresponds  to
PHX ! W*L which is equal to:

1 - Prob@68, fD êê N

9.58084 µ 10-7

as reported by RNGBounds above.

If censoring at x = 68 is not desirable, tighter (or weaker) tolerance levels can be set.
RNGBounds[ f , �êê, �êê]  can  be  used  to  inspect  the  effect  of  arbitrary  tolerance  settings,
while  DiscreteRNG[n, f , �êê, �

êê]  imposes  those  settings  on  the  generator;  �êê  is  the
tolerance setting for the left tail, and �êê is the setting for the right tail. For example:

RNGBounds@f, 10
-8
, 10

-8D
^ The density was not censored below.

^ Censored above at  x =  313 . This can affect  

9.99556µ10-9  of the density mass.

Thus,  DiscreteRNG[n, f , 10-8 , 10-8]  will  generate  n  copies  of  X ~ Riemann ZetaH3L,
with  outcomes  restricted  to  the  integers  in  W* = 81, 2, b, 313<;  censoring  occurs  on  the
right at 313 which results in just under 10-8  of the density mass being shifted to that point.
The  reason  the  censoring  point  has  Xblown  outY  to  313  is  because  the  Riemann  Zeta
distribution is long-tailed.

DiscreteRNG  and  RNGBounds  are  defined  for  tolerance  settings  � ¥ 10-15 .
Setting  �  outside  this  interval  is  not  meaningful  and  may  cause  problems.  (It  is  also
assumed  that  � < 0.25,  although  this  constraint  should  never  be  binding.)  In  List  Form
examples,  the  distribution  is  never  censored,  so  RNGBounds  does  not  apply  and,  by
design,  will  not  evaluate.  For  Function  Form  examples,  we  recommend  that  whenever
DiscreteRNG is applied, the printed output from RNGBounds should also be inspected.
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Finally, by constructing a lookup table, DiscreteRNG trades off a small fixed cost
in return for a lower marginal  cost.  This trade-off will be particularly beneficial  if a large
number  of pseudo-random numbers  are  required.  If only  a few are  needed,  it may not  be
worthwhile.  The  fixed  cost  is  itself  proportional  to  the  size  of  the  lookup  table.  For
instance,  a  Discrete  Uniform  such  as  f = 10-6  defined on  W = 81, b, 106 <  will  require  a
huge lookup  table.  Here,  a  technique  such as Random[Integer,{1,106}]  is clearly
more appropriate.

3.6 Exercises
1. Let random variable X take values 1, 2, 3, 4, 5, with probability 1ÅÅÅÅÅÅÅ55 , 4ÅÅÅÅÅÅÅ55 , 9ÅÅÅÅÅÅÅ55 , 16ÅÅÅÅÅÅÅ55 , 25ÅÅÅÅÅÅÅ55 ,

respectively.
(i) Enter the pmf of X in List Form, plot the pmf, and then evaluate E@XD.
(ii) Enter the pmf of X in Function Form, and evaluate E@XD.
(iii) Repeat  (i)  and  (ii)  when  X  takes  values  1,  3,  5,  with  probability  1ÅÅÅÅÅÅÅ35 ,  9ÅÅÅÅÅÅÅ35 ,  25ÅÅÅÅÅÅÅ35 ,

respectively.

2. Enter  the  BinomialHn, pL  pmf  from mathStaticaYs  Discrete  palette.  Express  the  pmf
in List Form when n = 10 and p = 0.4.

3. Derive  the  mean,  variance,  cdf,  mgf  and  pgf  for  the  following  distributions  whose
pmf  may  be  entered  from  mathStaticaYs  Discrete  palette:  (i)  Geometric,  (ii)
Hypergeometric, (iii) Logarithmic, and (iv) Yule.

4. Using the shaved 1-face dice described in Example 3, plot the probability of winning
Craps against d.

5. A gambler  aims to increase  his initial  capital  of $5 to $10 by playing Craps,  betting
$1 per  game. Using simulation, estimate  the probability that the gambler  can, before
ruin (i.e. his balance is depleted to $0), achieve his goal.

6. In  a  large  population  of  n  individuals,  each  person  must  submit  a  blood  sample  for
test. Let p denote the probability that an individual returns a positive test, and assume
that  p  is  small.  The  test  designer  suggests  pooling  samples  of  blood  from  m
individuals, testing the pooled sample with a single test. If a negative test is returned,
then this one test  indicates that all m  individuals are negative.  However, if a positive
test  is  returned,  then  the  test  is  carried  out  on  each  individual  in  the  pool.  For  this
sampling  design,  determine  m  (the expected  number  of  tests),  and  the  optimal  value
of  m  when  p = 0.01.  Assume  all  individuals  in  the  population  are  mutually
independent, and that p is the same across all individuals.

7. What are the chances of throwing: (i) at least 1 six from a throw of a box containing
6  dice,  (ii)  at  least  2  sixes  from another  box  containing  12  dice,  and  (iii)  3  or  more
sixes from a third box filled with 18 dice?

8. An urn contains  20 balls,  4 of which are coloured red.  A sample of 5 balls is drawn
one-by-one from the urn. What is the probability that one of the balls drawn is red:
(i) if each ball that is drawn is returned to the urn?
(ii) if each ball that is drawn is set aside?
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9. Experience indicates  that  a firm will,  on average,  fire 3 workers  per year. Assuming
that  the  number  of  employees  fired  per  year  is  Poisson  distributed,  what  is  the
probability that in the coming year the firm will: (i) not fire any workers, and (ii) fire
at least 4 workers?

10. Let  a  random  variable  X ~ PoissonHlL.  Determine  the  smallest  value  of  l  such  that
PHX § 1L § 0.05.

11. Determine  the  pmf  of  the  following  parameter-mixes,  and  plot  it  at  the  indicated
values of the parameters:
(i) BinomialHN, pL Ï

N
BinomialHm, qL. Plot for p = 3ÅÅÅÅ4 , q = 1ÅÅÅÅ2 , m = 10.

(ii) Negative BinomialHR, pL Ï
R

GeometricHqL. Plot for p = 1ÅÅÅÅ4 , q = 2ÅÅÅÅ3 .

(iii) PoissonHQL Ï
Q

LindleyHdL. Plot for d = 1.

12. (i) Use  DiscreteRNG  to  generate  20000  pseudo-random  drawings  from  the  
GeometricH0.1L distribution. Then use FrequencyPlotDiscrete  to plot the
empirical distribution, with the true distribution superimposed on top.

(ii) Repeat  (i),  this  time  using  MathematicaYs  Statistics  package  pseudo-random
number generator:

RandomArray@GeometricDistribution@0.1D, 20000D + 1

(the  i+1k  is  required  because  the  Geometric  distribution  hardwired  in  the
Statistics package includes 0 in its domain of support).

(iii) Report  on  any  discrepancies  you  observe  between  the  empirical  and  true
distributions.

13. (i) Generate  20000  pseudo-random  numbers  from  a  Zero-Inflated  Poisson
distribution  (parameters  w  and  l;  see  Example  11)  when  w = 0.6  and  l = 4.
Compare the empirical distribution to the theoretical distribution.

(ii) Generate  20000  pseudo-random  numbers  from  a  Poisson  two-component-mix
distribution  (parameters  w,  l  and  q;  see  Example  10)  when  w = 0.6,  l = 9 and
q = 3. Compare the empirical distribution to the theoretical distribution.
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Chapter 4
Distributions of

Functions of Random Variables

4.1 Introduction
This chapter  is concerned with the following problem, which we state here in its simplest

form:

Let X be a random variable with density f HxL.
What is the distribution of Y = uHXL, where uHXL denotes some function of X?

This  problem  is  of  interest  for  several  reasons.  First,  it  is  crucial  to  an  understanding  of

statistical  distribution  theory:  for  instance,  this  chapter  derives  (from  first  principles)

distributions  such  as  the  Lognormal,  Pareto,  Extreme  Value,  Rayleigh,  Chi-squared,

StudentJs  t,  FisherJs  F,  noncentral  Chi-squared,  noncentral  F,  Triangular  and  Laplace,

amongst  many  others.  Second,  it  is  important  in  sampling  theory:  the  chapter  discusses

ways  to  find  the  exact  sampling  distribution  of  statistics  such  as  the  sample  sum,  the

sample  mean,  and  the  sample  sum  of  squares.  Third,  it  is  of  practical  importance:  for

instance,  a gold mine may have a profit  function uHxL that depends on the gold price X  (a

random  variable).  The  firm  is  interested  to  know the  distribution  of  its  profits,  given  the

distribution of X.

In statistics, there are two standard methods for solving these problems:

M The Transformation Method: this only applies to one-to-one transformations.

M The MGF Method: this is less restrictive, but can be more difficult to solve. It is based

on the Uniqueness Theorem relating moment generating functions to densities.

§4.2  discusses  the  Transformation  Method,  while  §4.3  covers  the  MGF  Method.

These  two methodologies  are then applied to some important  examples  in §4.4 (products

and ratios of random variables) and §4.5 (sums and differences of random variables). 



4.2 The Transformation Method
This  section  discusses  the Transformation  Method:  §4.2 A discusses  transformations  of  a

single  random variable, §4.2 B extends  the analysis to the multivariate  case, while §4.2 C

considers transformations that are not strictly one-to-one, as well as manual methods.

4.2 A Univariate Cases
A  one-to-one  transformation  implies  that  each  value  x  is  related  to  one  (and  only  one)

value y = uHxL, and that each value y is related to one (and only one) value x = u-1 HyL. Any

univariate  monotonic  increasing  or  decreasing  function  yields  a  one-to-one

transformation. Figure 1, for instance, shows two transformations.

0
x

y

-1 2
x

4
y

               Fig. 1:    (i) y = x2 ,  for x # !+                                        (ii) y = x2 ,  for x # H-1, 2L                              
Case (i): Even though y = x2  has two solutions, namely:

Solve@y ã x2, xD
99x Ø -è!!!y =, 9x Ø è!!!y ==

only  the  latter  solution  is  valid  for  the  given  domain  Hx # !+ L.  Therefore,  over the  given

domain,  the  function  is  monotonically  increasing,  and  thus  case  (i)  is  a  one-to-one

transformation.

Case (ii): Here, for some values of y, there exists more than one corresponding value of x;

there are now two valid solutions, neither of which can be excluded. Thus, case (ii) is not

a  one-to-one  transformation.  Fortunately,  a  theorem  exists  to  deal  with  such  cases:  see

§4.2 C. 

Theorem 1: Let X  be a continuous random variable with pdf f HxL, and let Y = uHXL define

a one-to-one transformation between the values of X and Y . Then the pdf of Y , say gHyL, is
(4.1)gHyL = f Iu-1 HyLM % J %

where  x = u-1 HyL  is  the  inverse  function  of  y = uHxL,  and  J = % u
-1 HyLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
%y

 denotes  the

Jacobian of the transformation; u-1  is assumed to be differentiable.
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Proof: We will only sketch the proof.1 To aid intuition, suppose Y = uHXL defines a one-to-

one  increasing  transformation  between  the values  of X  and  Y. Then PHY § yL = PHX § xL,
or  equivalently  in terms  of their  respective  cdfJs,  GHyL = FHxL.  Then,  by  the chain  rule  of

differentiation:

      gHyL = %GHyLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
%y

= %FHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
%x

 %xÅÅÅÅÅÅÅÅÅ
%y

= f HxL %xÅÅÅÅÅÅÅÅÅ
%y

          where x = u-1 HyL.
Remark: If X is a discrete random variable, then (4.1) becomes:

gHyL = f Iu-1 HyLM

The mathStatica  function,  Transform[eqn,  f]  finds  the density  of Y = uHXL,  where  X

has  density  f HxL,  for  both  continuous  and  discrete  random  variables,  while

TransformExtremum[eqn,  f]  calculates  the  domain  of  Y,  if  it  can  do  so.  As  per

Theorem  1,  Transform  and  TransformExtremum  should  only  be  used  on

transformations  that  are  one-to-one.  The  Transform  function  is  best  illustrated  by

example ^

�  Example 1:  Derivation of the Cauchy Distribution

Let X have Uniform density f HxL = 1ÅÅÅÅÅ
p

, defined on I- pÅÅÅÅÅ
2

, pÅÅÅÅÅ
2
M: 

f =
1
ÅÅÅÅ
p
; domain@fD = 9x, -

p
ÅÅÅÅ
2
,

p
ÅÅÅÅ
2
=;

Then, the density of Y = tanHXL is derived as follows:

Transform@y ã Tan@xD, fD
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p + p y2

with domain of support:

TransformExtremum@y ã Tan@xD, fD
8y, -�, �<

This is the pdf of a Cauchy distributed random variable. Note the double equal sign in the

transformation  equation:  y== Tan[x].  If,  by  mistake,  we  enter  y = Tan[x]  with  a

single equal sign (or if y was previously given some value), we would need to Clear[y]
before trying again. !
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�  Example 2:  Standardising a NHm, s2 L Random Variable

Let X ~ NHm, s2 L with density f HxL:
f =

&- Hx-mL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s
è!!!!!!!
2 p

; domain@fD = 8x, -�, �< && 8m ) Reals, s > 0<;
Then, the density of Z = X-mÅÅÅÅÅÅÅÅÅÅÅÅÅ

s
, denoted gHzL is:

g = TransformAz ã
x - m
ÅÅÅÅÅÅÅÅÅÅÅÅ

s
, fE

domain@gD = TransformExtremumAz ã
x - m
ÅÅÅÅÅÅÅÅÅÅÅÅ

s
, fE

'- z2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p8z, -�, �<
That is, Z is a NH0, 1L random variable. !

�  Example 3:  Derivation of the Lognormal Distribution

Let  X ~ NHm, s2 L  with density  f HxL,  as  entered above  in Example  2.  Then,  the density  of

Y = ,X , denoted gHyL, is:

g = Transform@y ã &x, fD
domain@gD = TransformExtremum@y ã &x, fD
'- Hm-Log@yDL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p y s8y, 0, �< && 8m ) Reals, s > 0<
This  is  a  Lognormal  distribution,  so  named  because  logHY L  has  a  Normal  distribution.

Figure 2 plots the Lognormal pdf, when m = 0 and s = 1.

PlotDensity@g ê. 8m Ø 0, s Ø 1<D;

2 4 6 8 10
y

0.1

0.2

0.3

0.4

0.5

0.6

g

Fig. 2:  Lognormal pdf
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�  Example 4:  Derivation of Uniform, Pareto, Extreme Value and Rayleigh Distributions

Let X have a standard Exponential distribution with density f HxL:
f = &- x; domain@fD = 8x, 0, �<;

We shall consider the following simple transformations:

(i) Y = ,-X      (ii) Y = ,X      (iii) Y = -logHXL     (iv) Y =
è!!!!

X

(i) When Y = ,-X , we obtain the standard Uniform distribution:

g = Transform@y ã &-x, fD
domain@gD = TransformExtremum@y ã &-x, fD
1

8y, 0, 1<
(ii) When Y = ,X , we obtain a Pareto distribution:

g = Transform@y ã &x, fD
domain@gD = TransformExtremum@y ã &x, fD
1

ÅÅÅÅÅÅÅ
y2

8y, 1, �<
More  generally,  if  X ~ ExponentialH 1ÅÅÅÅ

a
L,  then  Y = b ,X  Hb > 0L  yields  the  Pareto

density  with  pdf  a ba y-Ha+1L ,  defined  for  y > b.2  This  is  often  used  in  economics  to

model  the  distribution  of  income,  and  is  named  after  the  economist  Vilfredo  Pareto

(1848d1923).

(iii) When Y = -logHXL, we obtain the standard Extreme Value distribution:

g = Transform@y ã -Log@xD, fD
domain@gD = TransformExtremum@y ã -Log@xD, fD
'-'-y -y

8y, -�, �<
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(iv) When Y = è!!!!
X , we obtain a Rayleigh distribution:

g = TransformAy ã
è!!!!
x , fE

domain@gD = TransformExtremumAy ã
è!!!!
x , fE

2 '-y2 y

8y, 0, �<
as  given  in  the  Continuous  palette  (simply  replace  s  with  

è!!!!!!!!!
1 ê2  to  get  the  same

result).  More  generally,  if  X ~ ExponentialHlL,  then  Y =
è!!!!

X ~ RayleighHsL  with

s =
è!!!!!!!!!

l ê 2 .  This  distribution  is  often  used  in  engineering  to  model  the  life  of

electronic components. !

�  Example 5:  Transformations of the Uniform Distribution

Let X ~ UniformHa, bL with density f HxL, where 0 < a < b < �:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
b - a

; domain@fD = 8x, a, b< && 80 < a < b<;
We seek the distributions of: (i) Y = 1 + X2  and (ii) Y = H1 + XL-1 .

Solution: Let gHyL denote the pdf of Y . Then the solution to (i) is:

g = Transform@y ã 1 + x2, fD
domain@gD = TransformExtremum@y ã 1 + x2, fD

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!

-1 + y H-2 a + 2 bL
8y, 1 + a2, 1 + b2< && 80 < a < b<

while the solution to the second part is:

g = Transform@y ã H1 + xL-1, fD
domain@gD = TransformExtremum@y ã H1 + xL-1, fD

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-y2 a + y2 b

9y, 1
ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + b

, 1
ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + a

= && 80 < a < b<
Generally, transformations  involving parameters  pose no problem, provided we remember

to  attach  the  appropriate  assumptions  to  the  original  domain[f]  statement  at  the  very

start. !
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4.2 B Multivariate Cases

Thus  far,  we  have  considered  the  distribution  of  a  transformation  of  a  single  random

variable.  This  section  extends  the  analysis  to  more  than  one  random  variable.  The

concepts  discussed  in  the  univariate  case  carry  over  to  the  multivariate  case  with  the

appropriate modifications.

Theorem  2:  Let  X1  and  X2  be  continuous  random  variables  with  joint  pdf  f Hx1 , x2 L.  Let

Y1 = u1 HX1 , X2 L  and  Y2 = u2 HX1 , X2 L  define  a  one-to-one  transformation  between  the

values of HX1 , X2 L and HY1 , Y2 L. Then the joint pdf of Y1  and Y2  is

(4.2)    gHy1 , y2 L = f I u1
-1 Hy1 , y2 L , u2

-1 Hy1 , y2 L M % J %
where ui

-1 Hy1 , y2 L is the inverse function of Yi = ui HX1 , X2 L, and

J = det

i
k
jjjjjjjjjj
�x1ÅÅÅÅÅÅÅÅÅÅÅÅ
�y1

�x1ÅÅÅÅÅÅÅÅÅÅÅÅ
�y2

�x2ÅÅÅÅÅÅÅÅÅÅÅÅ
�y1

�x2ÅÅÅÅÅÅÅÅÅÅÅÅ
�y2

y
{
zzzzzzzzzz    

is  the  Jacobian  of  the  transformation,  with  �xiÅÅÅÅÅÅÅÅÅÅ
�y j

 denoting  the  partial  derivative  of

xi = ui
-1 Hy1 , y2 L  with  respect  to  yj ,  and  detH ÿ L  denotes  the  determinant  of  the  matrix.

Transformations in higher dimensional systems follow in similar fashion.

Proof: The proof is analogous to Theorem 1; see Tjur (1980, §3.1) for more detail.

Remark: If the Xi  are discrete random variables, (4.2) becomes:

        gHy1 , y2 L = f I u1
-1 Hy1 , y2 L, u2

-1 Hy1 , y2 L M

The  mathStatica  function,  Transform,  may  also  be  used  in  multivariate  settings.  Of

course, by Theorem 2, it should only be used to solve transformations that are one-to-one. 

The transition from univariate to multivariate transformations raises two new issues:

(i) How many random variables?

The  Transformation  Method  requires  that  there  are  as  many  fnewJ  variables  Yi  as

there  are  foldJ  variables  Xi .  Suppose,  for  instance,  that  X1 ,  X2  and  X3  have  joint  pdf

f Hx1 , x2 , x3 L,  and  that  we  seek  the  pdf  of  Y1 = u1 HX1 , X2 , X3 L.  This  problem  involves

three  steps.  First,  we  must  create  two  additional  random  variables,  Y2 = u2 HX1 , X2 , X3 L
and  Y3 = u3 HX1 , X2 , X3 L,  and  we  must  do  so  in  such  a  way  that  there  is  one-to-one

transformation from the values of HX1 , X2 , X3 L to HY1 , Y2 , Y3 L. This could, for example, be

done  by  setting  Y2 = X2 ,  and  Y3 = X3 .  Second,  we  can  then  find  the  joint  pdf  ofHY1 , Y2 , Y3 L. Third, we can then derive the desired marginal pdf of Y1  from the joint pdf ofHY1 , Y2 , Y3 L by integrating out Y2  and Y3 . Example 7 illustrates this procedure. 
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(ii) Non-rectangular domains

Let HX1 , X2 L have joint pdf f Hx1 , x2 L. Let Y1 = u1 HX1 , X2 L and Y2 = u2 HX1 , X2 L define

a one-to-one  transformation  from the values of HX1 , X2 L  to the values of  HY1 , Y2 L,  and let

gHy1 , y2 L  denote  the  joint  pdf  of  HY1 , Y2 L.  Finally,  let  A  denote  the  space  where

f Hx1 , x2 L > 0, and  let  B  denote  the space  where  gHy1 , y2 L > 0;  A  and  B  are  therefore  the

domains of support.  Then, the transformation  is said to map space A  (in the x1 -x2  plane)

onto space B (in the y1 -y2  plane).  If the domain of a joint pdf does not  depend on any of

its  constituent  random variables,  then  we say the domain  defines  an independent  product

space. For instance, the domain A = 8Hx1 , x2 L : 1ÅÅÅÅ
2

< x1 < 3, 1 < x2 < 4 < is an independent

product space,  because the domain of X1  does not depend on the domain of X2 ,  and vice

versa. If plotted in x1 -x2  space, this domain would appear rectangular, as the left panel in

Fig. 3 illustrates.

1ê2 3
x1

1

4

x2

1
y1

1

y2

Fig. 3:  Rectangular (left) and non-rectangular (right) domains

In  this  vein,  we  refer  to  domains  as  being  either  rectangular  or  non-rectangular.  Even

though space A  is rectangular,  it is important to realise that a multivariate  transformation

will often create dependence in space B. To see this, consider the following example:

�  Example 6:  A Non-Rectangular Domain

Let X1  and X2  be defined on the unit interval with joint pdf f Hx1 , x2 L = 1:

f = 1; domain@fD = 88x1, 0, 1<, 8x2, 0, 1<<;
Let Y1 = X1 + X2  and Y2 = X1 - X2 . Then, we have: 

eqn = 8y1 ã x1 + x2, y2 ã x1 - x2<;
Note  the  bracketing  on  the  transformation  equation! it  takes  the  same  form  as

MathematicaJs Solve function. Then the joint pdf of Y1  and Y2 , denoted gHy1 , y2 L, is:

g = Transform@eqn, fD
1
ÅÅÅÅ
2
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The mathStatica  function DomainPlot[eqn,  f]  illustrates  set B,  denoting the space  in

the y1 -y2  plane where gHy1 , y2 L = 1ÅÅÅÅ
2

.

DomainPlot@eqn, fD;

0 0.5 1 1.5 2
y1

-1

-0.5

0

0.5

1

y2

Fig. 4:  Space in the y1 -y2  plane where gHy1 , y2 L = 1ÅÅÅÅ
2

The  domain  here  is  B = 9Hy1 , y2 L : 0 < y1 + y2 < 2, -2 < y2 - y1 < 0=.  This  is  clearly  a

non-rectangular domain, indicating that Y1  and Y2  are dependent. 

Notes:

(i) In the multivariate  case,  TransformExtremum  does  not  derive  the domain  itself;

instead it calculates the extremities of the domain:

TransformExtremum@eqn, fD
88y1, 0, 2<, 8y2, -1, 1<<

This  is  sometimes  helpful  to  verify ones  working.  However,  as  this  example shows,

extremities  and  domains  are  not  always  the  same,  and  care  must  be  taken  not  to

confuse them. 

(ii) For more information on DomainPlot, see the mathStatica Help file.

(iii) It is worth noting that even though Y1  and Y2  are dependent, they are uncorrelated:

Corr@8x1 + x2, x1 - x2<, fD
0

It follows that zero correlation does not imply independence. !
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�  Example 7:  Product of Uniform Random Variables

Let  X1 ~ UniformH0, 1L  be  independent  of  X2 ~ UniformH0, 1L,  and  let  Y = X1  X2 .  Find

PHY § 1ÅÅÅÅ
4
L.

Solution: Due to independence, the joint pdf of X1  and X2 , say f Hx1 , x2 L, is just the pdf of

X1  multiplied by the pdf of X2 :

f = 1; domain@fD = 88x1, 0, 1<, 8x2, 0, 1<<;
Take  Y = X1  X2 ,  and  let  Z = X2 ,  so  that  the  number  of  fnewJ  variables  is  equal  to  the

number of foldJ ones. Then, the transformation equation is:

eqn = 8y == x1 x2, z == x2<;
Let gHy, zL denote the joint pdf of HY , ZL :

g = Transform@eqn, fD
1
ÅÅÅÅ
z

Since X1  and X2  are UH0, 1L, and Y = X1  X2  and Z = X2 , it follows that 0 < y < z < 1. To

see this visually, evaluate DomainPlot@eqn, fD. We enter 0 < y < z < 1 as follows:

domain@gD = 88y, 0, z<, 8z, y, 1<< ;
Then the marginal pdf of Y = X1  X2  is:

h = Marginal@y, gD
-Log@yD

with domain of support:

domain@hD = 8y, 0, 1<;
Finally, we require PHY § 1ÅÅÅÅ

4
L. This is given by:

ProbA 1
ÅÅÅÅ
4
, hE

1
ÅÅÅÅ
4

H1 + Log@4DL
which is approximately 0.5966. It can be helpful, sometimes, to check that oneJs symbolic

workings  make  sense  by  using  an  alternative  methodology.  For  instance,  we  can  use

simulation to estimate PHX1  X2 § 1ÅÅÅÅ4 L. Here, then, are 10000 drawings of Y = X1 X2 :

data = Table@ Random@D Random@D, 810000<D;
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We  now  count  how  many  copies  of  Y  are  smaller  than  (or  equal  to)  1ÅÅÅÅ4 ,  and  divide  by

10000 to get our estimate of PHY § 1ÅÅÅÅ
4
L:

Count@data, y_ ê; y § 1ÅÅÅ4 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

10000.

0.5952

which is close to the exact result derived above. !

4.2 C Transformations That Are Not One-to-One; 
Manual Methods

In §4.2 A, we considered  the transformation  Y = X2  defined  on x # H-1, 2L.  This is not  a

one-to-one  transformation,  because  for  some  values  of  Y  there  are  two  corresponding

values of X. This section discusses how to undertake such transformations.

Theorem 3: Let X  be a continuous random variable with pdf f HxL, and let Y = uHXL define

a transformation between the values of X  and Y  that is not one-to-one. Thus, if A denotes

the space where f HxL > 0, and B  denotes the space where gHyL > 0, then there exist points

in  B  that  correspond  to more  than one  point  in A.  However,  if  set  A  can  be partitioned

into  k  sets,  A1 , ^, Ak ,  such  that  u  defines  a one-to-one  transformation  of each  Ai  onto

Bi  (the image of Ai  under u), then the pdf of Y  is

(4.3)gHyL = 3
i=1

k

di HyL f Iui
-1 HyLM % Ji % for i = 1, ^, k

where di HyL = 1 if  yi # Bi  and  0 otherwise,  x = ui
-1 HyL is  the inverse  function of Y = uHXL

in partition i, and Ji = %ui
-1 HyLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
%y

 denotes the Jacobian of the transformation in partition i.3

All  this  really  means  is  that,  for  each  region  i,  we  simply  work  as  we  did  before  with

Theorem 1; we then add up all the parts i = 1, ^, k.

�  Example 8:  A Transformation That Is Not One-to-One

Let X  have pdf f HxL = ,x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
,2 -,-1  defined on x # H-1, 2L, and let Y = X2 . We seek the pdf of

Y . We have: 

f =
&x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
&2 - &-1

; domain@fD = 8x, -1, 2<; eqn = 8y ã x2<;

§4.2 B FUNCTIONS  OF  RANDOM  VARIABLES 127



Solution:  The  transformation  from X  to  Y  is  not  one-to-one  over  the  given  domain.  We

can, however, partition the domain into two sets of points that are both one-to-one. We do

this as follows:

f1 = f; domain@f1D = 8x, -1, 0<;
f2 = f; domain@f2D = 8x,   0, 2<;

Let  g1 HyL  denote  the  density  of  Y  corresponding  to  when  x § 0,  and  similarly,  let  g2 HyL
denote the density of Y  corresponding to x > 0:

8g1 = Transform@eqn, f1D, TransformExtremum@eqn, f1D<8g2 = Transform@eqn, f2D, TransformExtremum@eqn, f2D<
9 '1-

è!!!!y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + 2 '3L è!!!y , 8y, 0, 1<=

9 '1+
è!!!!y

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + 2 '3L è!!!y , 8y, 0, 4<=
By (4.3), it follows that

gHyL =  : g1 + g2 0 < y § 1

g2 1 < y < 4

which we enter, using mathStatica, as:

g = If@y § 1, g1 + g2, g2D; domain@gD = 8y, 0, 4<;
Figure 5 plots the pdf. 

PlotDensity@g, PlotRange Ø 80, .5<D;

1 2 3 4
y

0.1

0.2

0.3

0.4

0.5

g

Fig. 5:  The pdf of Y = X2 , with discontinuity at y = 1
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Despite  the  discontinuity  of  the  pdf  at  y = 1,  mathStatica  functions  such  as  Prob  and

Expect will still work perfectly well. For instance, here is the cdf PHY § yL:
cdf = Prob@y, gD
IfAy § 1,

2 ' SinhAè!!!y E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

-1 + '3 , -1 + '1+
è!!!!y

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + '3 E

This can be easily illustrated with Plot[cdf,{y,0,4}]. !

�  Example 9:  The Square of a Normal Random Variable: The Chi-squared Distribution

Let X ~ NH0, 1L with density f HxL. We seek the distribution of Y = X2 . Thus, we have:

f =
&- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<; eqn = 8y ã x2<;
Solution:  The  transformation  equation  here  is  not  one-to-one  over  the  given  domain.  By

Theorem 3, we can, however, partition the domain into two disjoint sets of points that are

both one-to-one:

f1 = f; domain@f1D = 8x, -�, 0<;
f2 = f; domain@f2D = 8x, 0, �<;

Let  g1 HyL  denote  the  density  of  Y  corresponding  to  when  x § 0,  and  similarly,  let  g2 HyL
denote the density of Y  corresponding to when x > 0:

8g1 = Transform@eqn, f1D, TransformExtremum@eqn, f1D<8g2 = Transform@eqn, f2D, TransformExtremum@eqn, f2D<
9 '-yê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!!!!2 p

è!!!y , 8y, 0, �<=
9 '-yê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!!!!2 p

è!!!y , 8y, 0, �<=
By Theorem 3, it follows that

gHyL =  : g1 + g2 0 < y < �
0 otherwise

where g1 + g2  is:

g1 + g2

'-yê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

è!!!y
This is the pdf of a Chi-squared random variable with 1 degree of freedom. !
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È Manual Methods

In all the examples above, we have always posed the transformation problem as:

Q. Let X be a random variable with pdf f HxL. What is the pdf of Y = ,X ?

A. Transform[y ã 'x, f]

But what if the same problem is posed as follows?

Q. Let X be a random variable with pdf f HxL. What is the pdf of Y , given X = logHY L?
A. Transform[x ã Log@yD, f] will fail, as this syntax is not supported. 

We are now left with two possibilities:

(i) We  could  simply  invert  the  transformation  equation  manually  in  Mathematica  with

Solve[x ã Log@yD, f],  and  then  derive  the  solution  automatically  with

Transform[y ã 'x, f].  Unfortunately,  Mathematica  may  not  always  be  able  to

neatly invert the transformation equation into the desired form, and we are then stuck.

(ii) Alternatively,  we could adopt a manual approach by implementing either Theorem 1

(§4.2 A) or Theorem 2 (§4.2 B) ourselves in Mathematica. In a univariate setting, the

basic approach would be to define:

g = Hf ê. x Ø Log@yDL * Jacob@x ê. x Ø Log@yD, yD
where the mathStatica function Jacob calculates the Jacobian of the transformation

in absolute value.  A multivariate example of a manual step-by-step  transformation is

given in Chapter 6 (see Example 20, §6.4 A).

4.3 The MGF Method
The  moment  generating  function  (mgf)  method  is  based  on  the  Uniqueness  Theorem

(§2.4 D)  which  states  that  there  is  a one-to-one  correspondence  between  the mgf and  the

pdf  of  a  random  variable  (if  the  mgf  exists).  Thus,  if  two  mgfJs  are  the  same,  then  they

must  share  the  same  density.  As  before,  let  X  have  density  f HxL,  and  consider  the

transformation to Y = uHXL. We seek the pdf of Y , say gHyL. Two steps are involved:

Step 1: Find the mgf of Y.  

Step 2: Hence, find the pdf of Y. This is normally done by matching the functional form of

the mgf of Y with well-known moment generating functions.  One usually does this armed

with  a  textbook  that  lists  the  mgfJs  for  well-known  distributions,  unless  one  has  a  fine

memory  for  such  things.  If  we  can  find  a  match,  then  the  pdf  is  identified  by  the

Uniqueness  Theorem.  Unfortunately,  this  matching  process  is  often  neither  easy  nor

obvious. Moreover, if the pdf of Y  is not well-known, then matching may not be possible.

The mgf method is particularly well-suited to deriving the distribution of sample sums and

sample means. This is discussed in §4.5 B, which provides further examples.
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�  Example 10:  The Square of a Normal Random Variable (again)

Let random variable X ~ NH0, 1L with pdf f HxL:
f =

&- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<;
We seek the distribution of Y = X2 .

Solution: The mgf of Y = X2  is given by EA,t X2 E:
mgfY = ExpectA&t x2 , fE

Q This further assumes that:  9t <
1
ÅÅÅÅ
2
=

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!1 - 2 t

By referring  to a listing of mgfJs, we see that this output is identical to the mgf of a Chi-

squared  random  variable  with  1  degree  of  freedom,  confirming  what  was  found  in

Example 9. Hence, if X ~ NH0, 1L, then X2  is Chi-squared with 1 degree of freedom. 

Using Characteristic Functions

The  Uniqueness  Theorem  applies  to  both  the  moment  generating  function  and  the

characteristic  function  (cf).  As  such,  instead  of  deriving  the  mgf  of  Y,  we  could  just  as

well  have  derived  the  characteristic  function.  Indeed,  using  the  cf  has  two  advantages.

First,  for  many  densities,  the  mgf  does  not  exist,  whereas  the  cf  does.  Second,  once  we

have  the  cf,  we  can  (in  theory)  derive  the  pdf  that  is  associated  with  it  by  means  of  the

Inversion Theorem (§2.4 D), rather  than trying to match it with a known cf in a textbook

appendix. This is particularly important if the derived cf is not of a standard (or common)

form.

In this vein, we now obtain the pdf of Y  directly by the Inversion Theorem. To start,

we need the cf. Since we already know the mgf (derived above), we can easily derive the

cf by simply replacing the argument t with Â t, as follows: 

cf = mgfY ê. t Ø Â t

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!1 - 2 Â t

and then apply the Inversion Theorem (as per §2.4 D) to yield the pdf:

pdf = InverseFourierTransform@cf, t, y,
FourierParameters Ø 81, 1<DH1 + Sign@yDL HCosh@ yÅÅÅ2 D - Sinh@ yÅÅÅ2 DL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!!!!2 p Hy2L1ê4
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which simplifies further if we note that Y  is always positive:

FullSimplify@pdf, y > 0D
'-yê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
è!!!y

which  is  the  pdf  we  obtained  in  Example  9.  Although  inverting  the  cf  is  much  more

attractive  than  matching  mgfJs  with  textbook  appendices,  the  inversion  process  is

computationally  difficult  (even  with  Mathematica)  and  success  is  not  that  common  in

practice. !

�  Example 11:  Product of Two Normals

Let  X1  and  X2  be independent  NH0, 1L  random  variables.  We wish  to  find  the  density  of

the product Y = X1 X2  using the mgf/cf method.

Solution: The joint pdf f Hx1 , x2 L is:

f =
&- x1 2ÅÅÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

&- x2 2ÅÅÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

;

domain@fD = 88x1, -�, �<, 8x2, -�, �<<;
The cf of Y  is given by EA, Â t Y E = EA, Â t X1  X2 E:

cf = Expect@&Â t x1  x2 , fD
Q This further assumes that:  8t2 > -1<

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!1 + t2

Inverting the cf yields the pdf of Y :

pdf = InverseFourierTransform@cf, t, y,
FourierParameters Ø 81, 1<D

BesselK@0, y Sign@yDD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p

where  BesselK  denotes  the  modified  Bessel  function  of  the  second  kind.  Figure  6

contrasts the pdf of Y with that of the Normal pdf.
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Fig. 6:  The pdf of the product of two Normals (!) compared to a Normal pdf (d d d)

4.4 Products and Ratios of Random Variables
This  section  discusses  random  variables  that  are  formed  as  products  or  ratios  of  other

random variables.

�  Example 12:  Product of Two Normals (again)

Let X1  and X2  be two independent standard Normal random variables. In Example 11, we

found  the  pdf  of  the  product  X1  X2  using  the  MGF  Method.  We  now  do  so  using  the

Transformation Method.

Solution: Let f Hx1 , x2 L denote the joint pdf of X1  and X2 . Due to independence,  f Hx1 , x2 L
is just the pdf of X1  multiplied by the pdf of X2 :

f =
&- x1 2ÅÅÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

&- x2 2ÅÅÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 88x1, -�, �<, 8x2, -�, �<<;
Let Y1 = X1  X2  and Y2 = X2 . Then, the joint pdf of HY1 , Y2 L, say gHy1 , y2 L, is:

g = Transform@8y1 ã x1  x2, y2 ã x2<, fD;
domain@gD  = 88y1, -�, �<, 8y2, -�, �<<;

In the interest of brevity, we have suppressed the output of g here by putting a semi-colon

at  the end  of each  line  of the  input.  Nevertheless,  one should  always inspect  the solution

for  g  by  removing  the  semi-colon,  before  proceeding  further.  Given  gHy1 , y2 L,  the

marginal pdf of Y1  is:

Marginal@y1, gD
BesselK@0, Abs@y1DDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p

as per Example 11. !
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�  Example 13:  Ratio of Two Normals: The Cauchy Distribution

Let X1  and X2  be two independent standard Normal random variables. We wish to find the

pdf of the ratio X1 êX2 .

Solution: The joint pdf f Hx1 , x2 L was entered in Example 12. Let gHy1 , y2 L denote the joint

pdf of Y1 = X1 êX2  and Y2 = X2 . Then:

g = TransformA9y1 ã
x1
ÅÅÅÅÅÅÅ
x2

, y2 ã x2=, fE;
domain@gD = 88y1, -�, �<, 8y2, -�, �<<;

Again, one should inspect the solution to g by removing the semi-colons. The pdf of Y1  is:

Marginal@y1, gD
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p + p y12

where  Y1  has  domain  of  support  H-�, �L.  That  is,  the  ratio  of  two  independent  NH0, 1L
random variables has a Cauchy distribution. !

�  Example 14:  Derivation of StudentJs t Distribution

Let X ~ NH0, 1L be independent of Y ~ Chi-squaredHnL. We seek the density of the (scaled)

ratio T = XÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!
Y ên

.

Solution:  Due  to  independence,  the  joint  pdf  of  HX, Y L,  say  f Hx, yL,  is  the  pdf  of  X

multiplied by the pdf of Y : 

f =
i
k
jjjjjj &- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

y
{
zzzzzz *

i
kjjjjj y

nÅÅÅÅ2 -1 &- yÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2nê2 G@ nÅÅÅ2 D y

{zzzzz;
domain@fD = 88x, -�, �<, 8y, 0, �<< && 8n > 0<;

Let T = XÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!
Yên

 and Z = Y . Then, the joint pdf of HT, ZL, say gHt, zL, is obtained with:

g = TransformA9t ã
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!
y ê n , z ã y=, fE;

domain@gD = 88t, -�, �<, 8z, 0, �<< && 8n > 0<;
Then, the pdf of T  is:

Marginal@t, gD
nnê2 Hn + t2L 1ÅÅÅÅ2 H-1-nL

G@ 1+nÅÅÅÅÅÅÅ2 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!

p G@ nÅÅÅ2 D
where T  has domain  of support  H-�, �L.  This is the pdf  of a random variable distributed

according to StudentJs t distribution with n degrees of freedom. !
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�  Example 15:  Derivation of FisherJs F Distribution

Let  X1 ~ ca
2  be  independent  of  X2 ~ cb

2 ,  where  ca
2  and  cb

2  are  Chi-squared  distributions

with  degrees  of  freedom  a  and  b,  respectively.  We  seek  the  distribution  of  the  (scaled)

ratio R = X1 ê aÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
X2 ê b

.

Solution:  Due to independence,  the joint  pdf  of HX1 , X2 L ,  say f Hx1 , x2 L,  is just  the pdf  of

X1  multiplied by the pdf of X2 : 

f =
i
k
jjjjjjj x1

aÅÅÅÅ2 -1
&- x1ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

aÅÅÅÅ2 G@ aÅÅÅ2 D
y
{
zzzzzzz *

i
k
jjjjjjj x2

bÅÅÅÅ2 -1
&- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

bÅÅÅÅ2 G@ bÅÅÅ
2
D

y
{
zzzzzzz;

domain@fD = 88x1, 0, �<, 8x2, 0, �<< && 8a > 0, b > 0<;
Let Z = X2 . Then, the joint pdf of HR, ZL , say gHr, zL, is obtained with:

g = TransformA9r ã
x1 ê a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x2 ê b , z ã x2=, fE;

domain@gD = 88r, 0, �<, 8z, 0, �<< && 8a > 0, b > 0<;
Then, the pdf of random variable R is:

Marginal@r, gD
H a rÅÅÅÅÅÅb Laê2 H1 + a rÅÅÅÅÅÅb L 1ÅÅÅÅ2 H-a-bL

G@ a+bÅÅÅÅÅÅÅ2 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r G@ aÅÅÅ2 D G@ bÅÅÅ2 D
with  domain  of  support  H0, �L.  This  is  the  pdf  of  a  random  variable  with  FisherJs  F

distribution,  with parameters  a  and b  denoting the numerator  and denominator  degrees of

freedom, respectively. !

�  Example 16:  Derivation of Noncentral F Distribution

Let X1 ~ ca
2 HlL be independent of X2 ~ cb

2 , where ca
2 HlL denotes a noncentral Chi-squared

distribution  with  noncentrality  parameter  l.  We  seek the  distribution  of the  (scaled)  ratio

R = X1 ê aÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
X2 ê b

.

Solution: Let f Hx1 , x2 L denote the joint pdf of X1  and X2 . Due to independence,  f Hx1 , x2 L
is  just the pdf of X1  multiplied by the pdf of X2 .  As usual,  the Continuous palette  can be

used to help enter the densities:

f = J2-aê2 &-Hx1 +lLê2 x1 Ha-2Lê2 *

Hypergeometric0F1RegularizedA a
ÅÅÅÅ
2
,

x1 l
ÅÅÅÅÅÅÅÅÅÅÅ
4

EN 
i
k
jjjjjjj x2

bÅÅÅÅ2 -1
&- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

bÅÅÅÅ2 G@ bÅÅÅ
2
D
y
{
zzzzzzz;

domain@fD = 88x1, 0, �<, 8x2, 0, �<< && 8a > 0, b > 0, l > 0<;
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With Z = X2 , the joint pdf of HR, ZL, say gHr, zL, is obtained with:

g = TransformA9r ã
x1 ê a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x2 ê b , z ã x2=, fE;

domain@gD = 88r, 0, �<, 8z, 0, �<< && 8a > 0, b > 0, l > 0<;
Then, the pdf of random variable R is:

Marginal@r, gD
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r G@ bÅÅÅ2 D  

ikjjj'-lê2 I a r
ÅÅÅÅÅÅÅÅ
b

Maê2 I1 +
a r
ÅÅÅÅÅÅÅÅ
b

M 1ÅÅÅÅ2 H-a-bL
GA a + b

ÅÅÅÅÅÅÅÅÅÅÅÅ
2

E
Hypergeometric1F1RegularizedA a + b

ÅÅÅÅÅÅÅÅÅÅÅÅ
2

, a
ÅÅÅÅ
2
, a r l

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 b + 2 a r

Ey{zzz
with  domain  of  support  H0, �L.  This  is  the  pdf  of  a  random  variable  with  a  noncentral  F

distribution with noncentrality parameter l, and degrees of freedom a and b. !

4.5 Sums and Differences of Random Variables
This  section  discusses  random  variables  that  are  formed  as  sums  or  differences  of  other

random  variables.  §4.5 A  applies  the  Transformation  Method,  while  §4.5 B  applies  the

MGF  Method  which  is  particularly  well-suited  to  dealing  with  sample  sums  and  sample

means.

4.5 A Applying the Transformation Method

�  Example 17:  Sum of Two Exponential Random Variables

Let  X1  and  X2  be  independent  random  variables,  each  distributed  Exponentially  with

parameter l. We wish to find the density of X1 + X2 .

Solution: Let f Hx1 , x2 L denote the joint pdf of HX1 , X2 L: 
f =

&- x1ÅÅÅÅÅÅl

ÅÅÅÅÅÅÅÅÅÅÅÅ
l

*
&- x2ÅÅÅÅÅÅl

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
l

; domain@fD = 88x1, 0, �<, 8x2, 0, �<<;
Let  Y = X1 + X2  and  Z = X2 .  Since  X1  and  X2  are  positive,  it  follows  that 0 < z < y < �.

Then the joint pdf of HY , ZL, say gHy, zL, is obtained with: 

g = Transform@8y ã x1 + x2, z ã x2<, fD;
domain@gD = 88y, z, �<, 8z, 0, y<<;
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Then, the pdf of Y = X1 + X2  is:

Marginal@y, gD
'- yÅÅÅÅl y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l2

with  domain  of  support  H0, �L,  which  is  the  pdf  of  a  random  variable  with  a  Gamma

distribution  with shape parameter  a = 2, and  scale parameter  b = l.  This is easy to verify

using mathStaticaJs Continuous palette. !

�  Example 18:  Sum of Poisson Random Variables

Let X1 ~ PoissonHl1 L be independent  of X2 ~ PoissonHl2 L. We seek the distribution of the

sum X1 + X2 .

Solution: Let f Hx1 , x2 L denote the joint pmf of HX1 , X2 L: 
f =

&-l1  l1
x1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x1 !

&-l2  l2
x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x2 !

;

domain@fD = 88x1, 0, �<, 8x2, 0, �<< && 8Discrete<;
Let Y = X1 + X2  and Z = X2 . Then the joint pmf of HY , ZL, say gHy, zL, is: 

g = Transform@8y == x1 + x2, z == x2<, fD
'-l1 -l2 l1

y-z l2
z

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHy - zL! z!

where 0 § z § y < �. We seek the pmf of Y , and so sum out the values of Z:

sol = 6
z=0

y

Evaluate@gD
'-l1 -l2 l1

y H l1 +l2ÅÅÅÅÅÅÅÅÅÅÅl1
Ly

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@1 + yD

which simplifies further:

FullSimplify@sol, y ) IntegersD
'-l1 -l2 Hl1 + l2LyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@1 + yD
This  is  the  pmf  of  a  PoissonHl1 + l2 L  random  variable.  Thus,  the  sum  of  independent

Poisson  variables  is  itself  Poisson  distributed.  This  result  is  particularly  important  in  the

following  scenario:  consider  the  sample  sum  comprised  of  n  independent  PoissonHlL
variables. Then, i=1

n
Xi ~ PoissonHn lL. !
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�  Example 19:  Sum of Two Uniform Random Variables: A Triangular Distribution

Let  X1 ~ UniformH0, 1L  be  independent  of  X2 ~ UniformH0, 1L.  We  seek  the  density  of

Y = X1 + X2 .

Solution: Let f Hx1 , x2 L denote the joint pdf of HX1 , X2 L: 
f = 1; domain@fD = 88x1, 0, 1<, 8x2, 0, 1<<;

Let Y = X1 + X2  and Z = X2 . Then the joint pdf of HY , ZL, say gHy, zL, is: 

eqn = 8y ã x1 + x2, z ã x2<; g = Transform@eqn, fD
1

Deriving  the  domain  of  this  joint  pdf  is  a  bit  more  tricky,  but  can  be  assisted  by  using

DomainPlot, which again plots the space in the y-z plane where gHy, zL > 0:

DomainPlot@eqn, fD;

0 1 2

y

0

1

z

Fig. 7:  The space in the y-z plane where gHy, zL > 0

We see that the domain (the shaded region) can be defined as follows:

When y < 1:   0 < z < y < 1

When y > 1:   1 < y < 1 + z < 2, or equivalently, 0 < y - 1 < z < 1

The  density  of  Y ,  say  hHyL,  is  then  obtained  by  integrating  out  Z  in  each  part  of  the

domain. This is easiest to do manually here:

h = IfAy < 1, EvaluateA7
0

y

g 7zE, EvaluateA7
y-1

1

g 7zEE
If@y < 1, y, 2 - yD
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with domain of support:

domain@hD = 8y, 0, 2<;
Figure 8 plots the pdf of Y .

PlotDensity@hD;

0.5 1 1.5 2
y

0.2

0.4

0.6

0.8

1

h

Fig. 8:  Triangular pdf

This  is known as a Triangular distribution.  More generally,  if X1 , ^, Xn  are independent

Uniform(0,1)  random  variables,  the  distribution  of  Sn = i=1
n

X i  is  known  as  the

IrwindHall  distribution  (see  Example  18  of  Chapter  2).  By  contrast,  the  distribution  of

Sn ên is known as BatesJs distribution (cf. Example 6 of Chapter 8). !

�  Example 20:  Difference of Exponential Random Variables: The Laplace Distribution

Let  X1  and  X2  be  independent  random  variables,  each  distributed  Exponentially  with

parameter l = 1. We seek the density of Y = X1 - X2 .

Solution: Let f Hx1 , x2 L denote the joint pdf of X1  and X2 . Due to independence:

f = &- x1 * &- x2 ; domain@fD = 88x1, 0, �<, 8x2, 0, �<< ;
Let Z = X2 . Then the joint pdf of HY , ZL, say gHy, zL, is: 

eqn = 8y ã x1 - x2, z ã x2<; g = Transform@eqn, fD
'-y-2 z

Deriving the domain of support of Y  and Z  is a bit more tricky. To make things clearer, we

again  use DomainPlot  to  plot  the  space in the  y-z  plane  where gHy, zL > 0. Because  x1
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and  x2  are  unbounded  above,  we  need  to  manually  specify  the  plot  bounds;  we  use8x1, 0, 100<, 8x2, 0, 100< here: 

DomainPlot@eqn, f, 8x1, 0, 100<, 8x2, 0, 100<,
PlotRange Ø 88-2, 2<, 8-1, 3<<D;

-2 -1 0 1 2

y

-1

0

1

2

3

z

Fig. 9:  The domain of support of Y  and Z

This suggests that the domain (the shaded region in Fig. 9) can be defined as follows:

When y < 0:   0 < -y § z < �
When y > 0: 80 < y < �, 0 < z < �<

The  density  of  Y ,  say  hHyL,  is  then  obtained  by  integrating  out  Z  in  each  part  of  the

domain. This is done manually here:

h = IfAy < 0, EvaluateA7
-y

�

g 7zE, EvaluateA7
0

�

g 7zEE
IfAy < 0, 'y

ÅÅÅÅÅÅÅ
2
, '-y

ÅÅÅÅÅÅÅÅÅ
2

E
with domain of support:

domain@hD = 8y, -�, �<;
This  is often  expressed  in  texts  as hHyL = 1ÅÅÅÅ

2
,-» y » ,  for  y # !.  This is  the  pdf  of  a random

variable  with  a  standard  Laplace  distribution  (also  known  as  the  Double  Exponential

distribution). !
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4.5 B Applying the MGF Method
The  MGF  Method  is  especially  well-suited  to  finding  the  distribution  of  the  sum  of

independent  and  identical  random variables.  Let  HX1 , ^, Xn L  denote  a  random sample  of

size n drawn from a random variable X whose mgf is MX HtL. Further, let:

(4.4)

s1 = 
i=1

n

Xi Hsample sumL
s2 = 

i=1

n

Xi
2 Hsample sum of squaresL

Then, the following results are a special case of the MGF Theorem of Chapter 2:

(4.5)

mgf of  s1 : Ms1
HtL = ¤

i=1

n

MX HtL = 8MX HtL<n = IEA,t X EMn
mgf of  X

êêê
= s1ÅÅÅÅÅÅÅ

n
: M

X
êêê HtL = Ms1

H tÅÅÅÅ
n
L = 8MXH tÅÅÅÅ

n
L<n = IEA, tÅÅÅÅÅn X EMn

mgf of  s2 : Ms2
HtL = ¤

i=1

n

MX
2 HtL = 8MX

2 HtL<n = IEA,t X2 EMn
We shall make use of these relations in the following examples.

�  Example 21:  Sum of n Bernoulli Random Variables: The Binomial Distribution

Suppose  that  the  discrete  random  variable  X  is  Bernoulli  distributed  with  parameter  p.

That is, X ~ BernoulliHpL, where PHX = 1L = p, PHX = 0L = 1 - p, and 0 < p < 1.

g = px H1 - pL1 - x;
domain@gD = 8x, 0, 1< && 80 < p < 1< && 8Discrete<;

For a random sample of size n on X, the mgf of the sample sum s1  is derived from (4.5) as:

mgfs1 = Expect@&t x, gDn
H1 + H-1 + 'tL pLn

This  is equivalent  to the mgf of a Binomial(n,  p) variable,  as the reader  can easily verify

(use  the Discrete  palette  to  enter  the  Binomial  pmf).  Therefore,  if  X ~ BernoulliHpL,  then

s1 ~ BinomialHn, pL. !

�  Example 22:  Sum of n Exponential Random Variables: The Gamma Distribution

Let X ~ ExponentialHlL. For a random sample of size n, HX1 , ^, Xn L, we wish to find the

distribution of the sample sum s1 = i=1
n

Xi .

Solution: Let f HxL denote the pdf of X:

f =
1
ÅÅÅÅ
l

&- xêl ; domain@fD = 8x, 0, �< && 8l > 0<;
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By (4.5), the mgf of the sample sum s1  is:

mgfs1 = Expect@&t x, fDn
J 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - t l

Nn
This  is identical to the mgf of a GammaHa, bL  random variable  with parameter  a = n,  and

b = l, as we now verify:

g =
xa-1  &-xêb
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@aD ba ; domain@gD = 8x, 0, �< && 8a > 0, b > 0<;
Expect@&t x, gD
H1 - b tL-a

Thus, if X ~ ExponentialHlL, then s1 ~ GammaHn, lL. !

�  Example 23:  Sum of n Chi-squared Random Variables

Let  X ~ cv
2 ,  a  Chi-squared  random  variable  with  v  degrees  of  freedom,  and  letHX1 , ^, Xn L  denote  a  random  sample  of  size  n  drawn  from  X.  We  wish  to  find  the

distribution of the sample sum s1 = i=1
n

Xi .

Solution: Let f HxL denote the pdf of X:

f =
xvê2-1  &-xê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2vê2  G@ vÅÅÅ

2
D ; domain@fD = 8x, 0, �< && 8v > 0<;

The mgf of X is:

mgf = Expect@&t x, fD
Q This further assumes that:  9t <

1
ÅÅÅÅ
2
=H1 - 2 tL-vê2

By (4.5), the mgf of the sample sum s1  is:

mgfs1 = mgfn êê PowerExpand

H1 - 2 tL- n vÅÅÅÅÅÅÅ2

which  is the mgf of  a Chi-squared random variable with n v  degrees  of freedom.  Thus, if

X ~ cv
2 , then s1 ~ cn v

2 . !
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�  Example 24:  Distribution of the Sample Mean for a Normal Random Variable

If X ~ NHm, s2 L, find the distribution of the sample mean, for a random sample of size n.

Solution: Let f HxL denote the pdf of X:

f =
&- Hx-mL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s
è!!!!!!!
2 p

; domain@fD = 8x, -�, �< && 8m ) Reals, s > 0<;
Then the mgf of the sample mean, X

êêê
, is given by (4.5) as IEA, tÅÅÅÅÅ

n
X E Mn :

ExpectA&
tÅÅÅÅn x, fEn êê PowerExpand êê Simplify

't m+ t2 s2ÅÅÅÅÅÅÅÅÅÅÅ2 n

which is the mgf of a NIm, s2

ÅÅÅÅÅÅÅÅ
n
M variable. Therefore, X

êêê
~ NIm, s2

ÅÅÅÅÅÅÅÅ
n
M. !

�  Example 25:  Distribution of the Sample Mean for a Cauchy Random Variable

Let X  be a Cauchy random variable. We wish to find the distribution of the sample mean,

X
êêê

, for a random sample of size n.

Solution: Let f HxL denote the pdf of X:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p H1 + x2L ; domain@fD = 8x, -�, �<;

The  mgf  of  a  Cauchy  random  variable  does  not  exist,  so  we  shall  use  the  characteristic

function (cf) instead, as the latter always exists. Recall that the cf of X is E@,Â t X D:
cf = Expect@&Â t x, fD

Q This further assumes that:  8Im@tD == 0<
'-t Sign@tD

By (4.5), the cf of X
êêê

 is given by:

cfXê = Jcf ê. t Ø
t
ÅÅÅÅ
n
Nn êê Simplify@#, 8n > 0, n ) Integers<D &

'-t Sign@tD
Note that the cf of X

êêê
 is identical to the cf of X.  Therefore, if X is Cauchy, then X

êêê
 has the

same distribution. !
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�  Example 26:  Distribution of the Sample Sum of Squares for Xi ~ NHm, 1L
    Ø Derivation of a Noncentral Chi-squared Distribution

Let HX1 , ^, Xn L be independent random variables, with Xi ~ NHm, 1L. We wish to find the

density of the sample sum of squares s2 = i=1
n

Xi
2  using the mgf method.

Solution: Let X ~ NHm, 1L have pdf f HxL:
f =

&- 1ÅÅÅÅ2 Hx-mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!

2 p
; domain@fD = 8x, -�, �<;

By (4.5), the mgf of s2  is HE @,t X2 DLn :

mgf = ExpectA&t x2 , fEn êê PowerExpand

Q This further assumes that:  9t <
1
ÅÅÅÅ
2
=

'
n t m2ÅÅÅÅÅÅÅÅÅÅÅÅ1-2 t H1 - 2 tL-nê2

This expression is equivalent to the mgf of a noncentral Chi-squared variable cn
2  HlL with n

degrees  of  freedom  and  noncentrality  parameter  l = n m2 .  To  demonstrate  this,  we  use

mathStaticaJs  Continuous  palette  to  input  the  cn
2  HlL  pdf,  and  match  its  mgf  to  the  one

derived above:

f =
Hypergeometric0F1Regularized@ nÅÅÅ2 ,

x lÅÅÅÅÅÅ4 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2nê2 &Hx+lLê2 x- Hn-2Lê2 ;

domain@fD = 8x, 0, �< && 8n > 0, l > 0<;
Its mgf is given by:

Expect@&t x, fD
Q This further assumes that:  9t <

1
ÅÅÅÅ
2
=

'
t lÅÅÅÅÅÅÅÅÅÅÅ1-2 t H1 - 2 tL-nê2

We see that the mgfJs are equivalent provided l = n m2 , as claimed. Thus, if X ~ NHm, 1L,
then  s2 = 

i=1
n

Xi
2 ~ cn

2 Hn m2 L.  If  m = 0,  the  noncentrality  parameter  disappears,  and  we

revert to the familiar Chi-squared(n) pdf:

f ê. l Ø 0

2-nê2 '-xê2 x 1ÅÅÅÅ2 H-2+nL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@ nÅÅÅ2 D
Figure 10 illustrates the noncentral Chi-squared pdf cn=4

2 HlL, at different values of l.
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Fig. 10:  Noncentral Chi-squared pdf when n = 4 and l = 0, 1, 2, 3

�  Example 27:  Distribution of the Sample Sum of Squares About the Mean

Let HX1 , ^, Xn L be independent random variables, with Xi ~ NH0, 1L. We wish to find the

density  of  the  sum  of  squares  about  the  sample  mean;  i.e.  SS = i=1
n HXi - X

êêêL2  where

X
êêê

= 1ÅÅÅÅ
n

 i=1
n

Xi .  Unlike  previous  examples,  the  random  variable  SS  is  not  listed  in  (4.5).

Nevertheless,  we  can  find  the  solution  by  first  applying  a  transformation  known  as

HelmertXs transformation  and then applying a result obtained above with the mgf method.

HelmertJs transformation is given by: 

(4.6)

Y1 =    HX1 - X2 L ëè!!!
2

Y2 =   HX1 + X2 - 2 X3 L ëè!!!
6

Y3 =   HX1 + X2 + X3 - 3 X4 L ëè!!!!!!
12

ª    
Yn-1 =   HX1 + X2 + � + Xn-1 - Hn - 1L Xn L ëè!!!!!!!!!!!!!!!!!

n Hn - 1L
Yn =   HX1 + X2 + � + Xn L ëè!!!

n

For our purposes, the Helmert transformation has two important features:

(i) If each Xi  is independent NH0, 1L, then each Yi  is also independent NH0, 1L.
(ii) SS = i=1

n HXi - X
êêêL2 = i=1

n-1
Yi

2 .

The  rest  is  easy:  we  know  from  Example  26  that  if  Yi ~ NH0, 1L,  then  i=1
n-1

Yi
2  is  Chi-

squared  with  n - 1  degrees  of  freedom.  Therefore,  for  a  random  sample  of  size  n  on  a

standard Normal random variable, 
i=1
n HXi - X

êêêL2 ~ cn-1
2 . 
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To  illustrate  properties  (i)  and  (ii),  we  can  implement  the  Helmert  transformation

(4.6) in Mathematica:

Helmert@n_IntegerD := AppendA
TableAyj ==

i=1
j xi - j xj+1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!
j Hj + 1L , 8j, n - 1<E, yn ==

i=1
n xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
n

E
When, say, n = 4, we have:

X
8

= Table@xi, 8i, 4<D;
Y
8

= Table@yi, 8i, 4<D;
eqn = Helmert@4D
9 y1 ==

x1 - x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2  ,

 y2 ==
x1 + x2 - 2 x3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!6  ,

 y3 ==
x1 + x2 + x3 - 3 x4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 è!!!3  ,

 y4 ==
1
ÅÅÅÅ
2

Hx1 + x2 + x3 + x4L =
Let f Hx;L denote the joint pdf of the Xi :

f = Â
i=1

n
&- xi 2

ÅÅÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

ê. n Ø 4; domain@fD = ThreadA9X8, -�, �=E;
and let gHy;L denote the joint pdf of the Yi :

g = Transform@eqn, fD
domain@gD = ThreadA9Y8, -�, �=E;
'

1ÅÅÅÅ2 H-y1
2 -y2

2-y3
2 -y4

2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 p2

Property (i) states that if the Xi  are NH0, 1L, then the Yi  are also independent NH0, 1L.
This is easily verified! the marginal distributions of each of Y1 , Y2 , Y3  and Y4 :

MapA Marginal@ #, gD &, Y
8 E

9 '- y1
2

ÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

, '- y2
2

ÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

, '- y3
2

ÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

, '- y4
2

ÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

=
^  are  all  NH0, 1L,  while  independence  follows  since  the  joint  pdf  gHy;L  is  equal  to  the

product of the marginals.
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Property  (ii)  states  that  
i=1
n HXi - X

êêêL2 = 
i=1
n-1

Yi
2 .  To  show  this,  we  first  find  the

inverse of the transformation equations:

inv = SolveAeqn, X
8EP1T

9 x4 Ø
1
ÅÅÅÅ
2

I-
è!!!3 y3 + y4M ,

 x3 Ø
1
ÅÅÅÅ
6

I-2 è!!!6 y2 +
è!!!3 y3 + 3 y4M ,

 x1 Ø
1
ÅÅÅÅ
6

I3 è!!!2 y1 +
è!!!6 y2 +

è!!!3 y3 + 3 y4M ,

 x2 Ø
1
ÅÅÅÅ
6

I-3 è!!!2 y1 +
è!!!6 y2 +

è!!!3 y3 + 3 y4M =
and then examine the sum 

i=1
n HXi - X

êêêL2 , given the transformation of X to Y:

<
i=1

n i
kjjjjjxi -

1
ÅÅÅÅ
n

 6
i=1

n

xi
y
{zzzzz
2 ê. n Ø 4 ê. inv êê Simplify

y1
2 + y2

2 + y3
2

One final point is especially worth noting: since SS is a function of HY1 , Y2 , Y3 L, and since

each of these variables is independent of Y4 , it follows that SS is independent of Y4  or any

function of it, including Y4 ëè!!!
n , which is equal to X

êêê
, by (4.6). Hence, in Normal samples,

SS  is  independent  of  X
êêê

.  This  applies  not  only  when  n = 4,  but  also  quite  generally  for

arbitrary  n.  The  independence  of  SS  and  X
êêê

 in  Normal  samples  is  an  important  property

that is useful when constructing statistics for hypothesis testing. !

4.6 Exercises
1. Let  X ~ UniformH0, 1L.  Show  that  the  distribution  of  Y = logI XÅÅÅÅÅÅÅÅÅÅÅÅ

1-X
M  is  standard

Logistic. 

2. Let X ~ NHm, s2 L. Find the distribution of Y = expHexpHXLL.
3. Find the pdf of Y = 1 êX:

(i) if X ~ GammaHa, bL; (Y  has an InverseGammaHa, bL distribution).

(ii) if X ~ PowerFunctionHa, cL; (Y  has a Pareto distribution).

(iii) if X ~ InverseGaussianHm, lL; (Y  has a Random Walk distribution).

Plot the Random Walk pdf when m = 1 and l = 1, 4 and 16.

4. Let X  have a MaxwelldBoltzmann distribution. Find the distribution of Y = X2  using

both the Transformation Method and the MGF Method.

5. Let X1  and X2  have joint pdf f Hx1 , x2 L = 4 x1x2 , 0 < x1 < 1, 0 < x2 < 1. Find the joint

pdf of Y1 = X1
2  and Y2 = X1X2 . Plot the domain of support of Y1  and Y2 .
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6. Let  X1  and  X2  be  independent  standard  Cauchy  random  variables.  Find  the

distribution of Y = X1 X2  and plot it.

7. Let X1  and X2  be independent Gamma variates with the same scale parameter b. Find

the distribution of Y = X1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
X1 + X2

.

8. Let  X ~ GeometricHpL  and  Y ~ GeometricHqL  be  independent  random variables.  Find

the  distribution  of  Z = Y - X.  Plot  the  pmf  of  Z  when  (i)  p = q = 1ÅÅÅÅ
2

,  (ii)  p = 1ÅÅÅÅ
2

,

q = 1ÅÅÅÅ
8

.

9. Find the sum of n independent GammaHa, bL random variables.
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Chapter 5

Systems of Distributions

5.1 Introduction

This  chapter  discusses  three  systems  of  distributions:  (i)  the  Pearson family,  §5.2,  which
defines  a  density  in  terms  of  its  slope;  (ii)  the  Johnson  system,  §5.3,  which  describes  a
density  in  terms  of  transformations  of  the  standard  Normal;  and  (iii)  a  GramDCharlier
expansion,  §5.4,  which represents  a  density  as a series  expansion  of the standard  Normal
density. 

The Pearson system, in particular, is of interest in its own right because it nests many
common distributions such as the Gamma, Normal, StudentJs  t, and Beta as special cases.
The family of stable distributions is discussed in Chapter 2. Non-parametric kernel density
estimation is briefly discussed in §5.5, while the method of moments estimation technique
(used throughout the chapter) is covered in §5.6.

5.2 The Pearson Family

5.2 A Introduction

The Pearson system is the family of solutions pHxL to the differential equation

(5.1)
! pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

!x
= - a + xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c0 + c1  x + c2 x2 pHxL 
that  yield  well-defined  density  functions.  The  shape  of  the  resulting  distribution  will
clearly  depend  on  the  Pearson  parameters  (a,  c0 ,  c1 ,  c2 ).  As  we  shall  see  later,  these
parameters  can  be  expressed  in  terms  of  the  first  four  moments  of  the  distribution
(§5.2 D).  Thus,  if  we  know  the  first  four  moments,  we  can  construct  a  density  function
that  is  consistent  with  those  moments.  This  provides  a  rather  neat  way  of  constructing
density  functions  that  approximate  a  given  set  of  data.  Karl  Pearson  grouped  the  family
into a number of types (§5.2 C). These types can be classified in terms of b1  and b2  where

(5.2)b1 =
m3

2

ÅÅÅÅÅÅÅÅÅ
m2

3 and b2 =
m4ÅÅÅÅÅÅÅÅÅ
m2

2 .



The  value  of  è!!!!!!b1  is  often  used  as  a  measure  of  skewness,  while  b2  is  often  used  as  a
measure of kurtosis. Figure 1 illustrates this classification system in Hb1 , b2 L space.
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Fig. 1:  The b1 , b2  chart for the Pearson system

The classification consists of several types, as listed in Table 1.

Main types : Type  I including I HUL and I HJL , Type  IV and Type  VI

Transition types : Type  III Ha lineL, Type  V Ha lineL
Symmetrical types : If the distribution is symmetrical, then m3 = 0, so b1 = 0.

This yields three special cases :
^ The N at H0, 3L denotes the Normal  distribution.
^ Type  II  Hnot labelledL occurs when b1 = 0 and b2 < 3,

and is thus just a special case of Type  I.
^ Type  VII  occurs when b1 = 0 and b2 > 3 Ha special case of Type  IVL.

Table 1:  Pearson types

The dashed  line  denotes  the upper  limit  for  all  distributions.  The vertical  axis is  `upside-
downJ.  This  has  become  an  established  (though  rather  peculiar)  convention  which  we
follow.  Type  I,  I(U)  and  I(J)  all  share  the  same  functional  form! they  are  all  Type  I.
However,  they differ in appearance:  Type I(U)  yields a U-shaped density, while Type I(J)

yields  a  J-shaped  density.1  The  electronic  notebook  version  of  this  chapter  provides  an

animated tour of the Pearson system here: �
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5.2 B Fitting Pearson Densities

This section illustrates how to construct a Pearson distribution that is consistent with a set
of data whose first four moments are known. With mathStatica, this is a two step process:

(i) Use  PearsonPlot@8m2 , m3 , m4 <D  to  ascertain  which  Pearson  Type  is  consistent
with the data.

(ii) If  it  is  say  Type  III,  then  PearsonIII@m, 8m2 , m3 , m4 <, xDyields  the  desired
density function f HxL (and its domain).

The full set of functions is:

PearsonI PearsonII PearsonIII PearsonIV
PearsonV PearsonVI PearsonVII

In the following examples, we categorise data as follows:

^  Is it population data or sample data?
^  Is it raw data or grouped data?

�  Example 1:  Fitting a Pearson Density to Raw Population Data

The  marks.dat  data  set  lists  the  final  marks  of  all  891  first  year  students  in  the
Department of Econometrics at the University of Sydney in 1996. It is raw data because it
has not been grouped or altered in any way, and may be thought of as population data (as
opposed  to  sample  data)  because  the  entire  populationJs  results  are  listed  in the  data  set.
To proceed, we first load the data set into Mathematica:

data = ReadList@"marks.dat"D;
and then find its mean:

mean = SampleMean@dataD êê N

58.9024

We  can  use  the  mathStatica  function  FrequencyPlot  to  get  an  intuitive  visual
perspective on this data set:

FrequencyPlot@dataD;
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Fig. 2:  Frequency polygon of student marks
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The x-axis in Fig. 2 represents the range of possible marks from 0 to 100, while the y-
axis  plots  frequency.  Of  course,  there  is  nothing  absolute  about  the  shape  of  this  plot,
because  the  shape  varies  with  the  chosen  bandwidth  c.  To  see  this,  evaluate
FrequencyPlot[data,  {0,  100,  c}]  at  different  values  of  c,  changing  the  bandwidth
from, say, 4 to 12. Although the shape changes, this empirical pdf nevertheless does give a
rough  idea  of  what  our  Pearson  density  will  look  like.  Alternatively,  see  the  non-
parametric kernel density estimator in §5.5.

Next,  we  need  to  find  the  population  central  moments  m2 ,  m3 ,  m4 .  Since  we  have
population  data,  we  can  use  the  CentralMoment  function  in  MathematicaJs
Statistics`DescriptiveStatistics` package, which we load as follows:

<< Statistics`

m234 = Table@ CentralMoment@data, rD, 8r, 2, 4<D êê N

Step  (i): PearsonPlot[m234] calculates  b1  and b2  from m234 , and then indicates
which  Pearson  Type  is  appropriate  for  this  data  set  by  plotting  a  large  black  dot  at  the
point (b1 , b2 ):

PearsonPlot@m234D;
8b1 Ø 0.173966, b2 Ø 3.55303<
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The b1 , b2 Chart for the Pearson System
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Fig. 3:  The marks data is of Type IV
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Step  (ii):  The  large  black  dot  is  within  the  Type  IV  zone  (the  most  feared  of  them
all!), so the fitted Pearson density f HxL and its domain are given by:

8f, domain@fD< = PearsonIV@mean, m234, xD
9 1.14587 µ 1025 %13.4877 ArcTan@1.55011-0.0169455 xD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH448.276 - 6.92074 x + 0.0378282 x2L13.2177 , 8x, -�, �<=
The FrequencyPlot function can now be used to compare the empirical pdf (!) with
the fitted Pearson pdf (D D D):

p1 = FrequencyPlot@data, fD;
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Fig. 4:  The empirical pdf (!) and fitted Pearson pdf (D D D) for the marks data

�  Example 2:  Fitting a Pearson Density to Raw Sample Data

The  file  grain.dat  contains  data  that  measures  the  yield  from 1500  different  rows  of
wheat.  The data comes from Andrews and Herzberg (1985) and StatLib.  We shall treat  it
as raw sample data. To proceed, we first load the data set into Mathematica:

data = ReadList@"grain.dat"D;
and find its sample mean:

mean = SampleMean@dataD êê N

587.722
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Because this is sample data, the population central moments m2 , m3 , m4  are unknown. We
shall  not  use  the  CentralMoment  function  from  MathematicaJs  Statistics  package  to
estimate  the  population  central  moments,  because  the  CentralMoment  function  is  a
biased  estimator.  Instead,  we  shall  use  mathStaticaJs  UnbiasedCentralMoment
function,  as  discussed  in  Chapter  7,  because  it  is  an  unbiased  estimator  of  population
central moments (and has many other desirable properties). As it so happens, the bias from
using  the  CentralMoment  function  will  be  small  in  this  example  because  the  sample
size is large, but that may not always be the case. Here, then, is our estimate of the vectorHm2 , m3 , m4 L:

m̀234 = Table@UnbiasedCentralMoment@data, rD, 8r, 2, 4<D
89997.97, 576417., 3.39334 µ 108<

PearsonPlot@m̀234D  shows  that  this  is  close  to Type  III,  so  we  fit  a  Pearson  density,
f HxL, to Type III:

8f, domain@fD< = PearsonIII@mean, m̀234, xD
82.39465 µ 10-35 %-0.0324339 x H-7601.05 + 30.832 xL10.0661 ,8x, 246.531, �<<

Once  again,  the  FrequencyPlot  function  compares  the  empirical  pdf  (!)  with  the
fitted Pearson pdf (D D D):

FrequencyPlot@data, fD;
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Fig. 5:  The empirical pdf (!) and fitted Pearson pdf (D D D) for wheat yield data
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�  Example 3:  Fitting a Pearson Density to Grouped Data

Table 2 stems from Elderton and Johnson (1969, p.5):

age X freq
< 19 34

20 D24 145

25 D29 156

30 D34 145

35 D39 123

40 D44 103

45 D49 86

50 D54 71

55 D59 55

60 D64 37

65 D69 21

70 D74 13

75 D79 7

80 D84 3

85 D89 1

Table 2:  The number of sick people at different ages (in years)

Here,  ages  20D24  includes  those  aged  from 19 1ÅÅÅÅ
2  up  to 24 1ÅÅÅÅ

2 ,  and  so  on.  Let  X  denote  the
mid-point  of each class  interval  of ages (note  that these are equally  spaced),  while freq
denotes  the  frequency  of  each  interval.  Finally,  let  t  denote  the  relative  frequency.  The
mid-point of the first class is taken to be 17 to ensure equal bandwidths. Then:

X = 817, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87<;
freq = 834, 145, 156, 145, 123, 103, 86, 71, 55, 37, 21, 13, 7, 3, 1<;

t = freqê HPlus üü freqL;
The  mathStatica  function  FrequencyGroupPlot  provides  a  `histogramJ  of  this
grouped data:

FrequencyGroupPlot@8X, freq<D;
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Fig. 6:  `HistogramJ of the number of sick people at different ages 

which gives some idea of what the fitted Pearson density should look like. 
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When  data  is  given  in  table  form,  the  mean  is  conventionally  taken  as  i=1
k Xi  ti ,

where Xi  is the mid-point of each interval, and ti  is the relative frequency of each interval,
over the k class intervals. Thus: 

mean = X.t êê N

37.875

A quick and slightly  dirty 2 (though widely used) estimator  of the r th  central moment  for
grouped data is given by:

DirtyMu@r_D := HX - meanLr.t

Then our estimates of (m2 , m3 , m4 ) are:

m̀234 = 8DirtyMu@2D, DirtyMu@3D, DirtyMu@4D<
8191.559, 1888.36, 107703.<

which is Type I, as PearsonPlot@m̀234D will verify. Then, the fitted Pearson density is:

8f, domain@fD< = PearsonI@mean, m̀234, xD
89.70076 µ 10-8 H94.3007 - 1. xL2.77976 H-16.8719 + 1. xL0.406924 ,8x, 16.8719, 94.3007<<

Of course,  the density  f HxL  should  be consistent  with  the  central  moments  that  generated
it.  Thus,  if  we  calculated  the  first  few  central  moments  of  f HxL,  we  should  obtain
{m2 Ø191.559, m3 Ø1888.36, m4 Ø107703}, as above. A quick check verifies these results: 

Expect@Hx - meanL82, 3, 4<, fD
8191.559, 1888.36, 107703.<

The FrequencyGroupPlot function can now be used to compare the `histogramJ with
the smooth fitted Pearson pdf:

FrequencyGroupPlot@8X, freq<, fD;
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Fig. 7:  The `histogramJ and the fitted Pearson pdf (smooth)
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5.2 C Pearson Types

Recall that the Pearson family is defined as the set of solutions to

! pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
!x

= - a + xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c0 + c1  x + c2 x2 pHxL .

In Mathematica, the solution to this differential equation can be expressed as:

Pearson := DSolveAp£@xD ã -
Ha + xL p@xD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c0 + c1 x + c2 x2

, p@xD, xE
Since ! pÅÅÅÅÅÅÅÅ! x

 = 0 when x = -a, the latter defines the mode, while the shape of the density will
depend  on  the  roots  of  the  quadratic  c0 + c1  x + c2 x2 .  The  various  Pearson  Types

correspond  to  the  different  forms  this  quadratic  may  take.  We  briefly  consider  the  main
seven types, in no particular order. Before doing so, we set up MrClean to ensure that we
start our analysis of each Type with a clean slate: 

MrClean := ClearAll@a, c0, c1, c2, p, xD;
Type IV occurs when c0 + c1  x + c2 x2  does not have real roots. In Mathematica, this

is equivalent to finding the solution to the differential equation without making any special
assumption  at  all  about  the  roots.  This  works  because  Mathematica  typically  finds  the
most general solution, and does not assume the roots are real:

MrClean; Pearson êê Simplify

99p@xD Ø %

Hc1-2 a c2L ArcTanA c1+2 c2 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##################################

-c12 +4 c0 c2
E

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c2

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-c12 +4 c0 c2 Hc0 + x Hc1 + c2 xLL- 1ÅÅÅÅÅÅÅÅÅ2 c2 C@1D==

The  domain  is  {x,  -�,  �}.  Under  Type  IV,  numerical  integration  is  usually  required  to
find the constant of integration C[1].

Type VII  is  the  special  symmetrical  case  of  Type IV,  and  it  occurs  when c1 = a = 0.
This nests StudentJs t distribution:

% ê. 8c1 Ø 0, a Ø 0<
99p@xD Ø Hc0 + c2 x2L- 1ÅÅÅÅÅÅÅÅÅ2 c2 C@1D==

Type III (Gamma distribution) occurs when c2 = 0:

MrClean; c2 = 0; Pearson êê Simplify

99p@xD Ø %- xÅÅÅÅÅÅc1 Hc0 + c1 xL c0-a c1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c12 C@1D==

In order for this solution to be a well-defined pdf, we require pHxL > 0. Thus, if c1 > 0, the
domain is x > -c0 ê c1 ; if c1 < 0, the domain is x < -c0 ê c1 . 
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Type  V  occurs  when  the  quadratic  c0 + c1  x + c2 x2  has  one  real  root.  This  occurs
when c1

2 - 4 c0  c2 = 0. Hence:

MrClean; c0 =
c12

ÅÅÅÅÅÅÅÅÅÅÅ
4 c2

; Pearson êê Simplify

99p@xD Ø %
-c1+2 a c2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc2 Hc1+2 c2 xL Hc1 + 2 c2 xL-1êc2 C@1D==

The Normal distribution is obtained when c1 = c2 = 0:

MrClean; c1 = 0; c2 = 0; Pearson

99p@xD Ø %- a xÅÅÅÅÅÅÅc0 - x2ÅÅÅÅÅÅÅÅÅ2 c0 C@1D==
Completing the square allows us to write this as:

p@xD = k .- Hx+aL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 c0 ; domain@p@xDD = 8x, -�, �<;
where,  in  order  to  be  a  well-defined  density,  constant  k  must  be  such  that  the  density
integrates to unity; that is, that PHX < �L = 1:

Solve@ Prob@�, p@xDD == 1, k D
S This further assumes that:  8c0 > 0<

99k Ø
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!c0 è!!!!!!!2 p
==

The result is thus Normal with mean -a, and variance c0 > 0.

That  leaves  Type I,  Type  II  and  Type  VI.  These  cases  occur  if  c0 + c1  x + c2 x2 = 0
has  two  real  roots,  r1  and  r2 .  In  particular,  Type  I  occurs  if  r1 < 0 < r2  (roots  are  of
opposite  sign),  with  domain  r1 < x < r2 .  This  nests  the  Beta  distribution.  Type  II  is
identical  to  Type  I,  except  that  we  now  further  assume  that  r1 = -r2 .  This  yields  a
symmetrical curve with b1 = 0. Type VI occurs if r1  and r2  are the same sign; the domain
is x > r2  if 0 < r1 < r2 , or x < r2  if r2 < r1 < 0. In the case of Type VI, with two real roots
of  the  same  sign,  one  can  express  c0 + c1  x + c2 x2  as  c2 Hx - r1 L Hx - r2 L.  The  family  of
solutions is then: 

MrClean;

DSolveAp£@xD == -
a + x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c2 Hx - r1L Hx - r2L  p@xD, p@xD, xE êê

Simplify

99p@xD Ø H-r1 + xL a+r1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-c2 r1+c2 r2 H-r2 + xL a+r2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc2 r1-c2 r2 C@1D==
where the constant of integration can now be solved for the relevant domain.
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5.2 D Pearson Coefficients in Terms of Moments

 ClearAll@a, c0, c1, c2, eqn, mD
It is possible to express the Pearson coefficients a, c0 , c1  and c2  in terms of the first four
raw  moments  m

£
r  Hr = 1, 4L.  To  do  so,  we  first  multiply  both  sides  of  (5.1)  by  xr  and

integrate over the domain of X: 
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and break the right-hand side into two, then (5.3) becomes
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If we assume that xr  pHxL Ø 0 at the extremum of the domain, then the first expression on
the left-hand side vanishes, and after substituting raw moments m

£
 for integrals, we are left

with

(5.5)-r c0  m
£

r-1 - Hr + 1L c1  m
£

r - Hr + 2L c2  m
£

r+1     =    - a m
£

r - m
£

r+1 .

This  recurrence  relation  defines  any  moment  in  terms  of  lower  moments.  Further,  since
the  density  must  integrate  to  unity,  we  have  the  boundary  condition  m

£
0 = 1.  In

Mathematica notation, we write this relation as: 

eqn@r_D :=I-r c0 m
£
r-1 - Hr + 1L c1 m

£
r - Hr + 2L c2 m

£
r+1 == -a m

£
r - m

£
r+1Mê. m

£
0 Ø 1

We  wish  to  find  a,  c0 ,  c1  and  c2  in  terms  of  m
£

r .  Putting  r = 0,  1,  2  and  3  yields  the
required 4 equations (for the 4 unknowns) which we now solve simultaneously to yield the
solution:
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Z = Solve@Table@eqn@rD, 8r, 0, 3<D, 8a, c0, c1, c2<Dêê Simplify
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If we work about the mean, then m
£

1 = 0, and m
£

r = mr  for r ¥ 2. The formulae then become:

Z ê. 9m
£
1 Ø 0, m

£
Ø m=

a Ø - m3 H3 m2
2+m4LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H9 m2

3+6 m3
2-5 m2 m4L

c0 Ø m2 H3 m3
2-4 m2 m4LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H9 m2

3+6 m3
2-5 m2 m4L

c1 Ø - m3 H3 m2
2+m4LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H9 m2

3+6 m3
2-5 m2 m4L

c2 Ø 6 m2
3+3 m3

2-2 m2 m4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H9 m2
3+6 m3

2-5 m2 m4L
Note that a and c1  are now equal; this only applies when one works about the mean. With
these definitions, the Pearson Types of §5.2 C can now be expressed in terms of the first 4
moments,  instead  of  parameters  a,  c0 ,  c1 and  c2 .  This  is,  in  fact,  how  the  various
automated Pearson fitting functions are constructed (§5.2 B).
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5.2 E Higher Order Pearson-Style Families

Instead  of  basing  the  Pearson  system  upon  the  quadratic  c0 + c1 x + c2 x2 ,  one  can
instead  consider  using  higher  order  polynomials  as  the  foundation  stone.  If  the  moments
of the population are known, then this endeavour must unambiguously yield a better fit. If,
however, the observed data is a random sample drawn from the population, there is a trade-
off:  a  higher  order  polynomial  implies  that  higher  order  moments  are  required,  and  the
estimates  of  the  latter  may  be  unreliable  (have  high  variance),  unless  the  sample  size  is
`largeJ. 

In  this  section,  we  consider  a  Pearson-style  system based  upon  a  cubic  polynomial.
This will be the family of solutions pHxL to the differential equation

(5.6)
!pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

!x
= - a + xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c0 + c1  x + c2 x2 + c3  x3 pHxL .

Adopting  the  method  introduced  in  §5.2  D  once  again  yields  a  recurrence  relation,  but
now with one extra term on the left-hand side. Equation (5.5) now becomes
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Given the boundary condition m
£

0 = 1, we enter this recurrence relation into Mathematica as: 

eqn2@r_D :=I-r c0 m
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Our objective is to find a, c0 , c1 , c2  and c3  in terms of m
£

r . Putting r = 0, 1, 2, 3, 4 yields
the required 5 equations (for the 5 unknowns) which we now solve simultaneously:

Z1 = Solve@Table@eqn2@rD, 8r, 0, 4<D, 8a, c0, c1, c2, c3<D;
The  solution  is  rather  long,  so  we  will  not  print  it  here.  However,  if  we  work  about  the

mean, taking m
£

1 = 0, and m
£

r = mr  for r ¥ 2, the solution reduces to:

Z2 = Z1P1T ê. 9m
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£
Ø m= êê Simplify;
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which  is  comparatively  compact  (for  a  more  legible  rendition,  see  the  electronic
notebook).  Whereas  the  second-order  (quadratic)  Pearson  family  can  be  expressed  in
terms of the first 4 moments, the third-order (cubic) Pearson-style family requires the first
6 moments. Note that a and c1  are no longer equal.

�  Example 4:  Fitting a Third-Order (Cubic) Pearson-Style Density

In  this  example,  we  fit  a  third-order  (cubic)  Pearson-style  density  to  the  data  set:
marks.dat. Example 1  fitted the standard second-order (quadratic)  Pearson distribution
to  this  data  set.  It  will  be  interesting  to  see  how  a  third-order  Pearson-style  distribution
compares.  First,  we  load  the  required  data  set  into  Mathematica,  if  this  has  not  already
been done: 

data = ReadList@"marks.dat"D;
The population central moments m2 , m3 , m4 , m5  and m6  are given by:

<< Statistics`

m0 = Table@mr Ø CentralMoment@data, rD êê N, 8r, 2, 6<D
8m2 Ø 193.875, m3 Ø -1125.94, m4 Ø 133550.,

m5 Ø -2.68578 µ 106, m6 Ø 1.77172 µ 108<
In the quadratic  system, this  data was of Type IV  (the most  general  form).  Consequently,
in the cubic system, we will once again try the most general solution (i.e. without making
any assumptions about the roots of the cubic polynomial). The solution then is:

DSolveAp£@xD == -
a + x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c0 + c1 x + c2 x2 + c3 x3

p@xD, p@xD, xE
99p@xD Ø %-RootSum@c0+c1 #1+c2 #12 +c3 #13&, a Log@x-#1D+Log@x-#1D #1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c1+2 c2 #1+3 c3 #12
&D C@1D==

Mathematica  provides  the solution in terms of a RootSum  object. If we now replace the
Pearson coefficients {a, c0 , c1 , c2 , c3 } with central moments {m2 , m3 , m4 , m5 , m6 } via Z2
derived above, and then replace the latter with the empirical m2, we obtain:

sol = .-RootSumAc0+c1 #1+c2 #12 +c3 #13 &, a Log@x-#1D+Log@x-#1D #1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c1+2 c2 #1+3 c3 #12

&E ê.
Z2 ê. m0 êê Simplify

HH-31.6478 - 52.712 ÂL + xL-9.86369+6.66825 ÂHH-31.6478 + 52.712 ÂL + xL-9.86369-6.66825 Â H556.021 + xL19.7274

while the constant of integration over, say, {x, D100, 100} is:

cn = NIntegrate@sol, 8x, -100, 100<D
4.22732 µ 1032
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A quick plot illustrates:

Plot@sol ê cn, 8x, -50, 50<D;
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Fig. 8:  Cubic Pearson fit for the marks data set

This looks identical to the plot of f derived in Example 1, except the origin is now at zero,
rather  than  at  the  mean.  If  f  from  Example  1  is  derived  with  zero  mean,  one  can  then
Plot[f-sol/cn,{x,-50,50}]  to  see  the  difference  between  the  two  solutions.
Doing so yields Fig. 9.
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Fig. 9:  The difference between the quadratic and cubic Pearson fit

The difference between the plots  is remarkably small (note the scale on the vertical  axis).
This  outcome is rather  reassuring for  those who prefer  to use the much simpler quadratic
Pearson system. !
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5.3 Johnson Transformations

5.3 A Introduction

Recall  that  the Pearson  family  provides  a unique  distribution  for  every  possible  Hb1 , b2 L
combination.  The Johnson family provides the same feature, and does so by using a set of
three  transformations  of  the  standard  Normal.  In  particular,  if  Z ~ NH0, 1L  with  density
fHzL, and Y is a transform of Z, then the Johnson family is given by: 

(1)   SL  (Lognormal)     Y = expH Z-gÅÅÅÅÅÅÅÅÅÅÅd L ñ     Z = g + d logHY L H0 < y < �L
(2)   SU  (Unbounded)     Y = sinhH Z-gÅÅÅÅÅÅÅÅÅÅÅd L ñ     Z = g + d sinh-1 HY L HD� < y < �L
(3)   SB  (Bounded)     Y = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1+exp I- Z-gÅÅÅÅÅÅÅÅÅÅÅÅd M ñ     Z = g + d logH YÅÅÅÅÅÅÅÅÅÅÅ1-Y
L H0 < y < 1L

Applying  a  second  transform  X = x + l Y  (or  equivalently  Y = X - xÅÅÅÅÅÅÅÅÅÅÅÅÅl )  expands  the
system  from two  parameters  (g,  d)  to  the  full  set  of  four  (g,  d,  x,  l),  where  d  and  l  are
taken to be positive. Since X = x + l Y , the shape of the distribution of X will be the same
as that of Y .  Hence,  the parameters  may be interpreted as follows:  g  and d determine  the
shape  of  the  distribution  of  X;  l  is  a  scale  factor;  and  x  is  a  location  factor.  Figure  10
illustrates the classification system in Hb1 , b2 L space.
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Fig. 10:  The b1 , b2  chart for the Johnson system
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Several points are of note:
(i) The classification consists of two main types, namely SU  and SB . These are separated

by  a  transition  type,  the  SL  line,  which  corresponds  to  the  family  of  Lognormal
distributions.  The  N at  Hb1 , b2 L = H0, 3L  once  again denotes  the Normal  distribution,
which may be thought of as a limiting form of the three systems as d Ø �.

(ii) The SU  system is termed unbounded  because the domain here is 8y : y 6 !<.  The SB

system is termed bounded because the domain for this system is 8y : 0 < y < 1<. 
(iii) The dashed line represents the bound on all distributions, and is given by b2 - b1 = 1.

Whereas  the  Pearson  system  can  be  easily  `automatedJ  for  fitting  purposes,  the  Johnson
system requires some hands-on fine tuning. We consider each system in turn: SL  (§5.3 B);
SU  (§5.3 C); and SB  (§5.3 D).

5.3 B SL  System (Lognormal)

Let Z ~ NH0, 1L with density fHzL: 
f =

.- z2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8z, -�, �< && 8g 2 Reals, d > 0<;
The SL  system is defined by the transformation Y = expI Z-gÅÅÅÅÅÅÅÅÅÅÅÅ

d
M. Then, the density of Y , say

gHyL, is:

g = TransformAy == .
z-gÅÅÅÅÅÅÅÅ

d , fE
domain@gD =  TransformExtremumAy == .

z-gÅÅÅÅÅÅÅÅ
d , fE

%- 1ÅÅÅÅ2 Hg+d Log@yDL2 d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p y

8y, 0, �< && 8g 1 Reals, d > 0<
The Lognormal density is positively skewed, though as d increases, the curve tends to

symmetry.  In  Fig. 11,  the  density  on  the  far  left  corresponds  to  a  `smallJ  d,  while  each
successive density to the right corresponds to a doubling of d.

0.2 0.4 0.6 0.8 1
y

1

2

3

4
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g

Fig. 11:  The Lognormal pdf gHyL when g = 2, and d = 2, 4, 8 and 16
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Since Y = expI Z-gÅÅÅÅÅÅÅÅÅÅÅÅ
d

M, and Z  has density fHzL, the r th  raw moment E@Y r D can be expressed

as:

W = ExpectA.
Hz-gL rÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd , fE

%
r Hr-2 g dLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 d2

Thus, the first 4 raw moments (rm) are:

rm = TableAm
£
r Ø W, 8r, 4<E

9m
£
1 Ø %

1-2 g dÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 d2 , m
£
2 Ø %

2-2 g dÅÅÅÅÅÅÅÅÅÅÅÅÅÅd2 , m
£
3 Ø %

3 H3-2 g dLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 d2 , m
£
4 Ø %

2 H4-2 g dLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd2 =
This can be expressed in terms of central moments (cm), as follows:

cm = Table@
CentralToRaw@rD ê. rm êê Simplify,8r, 2, 4<D;

cm êê TableForm

m2 Ø %
1-2 g dÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

d2 I-1 + %
1ÅÅÅÅÅÅ

d2 M
m3 Ø %

3-6 g dÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 d2 I-1 + %
1ÅÅÅÅÅÅ

d2 M2 I2 + %
1ÅÅÅÅÅÅ

d2 M
m4 Ø %

2-4 g dÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d2 I-1 + %

1ÅÅÅÅÅÅ
d2 M2 I-3 + 3 %

2ÅÅÅÅÅÅ
d2 + 2 %

3ÅÅÅÅÅÅ
d2 + %

4ÅÅÅÅÅÅ
d2 M

Then b1  and b2  can be expressed as: 

b1 =
m3
2

ÅÅÅÅÅÅÅ
m2
3

ê. cm êê Simplify

I-1 + %
1ÅÅÅÅÅÅd2 M I2 + %

1ÅÅÅÅÅÅd2 M2
and

b2 =
m4
ÅÅÅÅÅÅÅ
m2
2

ê. cm êê Simplify

-3 + 3 %
2ÅÅÅÅÅÅ

d2 + 2 %
3ÅÅÅÅÅÅ

d2 + %
4ÅÅÅÅÅÅ

d2

These  equations  define  the  Lognormal  curve  parametrically  in  Hb1 , b2 L  space,  as  d
increases  from  0  to  �,  as  Fig. 12  illustrates.  In  Mathematica,  one  can  use
ParametricPlot to derive this curve.
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Fig. 12:  The Lognormal curve in Hb1 , b2 L space

This  is  identical  to  the  SL  curve  shown  in  Fig. 10  (The  Johnson  Plot),  except  that  the
vertical  axis  is  not  inverted  here.  Despite  appearances,  the  curve  in  Fig. 12  is  not  linear;
this  is  easy  to  verify  with  a  ruler.  In  the  limit,  as  d Ø �,  b1  and  b2  tend  to  0  and  3,
respectively:

Limit@8b1, b2<, d Ø �D
80, 3<

so that the Normal distribution is obtained as a limit case of the Lognormal.

Given an empirical value for b1  (or b2 ), we can now `solveJ for d. This is particularly
easy since g is not required. For instance, if b

`
1 = 0.829:

Solve@ b1 == 0.829, dD
S Solve::ifun :  Inverse functions are being

used by Solve, so some solutions may not be found.

8 8d Ø -3.46241< ,
 8d Ø -0.457213 - 0.354349 Â< ,
 8d Ø -0.457213 + 0.354349 Â< ,
 8d Ø 0.457213 - 0.354349 Â< ,
 8d Ø 0.457213 + 0.354349 Â< ,
 8d Ø 3.46241< <

Since we require d to be both real and positive, only the last of these solutions is feasible.
One can now find g by comparing m2  (derived above) with its empirical estimate m̀2 . 

§5.3 B SYSTEMS  OF  DISTRIBUTIONS 167



5.3 C SU  System (Unbounded)

Once again, let Z ~ NH0, 1L with density fHzL: 
f =

.- z2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8z, -�, �< && 8g 2 Reals, d > 0<;
The SU  system is  defined by  the transformation  Y = sinhI Z-gÅÅÅÅÅÅÅÅÅÅÅÅ

d
M.  Hence,  the  density  of Y ,

say gHyL, is:

g =  TransformAy == SinhA z - g
ÅÅÅÅÅÅÅÅÅÅÅÅ

d
E , fE

domain@gD = TransformExtremumAy == SinhA z - g
ÅÅÅÅÅÅÅÅÅÅÅÅ

d
E, fE

%- 1ÅÅÅÅ2 Hg+d ArcSinh@yDL2 d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

è!!!!!!!!!!!!!1 + y2

8y, -�, �< && 8g 1 Reals, d > 0<
Figure 13 indicates shapes that are typical in the SU  family.
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d=3, g=0

-4 -2 2 4

d=3, g=1

-4 -2 2 4

d=1, g=0

-4 -2 2 4

d=1, g=1

Fig. 13:  Typical pdf shapes in the SU  family 

Since Y = sinhI Z-gÅÅÅÅÅÅÅÅÅÅÅÅ
d

M, and Z has density f(z), the r th  moment E@Y r D can be expressed:

W := ExpectASinhA z - g
ÅÅÅÅÅÅÅÅÅÅÅÅ

d
Er, fE êê ExpToTrig êê FullSimplify
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This time, Mathematica cannot find the solution as a function of r, which is why we use a
delayed evaluation ( := ) instead of an immediate evaluation ( = ).

The first 4 raw moments (rm) are now given by:

rm = TableAm
£
r Ø W, 8r, 4<E; rm êê TableForm

m
£
1 Ø -%

1ÅÅÅÅÅÅÅÅÅ2 d2 Sinh@ gÅÅÅd D
m
£
2 Ø 1ÅÅÅ2 I-1 + %

2ÅÅÅÅÅÅd2 Cosh@ 2 gÅÅÅÅÅÅd DM
m
£
3 Ø - 1ÅÅÅ4 %

1ÅÅÅÅÅÅÅÅÅ2 d2 I-3 Sinh@ gÅÅÅd D + %
4ÅÅÅÅÅÅ

d2 Sinh@ 3 gÅÅÅÅÅÅd DM
m
£
4 Ø 1ÅÅÅ8 I3 - 4 %

2ÅÅÅÅÅÅd2 Cosh@ 2 gÅÅÅÅÅÅd D + %
8ÅÅÅÅÅÅd2 Cosh@ 4 gÅÅÅÅÅÅd DM

This can be expressed in terms of central moments (cm), as follows:3

cm = Table@CentralToRaw@rD ê. rm êê FullSimplify, 8r, 2, 4<D
9m2 Ø

1
ÅÅÅÅ
2

I-1 + %
1ÅÅÅÅÅÅ

d2 M J1 + %
1ÅÅÅÅÅÅ

d2 CoshA 2 g
ÅÅÅÅÅÅÅÅ

d
EN,

m3 Ø -
1
ÅÅÅÅ
4

%
1ÅÅÅÅÅÅÅÅÅ

2 d2 I-1 + %
1ÅÅÅÅÅÅ

d2 M2 J3 SinhA g
ÅÅÅÅ
d
E + %

1ÅÅÅÅÅÅ
d2 I2 + %

1ÅÅÅÅÅÅ
d2 M SinhA 3 g

ÅÅÅÅÅÅÅÅ
d

EN,
m4 Ø

1
ÅÅÅÅ
8

J3 + %
2ÅÅÅÅÅÅ

d2 J%
6ÅÅÅÅÅÅ

d2 CoshA 4 g
ÅÅÅÅÅÅÅÅ

d
E + 4 CoshA 2 g

ÅÅÅÅÅÅÅÅ
d

E J-1 + 6 %
1ÅÅÅÅÅÅ

d2 SinhA g
ÅÅÅÅ
d
E2N -

8 SinhA g
ÅÅÅÅ
d
E J3 SinhA g

ÅÅÅÅ
d
E3 + %

3ÅÅÅÅÅÅ
d2 SinhA 3 g

ÅÅÅÅÅÅÅÅ
d

ENNN=
Then b1  and b2  can be expressed as: 

b1 =
m3
2

ÅÅÅÅÅÅÅ
m2
3

ê. cm êê Simplify

%
1ÅÅÅÅÅÅd2 I-1 + %

1ÅÅÅÅÅÅd2 M I3 Sinh@ gÅÅÅd D + %
1ÅÅÅÅÅÅd2 I2 + %

1ÅÅÅÅÅÅd2 M Sinh@ 3 gÅÅÅÅÅÅd DM2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 I1 + %
1ÅÅÅÅÅÅ

d2 Cosh@ 2 gÅÅÅÅÅÅd DM3
b2 =

m4
ÅÅÅÅÅÅÅ
m2
2

ê. cm êê Simplify

3 + %
2

ÅÅÅÅÅÅÅÅÅÅ
d2

ikjjj%
6

ÅÅÅÅÅÅÅÅÅÅ
d2 Cosh@ 4 gÅÅÅÅÅÅ

d
D + 4 Cosh@ 2 gÅÅÅÅÅÅ

d
D ikjjj-1 + 6 %

1
ÅÅÅÅÅÅÅÅÅÅ
d2 Sinh@ gÅÅÅ

d
D2 y{zzz - 8 Sinh@ gÅÅÅ

d
D ikjjj3 Sinh@ gÅÅÅ

d
D3 + %

3
ÅÅÅÅÅÅÅÅÅÅ
d2 Sinh@ 3 gÅÅÅÅÅÅ

d
Dy{zzzy{zzzÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 ikjjj-1 + %
1

ÅÅÅÅÅÅÅÅÅÅ
d2

y{zzz2 ikjjj1 + %
1

ÅÅÅÅÅÅÅÅÅÅ
d2 Cosh@ 2 gÅÅÅÅÅÅ

d
Dy{zzz2

È Fitting the SU  System

To fit the SU  system, we adopt the following steps:

(i) Given values for Hb1 , b2 L, solve for Hd, gL, noting that d > 0, and that the sign of g is
opposite to that of m3 .

(ii) This gives us gHy - g, dL. Given the transform X = x + l Y, solve for x, and l > 0.

§5.3 C SYSTEMS  OF  DISTRIBUTIONS 169



�  Example 5:  Fit a Johnson Density to the  marks.dat  Population Data Set

First, load the data set, if this has not already been done:

data = ReadList@"marks.dat"D;
The mean of this data set is:

mean = SampleMean@dataD êê N

58.9024

Empirical values for m2 , m3  and m4  are once again given by: 

<< Statistics`

m234 = Table@ CentralMoment@data, rD, 8r, 2, 4<D êê N

8193.875, -1125.94, 133550.<
If  we were working  with sample data,  we would replace  the CentralMoment  function
with UnbiasedCentralMoment (just cut and paste). Just as PearsonPlot was used
in  Example  1  to  indicate  the  appropriate  Pearson  Type,  we  now  use  JohnsonPlot  to
indicate which of the Johnson systems is suitable for this data set: 

JohnsonPlot@m234D;8b1 Ø 0.173966, b2 Ø 3.55303<
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The b1 , b2 Chart for the Johnson System

SB

SL

SU

N

Fig. 14:  The marks data lies in the SU  system

The  black  dot,  depicting  Hb1 , b2 L  for  this  data  set,  lies  in  the SU  system.  We derived  b1

and b2  in terms of d and g above. Thus, given values 8b1 Ø 0.173966, b2 Ø 3.55303<, it is

170 CHAPTER  5 §5.3 C



now possible to `solveJ for Hd, gL. The FindRoot function simultaneously solves the two
equations for d and g:

sol = FindRoot@8 b1 == 0.17396604431160143`,
b2 == 3.5530347934625883`<, 8d, 2<, 8g, 2<D

8d Ø 3.74767, g Ø 2.0016<
Note  that  FindRoot  is  a  numerical  technique  that  returns  the  first  solution  it  finds,  so
different starting points may yield different solutions. In evaluating the solution, it helps to
note  that  d  should  be  positive,  while  g  should  be  opposite  in  sign  to  m3 .  Johnson  (1949,
p. 164) and Johnson et al. (1994, p. 36) provide a diagram known as an abac that provides
a rough estimate  of g  and d,  given values for  b1  and b2 .  These  rough estimates  make an
excellent  starting  point  for  the  FindRoot  function.  In  a  similar  vein,  see  Bowman  and
Shenton (1980). 

The  full  4-parameter  Hg, d, x, lL  Johnson  SU  system  is  obtained  by  applying  the
further transformation X = x + l Y  or equivalently Y = X-xÅÅÅÅÅÅÅÅÅÅÅl . Since we are adding two new
parameters, we shall add some assumptions about them:

domain@gD = domain@gD && 8x 2 Reals, l > 0<;
Then the density of X = x + l Y , say f HxL, is:

f = Transform@x ã x + l y, gD
domain@fD =  TransformExtremum@x ã x + l y, gD
%- 1ÅÅÅÅ2 Hg+d ArcSinh@ x-xÅÅÅÅÅÅÅÅl DL2 d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p l "######################1 + Hx-xL2ÅÅÅÅÅÅÅÅÅÅÅÅÅl2

8x, -�, �< && 8g 1 Reals, d > 0, x 1 Reals, l > 0<
where  g  and  d  have  already  been  found.  Since  X = x + l Y ,  VarHXL = l2  VarHY L.  Here,
VarHY L  was  found  above  as  m2 Hg, dL  (part  of  cm),  while  VarHXL  is  taken  to  be  the
empirical  variance  193.875  of  the  data  set.  Thus,  at  the  fitted  values,  the  equation
VarHXL = l2  VarHY L becomes:

193.875 == l2  m2 ê. cm ê. sol

193.875 == 0.101355 l2

Solving for l yields:

l
`

= Solve@%, lD
88l Ø -43.7359<, 8l Ø 43.7359<<

Since we require l > 0, the second solution is the desired one. That leaves x n
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Since X = x + l Y , E@XD = x + l E@YD. Here,  E@Y D was found above as m
£

1  Ig, dM (part
of  rm),  while  E@XD  is  taken to  be  the  empirical  mean  of  the  data  set.  Thus,  at  the  fitted
values, E@XD = x + l E@YD becomes:

mean == x + l m
£
1 ê. rm ê. sol ê. l

`P2T
58.9024 == -25.3729 + x

Solving for x yields:

x
`

= Solve@%, xD
88x Ø 84.2752<<

The desired fitted density f HxL is thus:

f = f ê. sol ê. l
`P2T ê. x

`P 1T
0.0341848 %- 1ÅÅÅÅ2 H2.0016+3.74767 ArcSinh@0.0228645 H-84.2752+xLDL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##########################################################################1 + 0.000522787 H-84.2752 + xL2

which has an unbounded domain, like all SU  distributions.

As  in  Example  1,  the  mathStatica  function  FrequencyPlot  allows  one  to
compare the fitted density with the empirical pdf of the data:

p2 = FrequencyPlot@data, fD;
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Fig. 15:  The empirical pdf (!) and the fitted Johnson SU  pdf (D D D)

This Johnson SU  fitted  density appears almost identical to the PearsonIV  fit derived in
Example 1. The final diagram in Example 1 was labelled p1. If p1 is still in memory, the
command  Show[p1/.Hue[__]Ø Hue[.4],p2]  shows  both  plots  together,  but  now
with the fitted  Pearson curve in green rather than red, enabling a visual comparison  (note
that Hue[__] contains  two _ characters).  The curves are so similar that only a tiny tinge
of green would be visible on screen. !
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5.3 D SB  System (Bounded)  

Once again, let Z ~ NH0, 1L with density fHzL: 
f =

.- z2ÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8z, -�, �< && 8g 2 Reals, d > 0<;
The SB  (bounded) system is defined by the transformation Y = H1 + exp H- Z-gÅÅÅÅÅÅÅÅÅÅÅd L L-1

. Then,
the density of Y , say gHyL, is: 

g =  TransformAy == I1 + .- z-gÅÅÅÅÅÅÅÅd M-1
, fE

domain@gD = TransformExtremumAy == I1 + .- z-gÅÅÅÅÅÅÅÅ
d M-1

, fE
%- 1ÅÅÅÅ2 Hg-d Log@-1+ 1ÅÅÅÅy DL2 d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p Hy - y2L
8y, 0, 1< && 8g 1 Reals, d > 0<

The  full  4-parameter  Hg, d, x, lL  Johnson  SB  system  is  obtained  by  applying  the  further
transformation  X = x + l Y  or  equivalently  Y = X-xÅÅÅÅÅÅÅÅÅÅÅl .  Since  we  are  adding  two  new
parameters, we shall add some assumptions about them:

domain@gD = domain@gD && 8x 2 Reals, l > 0<;
Then the density of X, say f HxL, is:

f = Transform@8x == x + l y<, gD
domain@fD =  TransformExtremum@8x == x + l y<, gD

%- 1ÅÅÅÅ2 Hg-d Log@-1+ lÅÅÅÅÅÅÅÅx-x DL2 d l
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p Hx - xL H-x + l + xL
8x, x, l + x< && 8g 1 Reals, d > 0, x 1 Reals, l > 0<

Figure 16 shows some plots from the SB  Hg, dL family.

The moments of the SB  system are extremely complicated. Johnson (1949) obtained a
solution  for  m

£
1 ,  though  this  does  not  have  a  closed  form;  nor  can  it  be  implemented

usefully in Mathematica. As such, the method of moments is not generally used for fitting
SB  systems. Instead, a method of percentile points is used, which equates percentile points
of the observed and fitted curves. This approach is not an exact methodology, and we refer
the  interested  reader  to  Johnson  (1949)  or  Elderton  and  Johnson  (1969,  p.131).
Alternatively,  one  can always use the automated  Pearson fitting  functions  as a  substitute,
which is inevitably a much simpler strategy.
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Fig. 16:  Some pdf shapes in the SB  family
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5.4 GramOCharlier Expansions

5.4 A Definitions and Fitting

Let fHzL denote a standard Normal density:

f =
.- z2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8z, -�, �<;
and  let  yHzL  denote  an  arbitrary  pdf  that  has  been  standardised  so  that  its  mean  is  0  and
variance is 1. If yHzL can be expanded as a series of derivatives of fHzL, then

(5.8)yHzL = .
j=0

�

cj H-1L j  ! j fHzLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
! zj .

This  assumes the  expansion  is convergent!Stuart  and  Ord (1994,  Section 6.22)  provide

conditions  in this regard.  Further,  let  Hj HzL = H-1L j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

fHzL  ! j fHzLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
! z j ;  Hj HzL  is known as a Hermite

polynomial  and  has  a  number  of  interesting  properties  (see  §5.4  B).  Then  (5.8)  may  be
written as

(5.9)yHzL = fHzL.
j=0

�

cj Hj HzL .
Then,  for  sufficiently  large  t,  yHzL > fHzL j=0

t cj  Hj HzL .  In  Mathematica,  we  explicitly
model this as a function of t:

y@t_D := f 3
j=0

t

c@jD H@jD
This has two components: (i) Hj HzL and (ii) cj .

(i) The Hermite polynomial Hj HzL is defined by:4

H@j_D :=
H-1Lj
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

f
�8z,j< f êê Expand

Then the first few Hermite polynomials are:

Table@Hj Ø H@jD, 8j, 0, 10<Dêê TableForm êê TraditionalForm
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H0 Ø 1

H1 Ø z

H2 Ø z2 - 1

H3 Ø z3 - 3 z

H4 Ø z4 - 6 z2 + 3

H5 Ø z5 - 10 z3 + 15 z

H6 Ø z6 - 15 z4 + 45 z2 - 15

H7 Ø z7 - 21 z5 + 105 z3 - 105 z

H8 Ø z8 - 28 z6 + 210 z4 - 420 z2 + 105

H9 Ø z9 - 36 z7 + 378 z5 - 1260 z3 + 945 z

H10 Ø z10 - 45 z8 + 630 z6 - 3150 z4 + 4725 z2 - 945

(ii) The cj  terms are formally derived in §5.4 B where it is shown that cj  is a function of
the first j moments of yHzL. Since we are basing the expansion on fHzL (a standardised
Normal),  cj  is  given  here  in  terms  of  standardised  moments  (i.e.  assuming
m
£

1 = m1 = 0,  m2 = 1).  The  solution  takes  a  similar  functional  form  to  Hj HxL,  which
we can exploit in Mathematica through pattern matching:

c@j_D :=
H@jD
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
j!

ê. zi_. ß mi ê. 8m1 Ø 0, m2 Ø 1<
The first few cj  terms are given by:

Table@cj Ø c@jD, 8j, 0, 10<D êê TableForm

c0 Ø 1

c1 Ø 0

c2 Ø 0

c3 Ø m3ÅÅÅÅÅ6

c4 Ø 1ÅÅÅÅÅ24 H-3 + m4L
c5 Ø 1ÅÅÅÅÅÅÅ120 H-10 m3 + m5L
c6 Ø 1ÅÅÅÅÅÅÅ720 H30 - 15 m4 + m6L
c7 Ø 105 m3 -21 m5 +m7ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ5040

c8 Ø -315+210 m4-28 m6 +m8ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ40320

c9 Ø -1260 m3+378 m5 -36 m7+m9ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ362880

c10 Ø 3780-3150 m4 +630 m6-45 m8 +m10ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3628800
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We can now evaluate the Mathematica function y[t] for arbitrarily large t, as a function
of the first t (standardised) moments of yHzL. Here is an example with t = 7:  

y@7D
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 J%- z2ÅÅÅÅÅÅÅ2 J1 +

1
ÅÅÅÅ6 H-3 z + z3L m3 +

1
ÅÅÅÅÅÅÅ24 H3 - 6 z2 + z4L H-3 + m4L +

1
ÅÅÅÅÅÅÅÅÅÅ120 H15 z - 10 z3 + z5L H-10 m3 + m5L +

1
ÅÅÅÅÅÅÅÅÅÅ720 H-15 + 45 z2 - 15 z4 + z6L H30 - 15 m4 + m6L +H-105 z + 105 z3 - 21 z5 + z7L H105 m3 - 21 m5 + m7LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ5040 NN

�  Example 6:  Fit a GramDCharlier Density to the marks.dat Population Data

First, load the data if this has not already been done:

data = ReadList@"marks.dat"D;
Once again, its mean is:

mean = SampleMean@dataD êê N

58.9024

Evaluating the first 6 central moments (cm) yields:

<< Statistics`

cm = Table@CentralMoment@data, rD êê N, 8r, 1, 6<D
80., 193.875, -1125.94,
133550., -2.68578 µ 106, 1.77172 µ 108<

(Once  again,  if  we  were  working  with  sample  data,  we  would  replace  the
CentralMoment  function  with  UnbiasedCentralMoment  in  the  line  above.)  To
obtain  standardised moments,  note  that mi

standardised = mi êm2
i ê 2 . Then,  empirical  values for

the first 6 standardised moments (sm) are:

sm = TableAmi Ø
cmPiT

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cmP2Tiê2 , 8i, 1, 6<E

8m1 Ø 0., m2 Ø 1., m3 Ø -0.417092,
m4 Ø 3.55303, m5 Ø -5.13177, m6 Ø 24.3125<

Evaluating y[6] at these values yields:
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y6 = y@6D ê. sm êê Simplify
domain@y6D = 8z, -�, �<;
0.000563511 %- z2ÅÅÅÅÅÅ2 H-5.24309 + zL H-3.14529 + zLH8.28339 - 1.45564 z + z2L H5.43111 + 4.17537 z + z2L

The above gives the density in standardised units. To find the density in original units, say
f HxL, transform from Z = X-mÅÅÅÅÅÅÅÅÅÅÅÅs  to X = m + s Z:

eqn = 9x == mean +
è!!!!!!!!!!!!!!
cmP2T  z=;

f =  Transform@eqn, y6D
domain@fD = TransformExtremum@eqn, y6D
5.55363 µ 10-12 %-0.00257898 H-58.9024+xL2H-131.907 + xL H-102.697 + xLH6269.27 - 138.073 x + x2L H1098.01 - 59.6673 x + x2L
8x, -�, �<

Once  again,  FrequencyPlot  allows  one  to  compare  the  empirical  pdf  with  the  fitted
density:  

p3 = FrequencyPlot@data, fD;
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Fig. 17:  The empirical pdf (!) and the fitted GramDCharlier pdf (D D D)

This  fitted  GramDCharlier  density  is  actually  very  similar  to  the  previous  Johnson  and
PearsonIV  results.  The  final  Pearson  fit  was  labelled  p1.  If  it  is  still  in  memory,  the
command  Show[p1/.Hue[__]Ø Hue[.4],p3]  shows  both  plots  together,  but  now
with the fitted  Pearson curve in green rather than red, enabling a visual comparison  (note
that Hue[__]  contains two _ characters).  On screen,  the difference  is apparent, but very
slight. !
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Some Advantages and Disadvantages of GramTCharlier Expansions

By  construction,  Pearson  densities  must  be  unimodal;  this  follows  from  equation  (5.1),
since ! p ê! x = 0 at x = -a. Given bimodal data, Pearson densities may yield a very poor
fit.  In  the  Johnson  family,  both  the  SL  and  SU  systems  are  unimodal.  Although  the  SB

system can produce bimodal densities under certain conditions, the latter is not pleasant to
work  with.  By  contrast,  GramDCharlier  expansions  can  produce  mildly  multimodal
densities.  On  the  downside,  however,  GramDCharlier  expansions  have  an  undesirable
tendency  to sometimes  produce  small  negative frequencies,  particularly in the tails.  In an
ideal  world,  these  negatives  frequencies  could  be  avoided  by  taking  higher  order
expansions. This in turn requires higher order moments, which in turn have high variance
and may be unreliable unless the sample size is sufficiently large. Finally, from a practical
viewpoint, GramDCharlier expansions are often `unstableJ in the sense that adding an extra
(t + 1th )  term  may  actually  yield  a  worse  fit,  so  some  care  is  required  in  choosing  an
appropriate value for t. 

5.4 B Hermite Polynomials; GramOCharlier Coefficients

Let  j  denote  the  degree  of  the  polynomial  Pj HzL.  Then,  the  family  of  polynomials  Pj HzL,
j = 0, 1, 2, n, is said to be orthogonal to the weight function wHzL if

(5.10)(
-�

�
Pi HzL Pj HzL wHzL ! z    =    0       for  i � j .

Hermite polynomials  are orthogonal to the weight function wHzL = :-z2 ê2 . They are defined
by

(5.11)Hj HzL = H-1L j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
wHzL  ! j wHzLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

! zj = H-1L j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
fHzL  ! j fHzLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

! z j     

and have the property that

(5.12)(
-�

�
Hi HzL Hj HzL fHzL ! z      =      

lomno 0 if i � j

j ! if i = j

To illustrate the point, compare:   (Note: H[j] and f were inputted in §5.4 A)

4
-�

�

H@2D H@3D f <z

0

with

4
-�

�

H@3D H@3D f <z

6
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Multiplying both sides of (5.9) by Hi HzL yields

(5.13)Hi HzL yHzL = .
j=0

�

cj Hi HzL Hj HzL fHzL.
Integrating both sides yields, by the orthogonal property (5.12),

(5.14)(
-�

�
Hi HzL yHzL ! z = ci i !

Thus,

(5.15)ci = 1ÅÅÅÅÅÅÅ
i !

E @Hi HzLD
where the expectation is carried out with respect to yHzL. We already know the form of the
Hermite polynomials. For instance, H6 HzL is:

H@6D
-15 + 45 z2 - 15 z4 + z6

It  immediately  follows  that  E@H6 HzLD = I-15 + 45 m
£

2 - 15 m
£

4 + m
£

6 M  where  m
£

i  denotes  the
i th  raw  moment  of  yHzL.  In  Mathematica,  this  conversion  from  zi  to  m

£
i  can  be  neatly

achieved through pattern matching: 

H@6D ê. zi_. ß m
£
i

-15 + 45 m
£
2 - 15 m

£
4 + m

£
6

Finally,  since we have  assumed that yHzL  is a  standardised density,  replace  m
£

 with m,  and
let  m1 = 0  and  m2 = 1.  Then  c6  reduces  to  H30 - 15 m4 + m6 L ê6 !  .  These  substitutions
accord with the definition of the c[j] function in §5.4 A, and so c[6] yields: 

c@6D
1

ÅÅÅÅÅÅÅÅÅÅ
720

H30 - 15 m4 + m6L
Finally,  the  nomenclature  `GramDCharlier  Expansion  of  Type  AV  suggests  other  types  of
expansions also exist. Indeed, just as Type A uses the standard Normal fHzL as a generating
function, CharlierJs  `Type BV uses the Poisson weight function e-l  lx ê x ! as its generating
function,  defined  for  x = 0, 1, 2, n  .  This  has  the  potential  to  perform  better  than  the
standard  Normal  when  approximating  skew  densities.  However,  it  assumes  a  discrete
ordinate system and perhaps for this reason is rarely used. 
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5.5 Non-Parametric Kernel Density Estimation

Kernel  density  estimation  does  not  typically  belong  in  a  chapter  on  Systems  of

Distributions. However,  just as a Pearson curve gives an impression of the distribution of
the underlying population, so too does kernel density estimation, which helps explain why
it is included here.

One  of  the  virtues  of  working  with  families  of  distributions,  rather  than  a  specific
distribution,  is  that  it  reduces  the  chance  of  making  the  wrong  parametric  assumption
about the distributionJs correct form. Instead of assuming a particular functional form, one
assumes a particular family, which is more general. If our assumption is correct,  then our
estimates  should  be  efficient.  However,  assumptions  do  not  always  hold,  and  by  locking
our analysis into an incorrect assumptional framework, we can end up doing rather poorly.
As  such,  it  is  usually  wise  to conduct  a  preliminary  investigation  of  the data  based  upon
minimal  assumptions.  Smoothing  methods  serve  to  do  this,  as  density  smoothness  is  all
that is imposed. The so-called kernel density estimator is

(5.16)f
`HyL = 1ÅÅÅÅÅÅÅÅ

n c
 .

i=1

n

KI y - YiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c

M
where  HY1 , n, Yn L  is  a  random  sample  of  size  n  collected  on  a  random  variable  Y .  The
function K  is known as the kernel and is specified by the analyst; it is often chosen to be a
density  function  with  zero  mean  and  finite  variance.  Parameter  c > 0  is  known  as  the
bandwidth  and  it  too  is  specified  by  the  analyst;  small  values  of  c  produce  a  rough
estimate,  while large values produce a very smooth estimate. For further details  on kernel
density  estimation,  see  Silverman  (1986)  and  Simonoff  (1996);  Stine  (1996)  gives  an
implementation under Mathematica Version 2.2.

�  Example 7:  Non-Parametric Kernel Density Estimation

In  practice,  the  kernel  density  estimate  is  presented  in  the  form  of  a  plot,  and  this  is
exactly  the  output  produced  by  the  mathStatica  function  NPKDEPlot  (non-parametric
kernel  density  estimator).  To  illustrate  its  use,  we  apply  it  to  ParzenJs  (1979)  yearly
`Snowfall  in BuffaloJ  data  (63 data  points  collected from 1910  to 1972,  and measured  in
inches):

data = ReadList@"snowfall.dat"D;
Two steps are required:

(i) Specify the kernel K

(ii) Choose the bandwidth c

We can then use NPKDEPlot to plot the kernel density estimate.
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Step (i): In this example, we select K to be of form

(5.17)KHuL = H2 r+1L !!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r ! 2r+1 H1 - u2 Lr , -1 § u § 1

where  r = 1, 2, 3, n  denotes  the  weight  of  the  kernel,  and  !!  is  the  double  factorial
function. The r = 1 case yields the Epanechnikov kernel (ep):

ep =
3
ÅÅÅÅ
4

 H1 - u2L; domain@epD = 8u, -1, 1<;
Other  common  choices  for  K  include  the  bi-weight  kernel  Hr = 2L,  the  tri-weight  kernelHr = 3L, and the Gaussian kernel H2 pL-1ê2  expH-u2 ê2L  which is defined everywhere on the
real line.

Step (ii): Next, we select the bandwidth c. This is most important, and experimenting
with different values of c is advisable.  A number of methods exist to automate bandwidth
choice;  mathStatica  implements  both  the  Silverman  (1986)  approach  (default)  and  the
more  sophisticated  (but  much  slower)  Sheather  and  Jones  (1991)  method.  They  can  be
used  as  stand-alone  bandwidth  selectors,  or,  better  still,  as  a  starting  point  for
experimentation.  For  the  snowfall  data  set,  the  SheatherDJones  optimal  bandwidth  (using
the Epanechnikov kernel) is:

c = Bandwidth@data, ep, Method Ø SheatherJonesD
37.2621

Since K  and c have now been specified,  we can plot the smoothed non-parametric kernel

density estimate using the NPKDEPlot[data, K, c] function:

NPKDEPlot@data, ep, cD;
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Fig. 18:  Plot of the non-parametric kernel density estimate, snowfall data Hc = 37.26L 
This estimate has produced a distinct mode for snowfall  of around 80 inches. Suppose we
keep the same kernel, but choose a smaller bandwidth with c = 10: 
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NPKDEPlot@data, ep, 10D;
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Fig. 19:  Plot of the non-parametric kernel density estimate, snowfall data Hc = 10L �
Our new estimate exposes two lesser modes on either side of the 80-inch mode, at around
53  inches  and  108  inches.  A  comparison  of  the  two  estimates  suggests  that  the
SheatherDJones  bandwidth  is  too  large  for  this  data  set  and  has  over-smoothed.  This
observation is in line with Parzen (1979, p.114) who reports that a trimodal shape for this
data  is  pthe  more  likely  answerq.  This  serves  to  highlight  the  importance  of  the
experimentation process. Clicking the `View AnimationJ button in the electronic notebook
brings up an animation in which the bandwidth c varies from 4 to 25 in step sizes of 1 ê4.
This provides a rather neat way to visualise how the shape of the estimate changes with c.

5.6 The Method of Moments

The  method  of  moments  is  employed  throughout  this  chapter  to  estimate  unknown
parameters. This technique essentially equates sample moments with population moments.
The  latter  are  generally  functions  of  unknown  parameters,  and  are  then  solved  for  those
parameters.

To be specific, suppose the random variable Y  has density f Hy; qL, where q is a Hk ä 1L
vector  containing  all  unknown  parameters.  Now  construct  the  first  r  raw  moments  of  Y.

That is, construct m
£

i = E@Yi D for  i = 1, n, r and r ¥ k  (in all our examples,  it suffices to
set r = k). Generally,  each  moment will  depend (often non-linearly)  upon the parameters,
so m

£
i = m

£
i  IqM. Now let HY1 , n, Yn L denote a random sample of size n  collected on Y . We

then  construct  the  sample  raw  moments  m
£

i = 1ÅÅÅÅ
n

  j=1
n Yj

i  for  each  i.  The  method  of

moments  estimator,  denoted  by  q
`
,  solves  the  set  of  k  equations  m

£
i  Iq`M = m

£
i  for  q

`
.  The

estimator  is  defined  by  equating  the  population  moment  with  the  sample  moment,  even
though  population  moments  and  sample  moments  are  generally  not  equal;  that  is,
m
£

i  IqM � m
£

i .  This immediately  questions  the validity  of the method of moments  estimator.
While not pursuing the answer in any detail here, we shall merely assert that the estimator
may  be  justified  using  asymptotic  arguments;  for  further  discussion,  see  Mittelhammer
(1996). Asymptotic theory is considered in detail in Chapter 8.
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�  Example 8:  The Bernoulli Distribution

Let Y ~ BernoulliHqL, where q = PHY = 1L, with pmf gHyL:
g  = qy H1 - qL1 - y;

domain@gD = 8y, 0, 1< && 80 < q < 1< && 8Discrete<;
The population mean of Y  is easily derived as:

m
£
1 = Expect@y, gD

q

For a random sample of size n, the method of moments estimator is defined as the solution
to m

£
1 Iq`M = m

£
1 , which needs no further effort in this case: q

`
= m

£
1 . !

�  Example 9:  The Gamma Distribution

Let Y ~ GammaHa, bL denote the Gamma distribution with parameter q = Ja
b
N and pdf f HyL:

f =
ya-1  .-yêb
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@aD ba
; domain@fD = 8y, 0, �< && 8a > 0, b > 0<;

To  estimate  q  using  the  method  of  moments,  we  require  the  first  two  population  raw
moments:

m
£
1 = Expect@y, fD

m
£
2 = Expect@y2, fD

a b

a H1 + aL b2
Then, the method of moments estimator of parameters a and b is obtained via:

SolveA9m
£
1 == m£ 1, m

£
2 == m£ 2=, 8a, b<E

99a Ø -
m
£
1

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m
£
1
2

- m
£
2

, b Ø
-m

£
1

2
+ m

£
2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m
£
1

==
Mathematica  gives  the  solution  as  a replacement  rule  for  a  and  b.  Note that  the  symbols
m
£

1  and m
£

2  are `reservedJ for use by mathStaticaJs moment converter  functions.  To avoid
any confusion, it is best to Unset them:

m
£
1 = .; m

£
2 =.;

n prior to leaving this section. !
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5.7 Exercises

1. Identify  where  each  of  the  following  distributions  will  be  found  on  a  Pearson
diagram:
(i) ExponentialHlL
(ii) standard Logistic
(iii) AzzaliniJs skew-Normal distribution with l > 0 (see Chapter 2, Exercise 2).

2. The  data  "stock.dat"  provides  monthly  US  stock  market  returns  from  1834  to
1925,  yielding  a  sample  of  1104  observations.  The  data  is  the  same  as  that  used  in
Pagan and Ullah (1999, Section 2.10).5 

(i) Fit a Pearson density to this data. 
(ii) Estimate  the  density  of  stock  market  returns  using  a  non-parametric  kernel

density estimator, with a Gaussian kernel.
(iii) Compare the Pearson fit to the kernel density estimate. 

To load the data, use:  ReadList["stock.dat"] .

3. Derive the equation describing the Type III and Type V lines in the Pearson diagram.
[Hint:  use  the  recurrence  relation  H5.5L  to  solve  the  moments  Im£ 1 , m

£
2 , m

£
3 , m

£
4 M  as  a

function of the Pearson coefficients Ha, c0 , c1 , c2 L. Hence, find b1  and b2  in terms ofHa, c0 , c1 , c2 L.  Then  impose  the  parameter  assumptions  that  define  Type  III  and
Type V, and find the relation between b1  and b2 .] *

4. Exercise  3  derived  the  formulae  describing  the  Type  III  and  Type  V  lines,
respectively, as: 

Type III: b2 = 3ÅÅÅÅ2  b1 + 3 

Type V: b2 = 3 H-16-13 b1 -2 H4+ b1 L3ê2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅb1 -32

Use  these  results  to  show  that  a  Gamma  distribution  defines  the  Type  III  line  in  a
Pearson diagram, and that an Inverse Gamma distribution defines the Type V line.

5. Let  random  variable  X ~ BetaHa, 1L  with  density  f HxL = a x a-1 ,  for  0 < x < 1;  this  is
also known as  a Power Function  distribution.  Show that this  distribution  defines  the
Type I(J) line(s) on a Pearson diagram, as parameter a varies.

6. Let  random  variable  X  have  a  standard  Extreme  Value  distribution.  Find  m  and8m2 , m3 , m4 <. Fit a Pearson density to these moments. Compare the true pdf (Extreme
Value) with the Pearson fit.

7. Recall that the Johnson family is based on transformations  of Z ~ NH0, 1L.  In similar
vein, a Johnson-style family can be constructed using transformations of Z ~ Logistic
(Tadikamalla  and  Johnson  (1982)).  Thus,  if  Z ~ Logistic,  find  the  pdf  of

Y = sinhI Z-gÅÅÅÅÅÅÅÅÅÅÅÅ
d

M,  g 6 !,  d > 0.  Plot  the  pdf  when  g = 0  and  d = 1, 2  and  3.  Find  the

first 4 raw moments of random variable Y .

8. Construct  a  non-parametric  kernel  density  estimator  plot  of  the  "sd.dat"  data  set
(which  measures  the  diagonal  length  of  100  forged  Swiss  bank  notes  and  100  real
Swiss bank notes) using a Logistic kernel and the Silverman optimal bandwidth.
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Chapter 6
Multivariate Distributions

6.1 Introduction
Thus  far,  we  have  considered  the  distribution  of  a  single  random  variable.  This  chapter

extends  the  analysis  to  a  collection  of  random  variables  X
!÷÷

= HX1 , X2 , =, Xm L.  When

m = 2,  we  have  a  bivariate  setting;  when  m = 3,  a  trivariate  =  and  so  on.  Although  the

transition from univariate to multivariate analysis is BnaturalC, it does introduce some new

concepts,  in  particular:  joint  densities  §6.1 A,  non-rectangular  domains  §6.1 B,  joint

distribution  functions  §6.1 C,  marginal  distributions  §6.1 D,  and  conditional  distributions

§6.1 E. Multivariate  expectations, product moments, generating functions and multivariate

moment conversion functions are discussed in §6.2. Next, §6.3 examines the properties of

independence  and dependence.  §6.4 is devoted to the multivariate Normal, §6.5 discusses

the  multivariate  t  and  the  multivariate  Cauchy,  while  §6.6  looks  at  the  Multinomial

distribution and the bivariate Poisson distribution. 

6.1 A Joint Density Functions

È Continuous Random Variables

Let  X
!÷÷

= HX1 , =, Xm L  denote  a  collection  of  m  random  variables  defined  on  a  domain  of

support L Õ !m , where we assume L is an open set in !m . Then a function f : L Ø !+  is

a joint probability density function (pdf) if it has the following properties:

(6.1)

f Hx1 , =, xm L > 0,     for Hx1 , =, xm L ' L

% � %
L

f Hx1 , =, xm L ) x1  � ) xm = 1

�  Example 1:  Joint pdf

Consider the function fHx, yL with domain of support L = 8Hx, yL : 0 < x < �, 0 < y < �<:

f =
"

-1-xÅÅÅÅÅÅÅÅÅÅy x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
y4

; domain@fD = 88x, 0, �<, 8y, 0, �<<;



Clearly, f  is positive over its domain, and it integrates to unity over the domain:

Integrate[f, {x,0,�}, {y,0,�}]

1

Thus,  f Hx, yL  may  represent  the  joint  pdf  of  a  pair  of  random  variables.  Figure  1  plots

f Hx, yL over part of its support.
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Fig. 1:  The joint pdf f Hx, yL

A  contour  plot  allows  one  to  pick  out  specific  contours  along  which  z = f Hx, yL  is

constant.  That  is,  each  contour  joins  points  on  the  surface  that  have  the  same  height  z.

Figure  2  plots  all  combinations  of  x  and  y  such  that  f Hx, yL = 1ÅÅÅÅÅÅÅ
30

.  The edge  of  the  dark-

shaded region is the contour line.
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Fig. 2:  The contour f Hx, yL = 1ÅÅÅÅÅÅ
30
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È Discrete Random Variables

Let  X
!÷÷

= HX1 , =, Xm L  denote  a  collection  of  m  random  variables  defined  on  a  domain  of

support L Õ !m . Then a function f : L Ø !+  is a joint probability mass function  (pmf) if

it has the following properties: 

(6.2)

f Hx1 , =, xm L = PHX1 = x1 , =, Xm = xm L > 0, for Hx1 , =, xm L ' L

 � 
L

f Hx1 , =, xm L = 1

�  Example 2:  Joint pmf

Let  random  variables  X  and  Y  have  joint  pmf  hHx, yL = x+1-yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54

 with  domain  of  support

L = 9Hx, yL : x ' 83, 5, 7<, y ' 80, 1, 2, 3<=, as per Table 1.

Y = 0 Y = 1 Y = 2 Y = 3

X = 3 4ÅÅÅÅÅÅÅ
54

3ÅÅÅÅÅÅÅ
54

2ÅÅÅÅÅÅÅ
54

1ÅÅÅÅÅÅÅ
54

X = 5 6ÅÅÅÅÅÅÅ
54

5ÅÅÅÅÅÅÅ
54

4ÅÅÅÅÅÅÅ
54

3ÅÅÅÅÅÅÅ
54

X = 7 8ÅÅÅÅÅÅÅ
54

7ÅÅÅÅÅÅÅ
54

6ÅÅÅÅÅÅÅ
54

5ÅÅÅÅÅÅÅ
54

Table 1:  Joint pmf of hHx, yL = x+1-yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54

In Mathematica, this pmf may be entered as:

pmf = TableA x + 1 - y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

54
, 8x, 3, 7, 2<, 8y, 0, 3<E

i
k
jjjjjjjjjj

2ÅÅÅÅÅ
27

1ÅÅÅÅÅ
18

1ÅÅÅÅÅ
27

1ÅÅÅÅÅ
54

1ÅÅÅ
9

5ÅÅÅÅÅ
54

2ÅÅÅÅÅ
27

1ÅÅÅÅÅ
18

4ÅÅÅÅÅ
27

7ÅÅÅÅÅ
54

1ÅÅÅ
9

5ÅÅÅÅÅ
54

y
{
zzzzzzzzzz

This is a well-defined pmf since all the probabilities are positive, and they sum to 1:

Plus üü Plus üü pmf

1

The latter can also be evaluated with:

Plus üü Hpmf êê FlattenL
1

Figure 3 interprets the joint pmf in the form of a three-dimensional bar chart.
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Fig. 3:  Joint pmf of hHx, yL = x+1-yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54

6.1 B Non-Rectangular Domains
If  the  domain  of  a  joint  pdf  does  not  depend  on  any  of  its  constituent  random variables,

then  we  say  the  domain  defines  an  independent  product  space.  For  instance,  the  domain

8Hx, yL :
1ÅÅÅÅ
2

< x < 3, 1 < y < 4<  is  an independent  product  space,  because  the  domain of  X
does  not  depend  on  the  domain  of  Y,  and  vice  versa.  We  enter  such  domains  into

mathStatica as:

domain@fD = 99x, 1
ÅÅÅÅ
2
, 3=, 8y, 1, 4<=

If plotted, this domain would appear rectangular, as Fig. 4 illustrates. In this vein, we refer

to such domains as being rectangular.

1
ÅÅÅÅÅ
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3
x
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Fig. 4:  A rectangular domain
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Sometimes,  the  domain  itself  may  depend  on  random  variables.  We  refer  to  such

domains as being non-rectangular. Examples include:

(i) 8 Hx, yL : 0 < x < y < �<.  This  would  appear  triangular  in  the  two-dimensional  plane.

We can enter this domain into mathStatica as:

domain@fD = 88x, 0, y<, 8y, x, �<<
(ii) 8 Hx, yL : x2 + y2 < 1<.  This  would  appear  circular  in  the  two-dimensional  plane.  At

present,  mathStatica  does  not  support  such  domains.  However,  this  feature  is

planned  for  a  future  version  of  mathStatica,  once  Mathematica  itself  can  support

multiple integration over inequality defined regions.

6.1 C Probability and Prob

È Continuous Random Variables

Given  some  joint  pdf  f Hx1 , =, xm L,  the  joint  cumulative  distribution  function  (cdf)  is

given by:

(6.3)PHX1 § x1 , =, Xm § xm L = %
-�

xm

� %
-�

x1

f Hw1 , =, wm L ) w1  � ) wm .

The mathStatica function Prob[{x1 , =, xm }, f] calculates PHX1 § x1 , =, Xm § xm L. The

position  of  each  element  {x1 , x2 , =}  in  Prob[{x1 , =, xm },  f]  is  important,  and  must

correspond to the ordering specified in the domain statement.

�  Example 3:  Joint cdf

 Consider again the joint pdf given in Example 1:

f =
"

-1-xÅÅÅÅÅÅÅÅÅÅy x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
y4

; domain@fD = 88x, 0, �<, 8y, 0, �<<;
Here is the cdf FHx, yL = PHX § x, Y § yL:

F = Prob@8x, y<, fD
"-1êy ikjjj1 -

"- xÅÅÅÅ
y Hx + x2 + y + 2 x yL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + xL2 y y{zzz
Since  FHx, yL  may be  viewed as the  anti-derivative  of  f Hx, yL,  differentiating  F  yields  the

original joint pdf f Hx, yL:

D@F, x, yD êê Simplify

"- 1+xÅÅÅÅÅÅÅÅ
y x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
y4
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Figure 5 plots the joint cdf.
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Fig. 5:  The joint cdf FHx, yL

The surface approaches 1 asymptotically, which it reaches in the limit:

Prob@8�, �<, fD
1

�  Example 4:  Probability Content of a Region! Introducing MrSpeedy

Let X
!÷÷

= HX1 , X2 , X3 L have joint pdf gHx1 , x2 , x3 L: 

g = k "x1  x1 Hx2 + 1L ê x32;
domain@gD = 88x1, 0, 1<, 8x2, 2, 4<, 8x3, 3, 5<<;

where the constant k > 0 is defined such that g integrates to unity over its domain. The cdf

of g is:

Clear@GD;
G@x1_, x2_, x3_D = Prob@8x1, x2, x3<, gD
k H1 + "x1 H-1 + x1LL H-2 + x2L H4 + x2L H-3 + x3L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6 x3

Note  that  we  have  set  up  G  as  a  Mathematica  function  of  x1  through  x3,  and  can  thus

apply  it  as  a  function  in  the  standard  way.  Here,  we find  k  by  evaluating  G  at  the upper

boundary of the domain:

G@1, 4, 5D
16 k
ÅÅÅÅÅÅÅÅÅÅÅ
15
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This requires k = 15ÅÅÅÅÅÅÅÅ
16

 in order for g to be a well-defined pdf.  If we require the probability

content  of  a  region  within  the  domain,  we  could  just  type  in  the  whole  integral.  For

instance, the probability of being within the region

S = 8Hx1 , x2 , x3 L : 0 < x1 < 1ÅÅÅÅ
2

, 3 < x2 < 7ÅÅÅÅ
2

, 4 < x3 < 9ÅÅÅÅ
2
<

is given by:

,
4

9ÅÅÅÅ2 ,
3

7ÅÅÅÅ2 ,
0

1ÅÅÅÅ2
g (x1  (x2  (x3

17
ÅÅÅÅÅÅÅÅÅÅ
288

ikjjj1 -
è!!!

"
ÅÅÅÅÅÅÅÅÅ
2

y{zzz k
While this is straightforward,  it is by no means the fastest  solution. In particular, the

probability  content  of  a  region  within  the  domain  can  be  found  purely  by  using  the

function  G[]  (which  we  have  already  found)  and  the  boundaries  of  that  region,  without

any  need  for  further  integration.  Note:  the  solution  is  not  G@ 1ÅÅÅÅ
2

,
7ÅÅÅÅ
2

,
9ÅÅÅÅ
2
D- G@0, 3, 4D.

Rather,  one  must  evaluate  the  cdf  at  every  possible  extremum  defined  by  set  S.  The

mathStatica function MrSpeedy[cdf,S] does this.

? MrSpeedy

MrSpeedy@cdf, SD calculates the probability content

of a region defined by set S, by making use of the

known distribution function cdf@x1, x2, ..., xmD.
For our example: 

S = 990, 1
ÅÅÅÅ
2
=, 93, 7

ÅÅÅÅ
2
=, 94, 9

ÅÅÅÅ
2
==;

MrSpeedy@G, SD
17

ÅÅÅÅÅÅÅÅÅÅ
288

ikjjj1 -
è!!!

"
ÅÅÅÅÅÅÅÅÅ
2

y{zzz k
MrSpeedy typically provides at least a 20-fold speed increase over direct integration. To

see the calculations MrSpeedy performs, replace G with say F:

MrSpeedy@F, SD
-F@0, 3, 4D + FA0, 3,

9
ÅÅÅÅ
2
E + FA0, 7

ÅÅÅÅ
2
, 4E - FA0, 7

ÅÅÅÅ
2
,

9
ÅÅÅÅ
2
E +

FA 1
ÅÅÅÅ
2
, 3, 4E - FA 1

ÅÅÅÅ
2
, 3,

9
ÅÅÅÅ
2
E - FA 1

ÅÅÅÅ
2
,

7
ÅÅÅÅ
2
, 4E + FA 1

ÅÅÅÅ
2
,

7
ÅÅÅÅ
2
,

9
ÅÅÅÅ
2
E

MrSpeedy  evaluates  the  cdf  at  each  of  these  points.  Note  that  this  approach  applies  to

any m-variate distribution. "
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È Discrete Random Variables

Given some joint pmf f Hx1 , =, xm L, the joint cdf is

(6.4)PHX1 § x1 , =, Xm § xm L = 
w1 § x1

� 
wm § xm

f Hw1 , =, wm L. 

Note that the Prob function does not operate on multivariate discrete domains.

�  Example 5:  Joint cdf

In  Example  2,  we  considered  the  bivariate  pmf  hHx, yL = x+1-yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54

 with  domain  of  support

L = 9Hx, yL : x ' 83, 5, 7<, y ' 80, 1, 2, 3<=.  The  cdf,  HHx, yL = PHX § x, Y § yL,  can  be

defined in Mathematica as follows:

H@x_, y_D = SumA w1 + 1 - w2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

54
, 8w1, 3, x, 2<, 8w2, 0, y<E

1
ÅÅÅÅÅÅÅÅÅÅ
108

ikjjj8 + 7 y - y
2 + 10 FloorA 1

ÅÅÅÅ
2

H-3 + xLE +

9 y FloorA 1
ÅÅÅÅ
2

H-3 + xLE - y
2
FloorA 1

ÅÅÅÅ
2

H-3 + xLE +

2 FloorA 1
ÅÅÅÅ
2

H-3 + xLE2 + 2 y FloorA 1
ÅÅÅÅ
2

H-3 + xLE2y{zzz
Then, for instance, PHX § 5, Y § 3L is:

H@5, 3D
14
ÅÅÅÅÅÅÅ
27

Figure 6 plots the joint cdf as a three-dimensional bar chart.
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Fig. 6:  The joint cdf HHx, yL
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6.1 D Marginal Distributions

È Continuous Random Variables

Let  the  continuous  random  variables  X1  and  X2  have  joint  pdf  f Hx1 , x2 L.  Then  the

marginal pdf of X1  is f1 Hx1 L, where 

(6.5) f1 Hx1 L = %
x2

f Hx1 , x2 L ) x2 .

More  generally,  if  HX1 , =, Xm L  have  joint  pdf  f Hx1 , =, xm L,  then  the  marginal  pdf  of  a

group  r < m  of  these  random  variables  is  obtained  by  Bintegrating  outC  the  Hm - rL
variables  that  are  not  of  interest.  The  mathStatica  function,  Marginal[x!r ,  f],  derives

the marginal joint pdf of the variable(s) specified in x!r . If there is more than one variable

in x!r , then it must take the form of a list. The ordering of the variables in this list does not

matter.

�  Example 6:  Marginal

Let the continuous random variables X
!÷÷

= HX1 , X2 , X3 , X4 L have joint pdf f Hx1 , x2 , x3 , x4 L: 

f = k "x1  x1 Hx2 + 1L Hx3 - 3L2 ê x42;
domain@fD = 88x1, 0, 1<, 8x2, 1, 2<, 8x3, 2, 3<, 8x4, 3, 4<<;

where k is a constant. The marginal bivariate distribution of X2  and X4  is given by:

Marginal@8x2, x4<, fD
k H1 + x2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3 x4
2

The  resulting  marginal  density  depends  only  on  values  of  X2  and  X4 ,  since  X1  and  X3

have  been  integrated  out.  Similarly,  the  marginal  distribution  of  X4  does  not  depend  on

values of X1 , X2  or X3 :

Marginal@x4, fD
5 k

ÅÅÅÅÅÅÅÅÅÅÅ
6 x4

2

We can use Marginal to determine k, by letting x!r  be an empty set. Then all the random

variables are Bintegrated outC: 

Marginal@8<, fD
5 k
ÅÅÅÅÅÅÅÅ
72

Thus, in order for f  to be a well-defined density function, k must equal 
72ÅÅÅÅÅÅÅÅ
5

. "
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È Discrete Random Variables

In a discrete world, the � symbol in  (6.5) is replaced by the summation symbol S. Thus, if

the discrete  random variables X1  and X2  have  joint pmf f Hx1 , x2 L,  then the marginal pmf
of X1  is f1 Hx1 L, where

(6.6)f1 Hx1 L = 
x2

f Hx1 , x2 L.

The  Marginal  function  only  operates  on  continuous  domains;  it  is  not  currently

implemented for discrete domains.

�  Example 7:  Discrete Marginal

Recall,  from  Example  2,  the  joint  pmf  hHx, yL = x+1-yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54

 with  domain  of  support

9Hx, yL : x ' 83, 5, 7<, y ' 80, 1, 2, 3<=:

pmf = TableA x + 1 - y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

54
, 8x, 3, 7, 2<, 8y, 0, 3<E;

By (6.6), the marginal pmf of Y is:

pmfY = SumA x + 1 - y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

54
, 8x, 3, 7, 2<E êê Simplify

6 - y
ÅÅÅÅÅÅÅÅÅÅÅÅ
18

where Y may take values of 0, 1, 2 or 3. That is:

pmfY ê. y Ø 80, 1, 2, 3<
9 1

ÅÅÅÅ
3
,

5
ÅÅÅÅÅÅÅ
18

,
2
ÅÅÅÅ
9
,

1
ÅÅÅÅ
6
=

Alternatively,  we can  derive  the same result  directly,  by finding the  sum of each  column

of Table 1:

Plus üü pmf

9 1
ÅÅÅÅ
3
,

5
ÅÅÅÅÅÅÅ
18

,
2
ÅÅÅÅ
9
,

1
ÅÅÅÅ
6
=

The sum of each row can be found with:

Plus üü Transpose@pmfD
9 5

ÅÅÅÅÅÅÅ
27

,
1
ÅÅÅÅ
3
,

13
ÅÅÅÅÅÅÅ
27

=
Further examples of discrete multivariate distributions are given in §6.6. "
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6.1 E Conditional Distributions

È Continuous Random Variables

Let  the  continuous  random  variables  X1  and  X2  have  joint  pdf  f Hx1 , x2 L.  Then  the

conditional pdf of X1  given X2 = x2  is denoted by f Hx1 * X2 = x2 L or, for short, f Hx1 * x2 L.
It is defined by

(6.7)f Hx1 * x2 L = f Hx1 , x2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf2 Hx2 L , provided f2 Hx2 L > 0

where  f2 Hx2 L  denotes  the  marginal  pdf  of  X2  evaluated  at  X2 = x2 .  More  generally,  if

HX1 , =, Xm L have joint pdf f Hx1 , =, xm L, the joint conditional pdf of a group of r of these

random variables (given that the remaining m - r variables are fixed) is the joint pdf of the

m variables divided by the joint marginal pdf of the m - r fixed variables. 

Since  the  conditional  pdf  f Hx1 * x2 L  is  a  well-defined  pdf,  we  can use  it  to calculate

probabilities  and  expectations.  For  instance,  if  uHX1 L  is  a  function  of  X1 ,  then  the

conditional expectation EAuHX1 L * X2 = x2 E is given by

(6.8)EAuHX1 L * x2E = %
x1

uHx1 L f Hx1 * x2 L ) x1 .

With  mathStatica,  conditional  expectations  are  easily  calculated  by  first  deriving  the

conditional  density,  say  fcon Hx1 L = f Hx1 * x2 L  and  domain[ fcon].  The  desired

conditional  expectation  is  then  given  by  Expect@u, fcon D.  Two  particular  examples  of

conditional  expectations  are  the  conditional  mean  EA X1 * x2 E,  which  is  known  as  the

regression  function  of  X1  on  X2 ,  and  the  conditional  variance  VarHX1 * x2 L,  which  is

known as the scedastic function.

�  Example 8:  Conditional

The  mathStatica  function,  Conditional[x!r ,  f],  derives  the  conditional  pdf  of  x!r
variable(s),  given  that  the  remaining  variables  are  fixed.  As  above,  if  there  is  more  than

one variable in x!r , then it must take the form of a list; it does not matter how the variables

in this list are sorted. To eliminate any confusion, a message clarifies what is (and what is

not)  being  conditioned  on.  For  density  f Hx1 , x2 , x3 , x4 L,  defined  in  Example  6,  the  joint

conditional pdf of X2  and X4 , given X1 = x1  and X3 = x3  is:

Conditional@8x2, x4<, fD
L Here is the conditional pdf  f H x2  , x4  À x1  , x3  L:

24 H1 + x2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
5 x4

2

Note  that  this  output  is  the  same as  the first  Marginal  example  above  (given k = 72ÅÅÅÅÅÅÅÅ
5

).

This is because HX1 , X2 , X3 , X4 L are mutually stochastically independent (see §6.3 A). "
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�  Example 9:  Conditional Expectation (Continuous)

Let  X1  and  X2  have  joint  pdf  f Hx1 , x2 L = x1 + x2 ,  supported  on  the  unit  rectangle

8Hx1 , x2 L : 0 < x1 < 1, 0 < x2 < 1<: 

f = x1 + x2; domain@fD = 88x1, 0, 1<, 8x2, 0, 1<<;
as illustrated below in Fig. 7. Derive the conditional mean and conditional variance of X1 ,

given X2 = x2 .

0

1

x1

0

1

x2

0

1

2

f

0

x1

Fig. 7:  The joint pdf f Hx1 , x2 L = x1 + x2

Solution: The conditional pdf f Hx1 * x2 L, denoted fcon , is:1

fcon = Conditional@x1, fD
L Here is the conditional pdf  f H x1  À x2  L:

x1 + x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1ÅÅÅ
2

+ x2

In  order  to  apply  mathStatica  functions  to  the  conditional  pdf  fcon ,  we need  to  declare

the domain over which it is defined. This is because mathStatica will only recognise fcon

as a pdf if its domain has been specified. Since random variable X2  is now fixed at x2 , the

domain of fcon  is:

domain@fconD = 8x1, 0, 1<;
The required conditional mean is:

Expect@x1, fconD
2 + 3 x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 + 6 x2
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The conditional variance is:

Var@x1, fconD
1 + 6 x2 + 6 x2

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
18 H1 + 2 x2L2

As this result depends on X2 , the conditional variance is heteroscedastic. "

È Discrete Random Variables

The  transition  to  a  discrete  world  is  once  again  straightforward:  if  the  discrete  random

variables,  X1  and  X2 ,  have  joint  pmf  f Hx1 , x2 L,  then  the  conditional  pmf  of  X2  given

X1 = x1  is denoted by f Hx2 * X1 = x1 L or, for short, f Hx2 * x1 L. It is defined by

(6.9)f Hx2 * x1 L = f Hx1 , x2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf1 Hx1 L  , provided f1 Hx1 L > 0

where  f1 Hx1 L  denotes  the  marginal  pmf  of  X1 ,  evaluated  at  X1 = x1 ,  as  defined  in  (6.6).

Note  that  mathStaticaCs  Conditional  function  only  operates  on  continuous  domains;

it  is  not  implemented  for  discrete  domains.  As above,  the  conditional  pmf  f Hx2 » x1 L  can

be used to calculate  probabilities and expectations.  Thus, if uHX2 L  is a function of X2 ,  the

conditional expectation EAuHX2 L * X1 = x1 E is given by

(6.10) EAuHX2 L * x1E = 
x2

uHx2 L f Hx2 * x1 L.

�  Example 10:  Conditional Mean (Discrete)

Find the conditional  mean of X, given Y = y, for the pmf hHx, yL = x+1-yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
54

 with domain of

support 9Hx, yL : x ' 83, 5, 7<, y ' 80, 1, 2, 3<=.
Solution:  We  require  EAX * Y = yE =  

x
x hHx » yL = 

x
x hHx, yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅhy HyL .  In  Example  7,  we  found

that the marginal pmf of Y  was hy HyL = 6-yÅÅÅÅÅÅÅÅÅÅÅ
18

. Hence, the solution is:

sol = SumAx x + 1 - y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

54
í 6 - y

ÅÅÅÅÅÅÅÅÅÅÅÅ
18

, 8x, 3, 7, 2<E êê Simplify

98 - 15 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
18 - 3 y

This depends, of course, on Y = y. Since we can assign four possible values to y, the four

possible conditional expectations EAX * Y = yE  are:

sol ê. y Ø 80, 1, 2, 3<
9 49

ÅÅÅÅÅÅÅ
9

,
83
ÅÅÅÅÅÅÅ
15

,
17
ÅÅÅÅÅÅÅ
3

,
53
ÅÅÅÅÅÅÅ
9

=
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6.2      Expectations, Moments, Generating Functions

6.2 A Expectations
Let  the  collection  of  m  random  variables  HX1 , =, Xm L  have  joint  density  function

f Hx1 , =, xm L.  Then  the  expectation  of  some  function  u  of  the  random  variables,

uHX1 , =, Xm L, is

(6.11)EAuHX1 , =, Xm LE =

loooooooom

n
oooooooo

%
xm

� %
x1

uHx1 , =, xm L f Hx1 , =, xm L ) x1  � ) xm


x1

� 
xm

uHx1 , =, xm L f Hx1 , =, xm L

corresponding  to the  continuous  and  discrete  cases,  respectively.  mathStaticaCs Expect

function  generalises  neatly  to  a  multivariate  continuous  setting.  For  instance,  in  §6.1  D,

we considered the following pdf gHx1 , x2 , x3 , x4 L:

g =
72
ÅÅÅÅÅÅÅ
5

 "x1  x1 Hx2 + 1L Hx3 - 3L2 ê x42;
domain@gD = 88x1, 0, 1<, 8x2, 1, 2<, 8x3, 2, 3<, 8x4, 3, 4<<;

We now find both E@X1 HX4
2 - X2 LD and E@X4 D:

Expect@x1  Hx42 - x2L, gD
157
ÅÅÅÅÅÅÅÅÅÅ
15

H-2 + "L
Expect@x4, gD
12 LogA 4

ÅÅÅÅ
3
E

6.2 B Product Moments, Covariance and Correlation
Multivariate  moments  are  a  special  type  of  multivariate  expectation.  To illustrate,  let  X1

and X2  have joint bivariate pdf f Hx1 , x2 L. Then, the bivariate raw moment m£ r, s  is

(6.12)m
£

r, s = E@X1
r X2

s D .

With s = 0, m
£

r, 0
 denotes the r th  raw moment of X1 . Similarly, with r = 0, m

£
0, s  denotes the

s th  raw moment  of  X2 .  More  generally,  m
£

r, s  is  known as  a  product  raw  moment  or  joint

raw moment. These definitions extend in the obvious way to higher numbers of variables.

The bivariate central moment mr, s  is defined as
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(6.13)       mr, s = EAH X1 - E@X1 D Lr H X2 - E@X2D LsE .

The covariance of Xi  and Xj , denoted CovHXi , Xj L, is defined by

(6.14)       CovHXi , Xj L = EAH Xi - E@Xi D L H Xj - E@Xj D LE .

When  i = j,  CovHXi , Xj L  is  equivalent  to  VarHXi L.  More  generally,  the  variance-
covariance matrix of X

!÷÷
= HX1 , X2 , =, Xm L is the Hmä mL symmetric matrix:

VarcovHX!÷÷ L =  E
Ä
Ç
ÅÅÅÅÅÅÅÅÅI X

!÷÷
- E@X!÷÷ D M I X

!÷÷
- E@X!÷÷ D MT

É
Ö
ÑÑÑÑÑÑÑÑÑ

=  E

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjjjjjjjjjj

X1 - EX1

X2 - EX2

ª
Xm - EXm

y

{

zzzzzzzzzzzzzz
i
k
jjj  HX1 - EX1 L, HX2 - EX2 L, = , HXm - EXm L y

{
zzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

=  E

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjjjjjjjjjjjjj

HX1 - EX1 L2 HX1 - EX1 L HX2 - EX2 L � HX1 - EX1 L HXm - EXm L
HX2 - EX2 L HX1 - EX1 L HX2 - EX2 L2 � HX2 - EX2 L HXm - EXm L

ª ª � ª

HXm - EXm L HX1 - EX1 L HXm - EXm L HX2 - EX2 L � HXm - EXm L2

y

{

zzzzzzzzzzzzzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

=     

i

k

jjjjjjjjjjjjjj

VarHX1 L CovHX1 , X2 L � CovHX1 , Xm L
CovHX2 , X1 L VarHX2 L � CovHX2 , Xm L

ª ª � ª
CovHXm , X1 L CovHXm , X2 L � VarHXm L

y

{

zzzzzzzzzzzzzz

It  follows  from  (6.14)  that  CovHXi , Xj L = CovHXj , Xi L,  and  thus  that  the  variance-

covariance  matrix  is symmetric.  In  the notation  of  (6.13),  one could  alternatively express

VarcovHX!÷÷ L as follows:

(6.15)VarcovHX!÷÷ L =

i

k

jjjjjjjjjjjjjjj

m
2, 0, 0, ..., 0

m
1, 1, 0, ..., 0

� m
1, 0, ..., 0, 1

m
1, 1, 0, ..., 0

m
0, 2, 0, ..., 0

� m
0, 1, ..., 0, 1

ª ª � ª
m

1, 0, ..., 0, 1
m

0, 1, 0, ..., 1
= m

0, 0, ..., 0, 2

y

{

zzzzzzzzzzzzzzz

which again highlights its symmetry.

Finally, the correlation between Xi  and Xj  is defined as

(6.16)rHXi , Xj L = rij =
CovHXi , Xj LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"################################VarHXi L VarHXj L

where  it  can  be  shown  that  -1 § rij § 1.  If  Xi  and  Xj  are  mutually  stochastically

independent (§6.3 A), then rij = 0; the converse does not always hold (see Example 16).
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�  Example 11:  Product Moments, Cov, Varcov, Corr

Let the continuous random variables X, Y  and Z have joint pdf f Hx, y, zL:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p l

 "- x2ÅÅÅÅÅÅ2 - zÅÅÅÅ
l

i
kjjjjj1 + a H2 y - 1L ErfA x

ÅÅÅÅÅÅÅÅÅÅè!!!!
2

Ey{zzzzz;
domain@fD = 88x, -�, �<, 8y, 0, 1<, 8z, 0, �<<

&& 8-1 < a < 1, l > 0<;
The mean vector is m!÷ = E@HX, Y , ZLD:

Expect@8x, y, z<, fD
90, 1

ÅÅÅÅ
2
, l=

Here is the product raw moment m
£

3, 2, 1
= E@X3 Y2  ZD :

Expect@x3  y2  z, fD
5 a l

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
12

è!!!
p

Here is the product central moment m
2, 0, 2

= EAH X - E@XD L2 H Z - E@ZD L2 E:

Expect@ Hx - Expect@x, fDL2  Hz - Expect@z, fDL2, fD
l2

 CovHX, Y L is given by:

Cov@8x, y<, fD
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
6
è!!!

p

More generally, the variance-covariance matrix is:

Varcov@fD
i
k
jjjjjjjjjjjj

1
aÅÅÅÅÅÅÅÅÅÅ

6
è!!!!

p
0

aÅÅÅÅÅÅÅÅÅÅ
6
è!!!!

p
1ÅÅÅÅÅ
12

0

0 0 l2

y
{
zzzzzzzzzzzz

The correlation between X and Y  is:

Corr@8x, y<, fD
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
3 p
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6.2 C Generating Functions
The multivariate moment generating function (mgf) is a natural extension to the univariate

case defined in Chapter 2. Let X
!÷÷

= HX1 , =, Xm L denote an m-variate random variable, and

let  t! = Ht1 , =, tm L ' !m  denote  a  vector  of  dummy  variables.  Then  the  mgf  MX
!÷÷ H t!L  is  a

function of t!; when no confusion is possible, we denote MX
!÷÷ H t!L by MH t!L. It is defined by

(6.17)MH t!L = EA2 t! . X
!÷÷ E = E@2t1  X1 + � + tm  Xm D

provided the expectation exists for all ti ' H-c, cL, for some constant c > 0, i = 1, =, m. If

it  exists,  the  mgf  can  be  used  to  generate  the  product  raw  moments.  In,  say,  a  bivariate

setting, the product raw moment m
£

r, s = E@X1
r X2

s D may be obtained from MH t!L as follows:

(6.18)m
£

r, s = E@X1
r X2

s D = �r+s  MH t!LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
� t1

r � t2
s

DDDDDDDDDD t! = 0
!÷   .

The central moment generating function may be obtained from the mgf (6.17) as follows:

(6.19)EA2 t! .I X
!÷÷

- m
!÷ M E = 2- t! . m

!÷
MH t!L,             where m!÷ = E@X!÷÷ D .

The  cumulant  generating  function  is  the  natural  logarithm  of  the  mgf.  The  multivariate

characteristic function is similar to (6.17) and given by

(6.20)CH t!L = EAexpI Â t!. X
!÷÷ ME = EAexpIÂ Ht1  X1 + t2  X2 + � + tm  Xm LME 

where Â denotes the unit imaginary number.

Given  discrete  random  variables  defined  on  subsets  of  the  non-negative  integers

80, 1, 2, =<, the multivariate probability generating function (pgf) is

(6.21)PH t!L = E@t1

X1 t2

X2  � tm
Xm D .

The pgf provides a way to determine the probabilities. For instance, in the bivariate case, 

(6.22)PHX1 = r, X2 = sL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅr! s!
 �

r+s  PH t!LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
� t1

r � t2
s

DDDDDDDDDD t! = 0
!÷   .

The  pgf  can  also  be  used  as  a  factorial  moment  generating  function.  For  instance,  in  a

bivariate setting, the product factorial moment,

(6.23)
m
£ @r, sD =   E@X1

@rD X2

@sD D
=   E@X1 HX1 - 1L � HX1 - r + 1L ä X2 HX2 - 1L� HX2 - s + 1LD

may be obtained from PH t!L as follows:

(6.24)m
£ @r, sD = E@X1

@rD X2

@sD D = �r+s  PH t!LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
� t1

r � t2
s

DDDDDDDDDD t! = 1
!÷  .
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Note  that t!  is set here to 1
!÷
 and not 0

!÷
. To then convert from factorial moments to product

raw moments, see the FactorialToRaw function of §6.2 D. 

�  Example 12:  Working with Generating Functions

Gumbel (1960) considered a bivariate Exponential distribution with cdf given by:

F = 1 - "-x - "-y + "-Hx+y+q x yL;
for 0 § q § 1. Because X  and Y  are continuous random variables, the joint pdf f Hx, yL may

be obtained by differentiation:

f = D@F, x, yD êê Simplify
domain@fD = 88x, 0, �<, 8y, 0, �<< && 80 < q < 1<;
"-x-y-x y q H1 + H-1 + x + yL q + x y q2L

This  is  termed  a  bivariate  Exponential  distribution  because  its  marginal  distributions  are

standard Exponential. For instance:

Marginal@x, fD
"-x

Here is the mgf (this takes about 100 seconds on our reference machine): 

t
6

= 8t1, t2<; V
6

= 8x, y<; mgf = ExpectA"t
6
.V
6
, fE

L This further assumes that:  9t1 < 1, ArgA -1 + t2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q

E � 0=
-

t1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + t1

+
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - t2

+

1
ÅÅÅÅÅÅÅ
q2

 J"
H-1+t1 L H-1+t2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq JMeijerGA88<, 81<<, 880, 0<, 8<<,H-1 + t1L H-1 + t2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q
E H-1 + t1L H1 + H-1 + qL t2L +

ExpIntegralEA1, H-1 + t1L H-1 + t2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q

EH1 - t1 + H-1 + q + t1L t2LNN
where  the  condition  Arg@ -1+t2ÅÅÅÅÅÅÅÅÅÅÅq D � 0  is  just  MathematicaCs  way  of  saying  t2 < 1.  We

can now obtain any product raw moment m
£

r, s = E@X1
r X2

s D from the mgf, as per (6.18). For

instance, m
£

3, 4
= E@X1

3 X2
4 D is given by:

D@ mgf, 8t1, 3<, 8t2, 4<D ê. t_ Ø 0 êê FullSimplify

12 q H1 + q H5 + 2 qLL - 12 "
1ÅÅÅÅq H1 + 6 q H1 + qLL Gamma@0, 1ÅÅÅq D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q6
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If  we plan to do many of these calculations,  it is convenient to write a little Mathematica
function, Moment[r, s] = E@Xr  Ys D, to automate this calculation:

Moment@r_, s_D :=
D@ mgf, 8t1, r<, 8t2, s<D ê. t_ Ø 0 êê FullSimplify

Then m
£

3, 4
 is now given by:

Moment@3, 4D
12 q H1 + q H5 + 2 qLL - 12 "

1ÅÅÅÅq H1 + 6 q H1 + qLL Gamma@0, 1ÅÅÅq D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q6

Just as we derived the Bmgf about the originC above, we can also derive the Bmgf about the

meanC  (i.e.  the  central  mgf).  To  do  so,  we  first  need  the  mean  vector  m!÷ = HE@XD, E@Y DL,
given by:

m6 = 8Moment@1, 0D, Moment@0, 1D<
81, 1<

Then, by (6.19), the centralised mgf is:

mgfc = "-t
6
.m6 mgf;

Just  as  differentiating  the  mgf  yields  raw  moments,  differentiating  the  centralised  mgf

yields  central moments.  In particular, the variances and the covariance of X  and Y  can be

obtained using the following function:

MyCov@i_, j_D := D@mgfc, ti, tjD ê. t_ Ø 0 êê FullSimplify

which we apply as follows:

Array@MyCov, 82, 2<D
i
k
jjjjjjj 1 -1 + "

1
ÅÅÅÅq Gamma@0, 1ÅÅÅÅq DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq

-1 + "
1
ÅÅÅÅq Gamma@0, 1ÅÅÅÅq DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq 1

y
{
zzzzzzz

To see how this works, evaluate:

Array@s, 82, 2<D
J s@1, 1D s@1, 2D

s@2, 1D s@2, 2D N
We  could,  of  course,  alternatively  derive  the  variance-covariance  matrix  directly  with

Varcov[f], which takes roughly 6 seconds to evaluate on our reference machine. "
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6.2 D Moment Conversion Formulae
The moment converter functions introduced in Chapter 2 extend naturally to a multivariate

setting.  Using  these  functions,  one  can  express  any  multivariate  moment  (m
£
,  m  or  k)  in

terms of any other moment (m
£
, m or k). The supported conversions are:

function description

RawToCentral@8r, s, =<D not implemented

RawToCumulant@8r, s, =<D m
£

r, s, =
 in  terms  of  ki, j, =

CentralToRaw@8r, s, =<D mr, s, =
 in  terms  of  m

£
i, j, =

CentralToCumulant@8r, s, =<D mr, s, =
 in  terms  of  ki, j, =

CumulantToRaw@8r, s, =<D kr, s, =  in  terms  of  m
£

i, j, =

CumulantToCentral@8r, s, =<D kr, s, =  in  terms  of  mi, j, =

and

RawToFactorial@8r, s, =<D m
£

r, s, =
 in  terms  of  m

£@i, j, =D
FactorialToRaw@8r, s, =<D m

£@r, sD in  terms  of  m
£

i, j

Table 2:  Multivariate moment conversion functions

�   Example 13:  Express CovHX, Y L in terms of Raw Moments

Solution:  By  (6.13),  the  covariance  between  X  and  Y  is  the  central  moment  m
1, 1

HX, Y L.
Thus,  to  express  the  covariance  in  terms  of  raw  moments,  we  use  the  function

CentralToRaw[{1,1}]: 

CentralToRaw@81, 1<D
m1,1 Ø -m

£
0,1

m
£
1,0

+ m
£
1,1

This is just the well-known result that m
1, 1

= E@X Y D - E@Y DE@XD. "

Cook  (1951)  gives  raw Ø cumulant  conversions  and  central Ø cumulant
conversions,  as  well  as  the  inverse  relations  cumulant Ø raw  and  cumulant Ø central,  all

in  a  bivariate  world  with  r + s § 6;  see  also  Stuart  and  Ord  (1994,  Section  3.29).  With

mathStatica,  we  can  derive  these  relations  on  the  fly.  Here  is  the  bivariate  raw  moment

m
£

3, 2
 expressed in terms of bivariate cumulants: 

RawToCumulant@83, 2<D
m
£
3,2

Ø k0,1
2 k1,0

3 + k0,2 k1,0
3 + 6 k0,1 k1,0

2 k1,1 + 6 k1,0 k1,1
2 +

3 k1,0
2 k1,2 + 3 k0,1

2 k1,0 k2,0 + 3 k0,2 k1,0 k2,0 +

6 k0,1 k1,1 k2,0 + 3 k1,2 k2,0 + 6 k0,1 k1,0 k2,1 + 6 k1,1 k2,1 +

3 k1,0 k2,2 + k0,1
2 k3,0 + k0,2 k3,0 + 2 k0,1 k3,1 + k3,2
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Working  Babout  the  meanC  (i.e.  set  k1, 0 = k0, 1 = 0)  yields  the  CentralToCumulant

conversions. Here is:

CentralToCumulant@83, 2<D
m3,2 Ø 3 k1,2 k2,0 + 6 k1,1 k2,1 + k0,2 k3,0 + k3,2

The  inverse  relations  are  given  by  CumulantToRaw  and  CumulantToCentral.

Here,  for  instance,  is  the  trivariate  cumulant  k2, 1, 1  expressed  in  terms  of  trivariate  raw

moments: 

CumulantToRaw@82, 1, 1<D
k2,1,1 Ø -6 m

£
0,0,1

m
£
0,1,0

m
£
1,0,0

2

+ 2 m
£
0,1,1

m
£
1,0,0

2

+

4 m
£
0,1,0

m
£
1,0,0

m
£
1,0,1

+ 4 m
£
0,0,1

m
£
1,0,0

m
£
1,1,0

-

2 m
£
1,0,1

m
£
1,1,0

- 2 m
£
1,0,0

m
£
1,1,1

+ 2 m
£
0,0,1

m
£
0,1,0

m
£
2,0,0

-

m
£
0,1,1

m
£
2,0,0

- m
£
0,1,0

m
£
2,0,1

- m
£
0,0,1

m
£
2,1,0

+ m
£
2,1,1

The converter functions extend to any arbitrarily large variate system, of any weight. Here

is  the  input  for  a  4-variate  cumulant  k3, 1, 3, 1  of  weight  8  expressed  in  terms  of  central

moments:

CumulantToCentral@83, 1, 3, 1<D
The  same expression  in  raw moments  is  about  5  times longer  and  contains  444 different

terms. It takes less than a second to evaluate: 

Length@CumulantToRaw@83, 1, 3, 1<DP2TD êê Timing

80.383333 Second, 444<
Factorial moments were discussed in §6.2 C, and are applied in §6.6 B. David and Barton

(1957, p.144) list multivariate factorial Ø raw conversions up to weight 4, along with the

inverse relation raw Ø factorial. With mathStatica, we can again derive these relations on

the fly. Here is the bivariate factorial moment m
£ @3, 2D  expressed in terms of bivariate raw

moments: 

FactorialToRaw@83, 2<D
m
£ @3, 2D Ø -2 m

£
1,1

+ 2 m
£
1,2

+ 3 m
£
2,1

- 3 m
£
2,2

- m
£
3,1

+ m
£
3,2

and here is a trivariate RawToFactorial conversion of weight 7:

RawToFactorial@84, 1, 2<D
m
£
4,1,2

Ø m
£ @1, 1, 1D + m

£ @1, 1, 2D + 7 m
£ @2, 1, 1D + 7 m

£ @2, 1, 2D +

6 m
£ @3, 1, 1D + 6 m

£@3, 1, 2D + m
£ @4, 1, 1D + m

£ @4, 1, 2D
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È The Converter Functions in Practice

Sometimes,  one  might know how to derive one class of moments  (say raw moments) but

not  another  (say  cumulants),  or  vice  versa.  In  such  situations,  the  converter  functions

come  to the  rescue,  for  they  enable one  to derive  any  moment  (m
£
,  m  or k),  provided  one

class  of  moments  can  be  calculated.  This  section  illustrates  how  this  can  be  done.  The

general approach is as follows: first, we express the desired moment (say k2, 1 ) in terms of

moments that we can calculate (say raw moments):

CumulantToRaw@82, 1<D
k2,1 Ø 2 m

£
0,1

m
£
1,0

2

- 2 m
£
1,0

m
£
1,1

- m
£
0,1

m
£
2,0

+ m
£
2,1

and then we evaluate each raw moment m
£

__
 for the relevant distribution. This can be done

in two ways: 

Method (i):  derive m
£

__
 from a known mgf

Method (ii): derive m
£

__
 directly using the Expect function.

Examples 14 and 15 illustrate the two approaches, respectively.

�  Example 14:  Method (i)

Find m
2, 1, 2

 for Cheriyan and RamabhadranCs multivariate Gamma distribution.

Solution:  Kotz  et  al.  (2000,  p.456)  give  the  joint  mgf  of  Cheriyan  and  RamabhadranCs

m-variate Gamma distribution as follows:

GammaMGF@m_D :=
i
kjjjjjj1 - 9

j=1

m

tj
y
{zzzzzz

-q0 :
j=1

m H1 - tjL-qj

So, for a trivariate system, the mgf is:

mgf = GammaMGF@3D
H1 - t1L-q1 H1 - t2L-q2 H1 - t3L-q3 H1 - t1 - t2 - t3L-q0

The desired central moment m
2, 1, 2

 can be expressed in terms of raw moments:

sol = CentralToRaw@82, 1, 2<D
m2,1,2 Ø 4 m

£
0,0,1

2

m
£
0,1,0

m
£
1,0,0

2

-

m
£
0,0,2

m
£
0,1,0

m
£
1,0,0

2

- 2 m
£
0,0,1

m
£
0,1,1

m
£
1,0,0

2

+ m
£
0,1,2

m
£
1,0,0

2

-

4 m
£
0,0,1

m
£
0,1,0

m
£
1,0,0

m
£
1,0,1

+ 2 m
£
0,1,0

m
£
1,0,0

m
£
1,0,2

-

2 m
£
0,0,1

2

m
£
1,0,0

m
£
1,1,0

+ 4 m
£
0,0,1

m
£
1,0,0

m
£
1,1,1

-

2 m
£
1,0,0

m
£
1,1,2

- m
£
0,0,1

2

m
£
0,1,0

m
£
2,0,0

+ 2 m
£
0,0,1

m
£
0,1,0

m
£
2,0,1

-

m
£
0,1,0

m
£
2,0,2

+ m
£
0,0,1

2

m
£
2,1,0

- 2 m
£
0,0,1

m
£
2,1,1

+ m
£
2,1,2
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Here,  each  term  m
£

r, s, v  denotes  m
£

r, s, v HX, Y , ZL = E@Xr  Ys  Zv D,  which  we  can,  in  turn,  find

by  differentiating  the  mgf.  Since  we  wish  to  do  this  many  times,  let  us  write  a  little

Mathematica function, Moment[r, s, v] = E@Xr  Ys  Zv D, to automate this calculation:

Moment@r_, s_, v_D :=
D@mgf, 8t1, r<, 8t2, s<, 8t3, v<D ê. t_ Ø 0

Then, the solution is:

sol ê. m
£
k__ ß Moment@kD êê Simplify

m2,1,2 Ø 2 q0 H12 + 10 q0 + q1 + q3L
An  alternative  solution  to  this  particular  problem,  without  using  the  converter

functions, is to first find the mean vector m
£

= 8E@XD, E@Y D, E@ZD<:

m6 = 8Moment@1, 0, 0D, Moment@0, 1, 0D, Moment@0, 0, 1D<
8q0 + q1, q0 + q2, q0 + q3<

Second, find the central mgf, by (6.19): 

t
6

= 8t1, t2, t3<; mgfc = "-t
6
.m6 mgf

"-t1 Hq0 +q1L-t2 Hq0 +q2L-t3 Hq0+q3L H1 - t1L-q1H1 - t2L-q2 H1 - t3L-q3 H1 - t1 - t2 - t3L-q0

Then, differentiating the central mgf yields the desired central moment m
2, 1, 2

 again:

D@mgfc, 8t1, 2<, 8t2, 1<, 8t3, 2<D ê. t_ Ø 0 êê Simplify

2 q0 H12 + 10 q0 + q1 + q3L
�  Example 15:  Method (ii)

Let random variables X and Y have joint density f Hx, yL:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 "- x2ÅÅÅÅÅÅ2 -2 y
i
kjjjjj"y + a H"y - 2L ErfA x

ÅÅÅÅÅÅÅÅÅÅè!!!!
2

Ey{zzzzz;
domain@fD = 88x, -�, �<, 8y, 0, �<< && 8-1 < a < 1<;

For the given density, find the product cumulant k2, 2 .

Solution:  If  we  knew  the  mgf,  we  could  immediately  derive  the  cumulant  generating

function.  Unfortunately, Mathematica Version 4 can not derive the mgf; nor is it likely to

be  listed  in  any  textbook,  because  this  is  not  a  common  distribution.  To  resolve  this
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problem,  we  will  make  use  of  the  moment  conversion  formulae.  The  desired  solution,

k2, 2 , expressed in terms of raw moments, is:

sol = CumulantToRaw@82, 2<D
k2,2 Ø -6 m

£
0,1

2

m
£
1,0

2

+ 2 m
£
0,2

m
£
1,0

2

+ 8 m
£
0,1

m
£
1,0

m
£
1,1

- 2 m
£
1,1

2

-

2 m
£
1,0

m
£
1,2

+ 2 m
£
0,1

2

m
£
2,0

- m
£
0,2

m
£
2,0

- 2 m
£
0,1

m
£
2,1

+ m
£
2,2

Here,  each  term  m
£

r, s  denotes  m
£

r, s HX, Y L = E@Xr  Ys D,  and  so  can  be  evaluated  with  the

Expect function. In the next input, we calculate each of the expectations that we require:

sol ê. m
£
r_,s_ ß Expect@xr  ys, fD êê Simplify

k2,2 Ø -
a2

ÅÅÅÅÅÅÅÅ
2 p

The calculation takes about 6 seconds on our reference machine. "

6.3 Independence and Dependence

6.3 A Stochastic Independence
Let random variables X

!÷÷
= HX1 , =, Xm L have joint pdf f Hx1 , =, xm L, with marginal density

functions  f1 Hx1 L, =, fm Hxm L.  Then  HX1 , =, Xm L  are  said  to  be  mutually  stochastically
independent if and only if

(6.25)f Hx1 , =, xm L = f1 Hx1 L ä �ä fm Hxm L .

That  is,  the  joint  pdf  is  equal  to  the  product  of  the  marginal  pdfCs.  A  number  of  well-

known theorems apply to mutually stochastically independent random variables, which we

state here without proof. In particular:

If HX1 , =, Xm L are mutually stochastically independent , then:

HiL PHa § X1 § b, =, c § Xm § dL = PHa § X1 § bL ä � ä PHc § Xm § dL
HiiL  E@u1 HX1 L� um HXm LD = E@u1 HX1 LD ä � ä E@um HXm LD

for  arbitrary  functions ui  H ÿ L  

HiiiL MHt1 , =, tm L = MHt1 L ä � ä MHtm L
mgf of the joint distribution = product of the mgf" s  of  the  marginal  distributions

HivL CovHXi , Xj L = 0 for all i � j
However, zero  covariance  does  not  imply  independence.

Table 3:  Properties of mutually stochastic independent random variables
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�  Example 16:  Stochastic Dependence and Correlation

Let the random variables X, Y and Z have joint pdf hHx, y, zL: 

h =
Exp@- 1ÅÅÅ

2
 Hx2 + y2 + z2LD H1 + x y z Exp@- 1ÅÅÅ

2
Hx2 + y2 + z2LDL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 pL3ê2 ;

domain@hD = 88x, -�, �<, 8y, -�, �<, 8z, -�, �<<;
Since the product of the marginal pdfCs:

Marginal@x, hD Marginal@y, hD Marginal@z, hD
"- x2ÅÅÅÅÅÅ

2
- y2ÅÅÅÅÅÅ

2
- z2ÅÅÅÅÅÅ

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2
è!!!
2 p3ê2

= is not equal to the joint pdf hHx, y, zL, it follows by (6.25) that X, Y and Z are mutually

stochastically  dependent.  Even  though  X,  Y  and  Z  are  mutually  dependent,  their

correlations rij  Hi � jL are all zero:

Varcov@hD
i
kjjjjjj
1 0 0

0 1 0

0 0 1

y
{zzzzzz

Clearly, zero correlation does not imply independence. "

6.3 B Copulae
Copulae  provide  a  method  for  constructing  multivariate  distributions  from  known

marginal distributions. We shall only consider the bivariate case here. For more detail, see

Joe (1997) and Nelsen (1999).

Let  the  continuous  random variable  X  have  pdf  f HxL  and  cdf  FHxL;  similarly,  let  the

continuous  random variable  Y  have  pdf  gHyL  and  cdf  GHyL.  We  wish to  create a  bivariate

distribution  HHx, yL  from these  marginals.  The joint  distribution  function HHx, yL is  given

by

(6.26)HHx, yL = CHF, GL

where C denotes the copula function. Then, the joint pdf hHx, yL is given by

(6.27)hHx, yL = �2 HHx, yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�x �y .

Table 4 lists some examples of copulae.
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copula formula restrictions

Independent C = F G 

Morgenstern C = F G H1 + aH1 - FL H1 - GLL -1 < a < 1

AlijMikhailjHaq C = F GÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - aH1 - FL H1 - GL -1 § a § 1

Frank C = - 1ÅÅÅÅÅa  logA1 + H2-a F - 1L H2-a G - 1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2-a - 1
E a � 0

Table 4:  Copulae

With the exception of the independent case, each copula in Table 4 includes parameter a.

This term induces a new parameter into the joint bivariate distribution hHx, yL, which gives

added  flexibility.  In  each  case,  setting  parameter  a = 0 (or  taking  the  limit  a Ø 0,  in  the

Frank  case)  yields  the  independent  copula  C = F G  as  a  special  case.  When  a = 1,  the

AlijMikhailjHaq copula simplifies to C = F GÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅF + G - F G , as used in Exercise 8.

In the following two examples,  we shall work with the Morgenstern  (1956) copula.2

We enter it as follows:

ClearAll@F, GD
Copula := F G H1 + a H1 - FL H1 - GLL

�  Example 17:  Bivariate Uniform (à la Morgenstern)

Let X ~ UniformH0, 1L with pdf f HxL and cdf FHxL, and let Y ~ UniformH0, 1L with pdf gHyL
and cdf GHyL:

f = 1; domain@fD = 8x, 0, 1<; F = Prob@x, fD;
g = 1; domain@gD = 8y, 0, 1<; G = Prob@y, gD;

Let hHx, yL denote the bivariate Uniform obtained via a Morgenstern copula. Then:

h = D@Copula, x, yD êê Simplify

1 + H-1 + 2 xL H-1 + 2 yL a

with domain of support:

domain@hD = 88x, 0, 1<, 8y, 0, 1<< && 8-1 < a < 1<;
Figure 8 plots  the joint pdf hHx, yL when a = 1ÅÅÅÅ

2
. Clicking the BView AnimationC button in

the  electronic  notebook  brings  up  an  animation  of  hHx, yL,  allowing  parameter  a  to  vary

from -1 to 1 in step sizes of 
1ÅÅÅÅÅÅÅ
10

. This provides a rather neat way to visualise positive and

negative correlation. 

212 CHAPTER  6 §6.3 B



0

1

x

0

1

y

1.5

h

0

x

Fig. 8:  Bivariate Uniform joint pdf hHx, yL when a = 1ÅÅÅÅ
2

  �

We already know the joint cdf HHx, yL = PHX § x, Y § yL, which is just the copula function:

Copula

x y H1 + H1 - xL H1 - yL aL
The variance-covariance matrix is given by:

Varcov@hD
ikjjjj

1ÅÅÅÅÅ
12

aÅÅÅÅÅ
36

aÅÅÅÅÅ
36

1ÅÅÅÅÅ
12

y{zzzz
�  Example 18:  NormaljUniform Bivariate Distribution (à la Morgenstern)

Let  X ~ NH0, 1L  with  pdf  f HxL  and  cdf  FHxL,  and  let  Y ~ UniformH0, 1L  with  pdf  gHyL  and

cdf GHyL:

f =
"- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<; F = Prob@x, fD;
g = 1; domain@gD = 8y, 0, 1<; G = Prob@y, gD;

Let hHx, yL denote the bivariate distribution obtained via a Morgenstern copula. Then: 
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h = D@Copula, x, yD êê Simplify

"- x2ÅÅÅÅÅÅ
2 I1 + H-1 + 2 yL a ErfA xÅÅÅÅÅÅÅè!!!!

2
EM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

with domain of support:

domain@hD = 88x, -�, �<, 8y, 0, 1<< && 8-1 § a § 1<;
Figure 9 plots the joint pdf hHx, yL when a = 0.

-2 0 2

x

0

1

y

0

0.2

0.4

h

1

Fig. 9:  NormaljUniform joint pdf hHx, yL when a = 0  �

The joint cdf HHx, yL = PHX § x, Y § yL is the copula function:

Copula êê Simplify

1
ÅÅÅÅ
2
y
ikjjj1 +

1
ÅÅÅÅ
2

H-1 + yL a
ikjjj-1 + ErfA x

ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzzy{zzz ikjjj1 + ErfA x
ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz
We  can  confirm  that  the  marginal  distributions  are  in  fact  Normal  and  Uniform,

respectively:

Marginal@x, hD
Marginal@y, hD
"- x2ÅÅÅÅÅÅ

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

1
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The variance-covariance matrix is:

Varcov@hD
i
kjjjjjj

1
aÅÅÅÅÅÅÅÅÅÅ

6
è!!!!

p

aÅÅÅÅÅÅÅÅÅÅ
6
è!!!!

p
1ÅÅÅÅÅ
12

y
{zzzzzz

Let hc HyL denote the conditional density function of Y , given X = x:

hc = Conditional@y, hD
L Here is the conditional pdf  h H y À x L:

1 + H-1 + 2 yL a ErfA x
ÅÅÅÅÅÅÅÅÅè!!!
2

E
with domain:

domain@hcD = 8y, 0, 1< && 8-1 § a § 1<;
Then, the conditional mean EAY * X = xE is:

Expect@y, hcD
1
ÅÅÅÅ
6

ikjjj3 + a ErfA x
ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz
and the conditional variance VarIY * X = xM is:

Var@y, hcD
1

ÅÅÅÅÅÅÅ
36

ikjjj3 - a2
ErfA x

ÅÅÅÅÅÅÅÅÅè!!!
2

E2y{zzz
Figure  10  plots  the  conditional  mean  and  the  conditional  variance,  when  X  and  Y  are

correlated Ha = 1L and uncorrelated Ha = 0L.
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1
ÅÅÅÅÅÅ
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ÅÅÅÅÅÅ
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E@Y » xD

a = 1

a = 0

-3 -2 -1 1 2 3
x

0.02

0.04

0.06

0.08

Var HY » xL

a = 1

a = 0

Fig. 10:  Conditional mean and variance  �
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6.4 The Multivariate Normal Distribution
The  Mathematica  package,  Statistics`MultinormalDistribution`,  has

several functions that are helpful throughout this section. We load this package as follows:

<< Statistics`

The multivariate  Normal distribution is pervasive throughout  statistics,  so we devote

an entire section to it and to some of its properties. Given X
!÷÷

= HX1 , =, Xm L, we denote the

m-variate  multivariate  Normal  distribution  by  NH m!÷ , S L,  with  mean  vector

m!÷ = Hm
1
, =, mm L ' !m , variance-covariance matrix S, and joint pdf

(6.28)f Hx!L = H2 pL-mê2 * S *-1ê2
expI- 1ÅÅÅÅ

2
Hx! - m!÷ LT S-1 Hx! - m!÷ L M

where x! = Hx1 , =, xm L ' !m , and S is a symmetric, positive definite HmämL matrix. When

m = 1, (6.28) simplifies to the univariate Normal pdf.

6.4 A The Bivariate Normal
Let  random  variables  X1  and  X2  have  a  bivariate  Normal  distribution,  with  zero  mean

vector,  and  variance-covariance  matrix  S = J 1 r
r 1

N.  Here,  r  denotes  the  correlation

coefficient between X1  and X2 . That is:

X
6

= 8x1, x2<; m6 = 80, 0<; S = J 1 r
r 1

N;
dist2 = MultinormalDistribution@m6, SD;

Then, we enter our bivariate Normal pdf f Hx1 , x2 L as:

f = PDFAdist2, X
6E êê Simplify

domain@fD = ThreadA9X6, -�, �=E && 8-1 < r < 1<
"

x1
2 -2 r x1 x2 +x2

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-2+2 r2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p

è!!!!!!!!!!!!!
1 - r2

88x1, -�, �<, 8x2, -�, �<< && 8-1 < r < 1<
where  the  PDF  and  MultinormalDistribution  functions  are  defined  in

MathematicaCs Statistics package.

When r = 0, the cdf can be expressed in terms of the built-in error function as:3

F0 = Prob@8x1, x2<, f ê. r Ø 0D
1
ÅÅÅÅ
4

ikjjj1 + ErfA x1ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz ikjjj1 + ErfA x2ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz
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È Diagrams

Figure 11 plots the zero correlation pdf and cdf.
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Fig. 11:  The bivariate Normal joint pdf f  (top) and joint cdf F (bottom), when r = 0  �
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The shape  of the contours of f Hx1 , x2 L  depends on r,  as Fig. 12 illustrates  with a set

of contour plots.
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Fig. 12:  Contour plots of the bivariate Normal pdf, for different values of r 

Each  plot  corresponds  to  a  specific  value  of  r.  In  the  top  left  corner,  r = -0.98  (almost

perfect  negative correlation),  whereas in the bottom right corner, r = 0.98 (almost perfect

positive  correlation).  The  middle  plot  corresponds  to the  case  of  zero correlation.  In  any

given plot, the edge of each shaded region represents the contour line, and each contour is

a  two-dimensional  ellipse  along  which  f  is  constant.  The  ellipses  are  aligned  along  the

x1 = x2  line when r > 0, or the x1 = -x2  line when r < 0. 

We can even plot the specific ellipse that encloses q% of the distribution by using the

EllipsoidQuantile[dist,  q]  function  in  MathematicaCs  Statistics  package.

This  is  illustrated  in  Fig. 13,  which  plots  the  ellipses  that  enclose  15%  (bold),  90%

(dashed)  and  99%  (plain)  of  the  distribution,  respectively,  when  r  is  0.6.  Figure  14

superimposes  1000  pseudo-random  drawings  from this  distribution  on  top  of Fig. 13.  On

average, we would expect around 1% of the simulated data to lie outside the 99% quantile.

For this particular set of simulated data, there are 11 such points (the large dots in Fig. 14).
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Fig. 13:  Quantiles: 15% (bold), 90% (dashed) and 99% (plain)  �
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Fig. 14:  Quantiles plotted with 1000 pseudo-random drawings
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È Applying the mathStatica Toolset

We can  try  out  the  mathStatica  toolset  on  density  f .  The  marginal  distribution  of  X1  is

well known to be NH0, 1L, as we confirm with:

Marginal@x1, fD
"- x1

2

ÅÅÅÅÅÅ
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

The variance-covariance matrix is, of course, equal to S:

Varcov@fD
J 1 r

r 1
N

The conditional distribution of X1  given X2 = x2  is NHr x2 , 1 - r2 L, as we confirm with:

Conditional@x1, fD
L Here is the conditional pdf  f H x1  »  x2  L:

"
Hx1 -r x2 L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H-1+r2 L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

è!!!!!!!!!!!!!
1 - r2

Here is the product moment E@X1
2 X2

2 D: 

Expect@x12 x22, fD
1 + 2 r2

The moment generating function is given by:

t
6

= 8t1, t2<; mgf = ExpectA"t
6
.X
6
, fE

"
1ÅÅÅÅ
2

Ht12 +2 r t1 t2 +t2
2L

Here, again, is the product moment E@X1
2  X2

2 D, but now derived from the mgf:

D@mgf, 8t1, 2<, 8t2, 2<D ê. t_ Ø 0

1 + 2 r2

If  the  mgf  is  known,  this  approach  to  deriving  moments  is  much  faster  than  the  direct

Expect  approach.  However,  in higher variate  (or  more general)  examples,  Mathematica
may not always be able to find the mgf, nor the cf.  In the special case of the multivariate

Normal  distribution,  this  is  not  necessarily  a  problem  since  MathematicaCs  Statistics

package  BknowsC  the  solution.  Of  course,  this  concept  of  BknowledgeC  is  somewhat
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artificial!MathematicaCs  Statistics  package  does  not  derive  the  solution,  but  rather

regurgitates  the  answer  just  like  a  textbook  appendix  does.  In  this  vein,  the  Statistics

package and a textbook appendix both work the same way: someone typed the answer in.

For  instance,  for  our  example,  the  cf  is  immediately  outputted  (not  derived)  by  the

Statistics package as:

CharacteristicFunction@dist2, 8t1, t2<D
"

1ÅÅÅÅ
2

H-t2 Hr t1 +t2L-t1 Ht1 +r t2LL
While this works well here, the regurgitation approach unfortunately breaks down as soon

as one veers from the chosen path, as we shall see in Example 21. 

�  Example 19:  The Normal Linear Regression Model

Let  us  suppose  that  the  random  variables  Y  and  X  are  jointly  distributed,  and  that  the

conditional mean of Y  given X = x can be expressed as

(6.29)EAY * X = xE = a1 + a2  x

where a1  and a2  are unknown but fixed parameters. The conditional mean, being linear in

the parameters, is called a linear regression function. We may write

(6.30)Y = a1 + a2  x + U

where the random variable U = Y - EAY * X = xE is referred to as the disturbance, and has,

by  construction,  a  conditional  mean  equal  to  zero;  that  is,  EAU * X = xE = 0.  If  Y  is

conditionally  Normally  distributed,  then by linearity  so too is U  conditionally  Normal, in

which  case  we  have  the  Normal  linear  regression  model.  This  model  can  arise  from  a

setting  in which  HY, XL  are  jointly Normally  distributed.  To see  this,  let  (Y, X)  have  joint

bivariate pdf NHm!÷ , SL where:

m6 = 8mY, mX<; S =
ikjjjj sY

2 sY  sX  r

sY  sX  r sX
2

y{zzzz;
cond = 8sY > 0, sX > 0, -1 < r < 1<;
dist = MultinormalDistribution@m6, SD;

Let f Hy, xL denote the joint pdf:

f = Simplify@PDF@dist, 8y, x<D, condD
domain@fD = 88y, -�, �<, 8x, -�, �<< && cond

"
Hy-mY L2 sX

2 -2 r Hx-mX L Hy-mY L sX sY +Hx-mX L2 sY
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H-1+r2 L sX

2 sY
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p

è!!!!!!!!!!!!!
1 - r2 sX sY

88y, -�, �<, 8x, -�, �<< && 8sY > 0, sX > 0, -1 < r < 1<
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The regression function EAY * X = xE can be derived in two steps (as per Example 9):

(i) We first determine the conditional pdf of Y  given X = x:

fcon = Conditional@y, fD
L Here is the conditional pdf  f H y »  x L:

"
HHy-mY L sX +r H-x+mX L sY L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 H-1+r2 L sX
2 sY

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

è!!!!!!!!!!!!!
1 - r2 sY

where the domain of the conditional distribution is:

domain@fconD = 8y, -�, �< && cond;

(ii) We can now find EAY * X = xE :

regf = Expect@y, fconD
mY +

r Hx - mXL sYÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sX

This  expression  is  of  form  a1 + a2 x.  To  see  this,  we  can  use  the  CoefficientList

function to obtain the parameters a1  and a2 :

CoefficientList@regf, xD
9mY -

r mX sYÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sX

,
r sYÅÅÅÅÅÅÅÅÅÅÅ
sX

=
In  summary,  if  HY, XL  are  jointly  bivariate  Normal,  then  the  regression  function

EAY * X = xE  is  linear  in  the  parameters,  of  form  a1 + a2  x,  where  a1 = mY - a2 mX  and

a2 = r sYÅÅÅÅÅÅÅÅÅÅÅÅsX
, which  is what  we set out  to show. Finally, inspection of fcon  reveals that the

conditional  distribution  of  Y * HX = xL  is  Normal.  Joint  Normality  therefore  determines  a

Normal linear regression model. "

�  Example 20:  Robin Hood

Robin  Hood  has  entered  the  coveted  Nottingham  Forest  Archery  competition,  where

contestants shoot arrows at a vertical target. For Mr Hood, it is known that the distribution

of horizontal and vertical deviations from the centre of the target is bivariate Normal, with

zero  means,  equal  variances  s2  and  correlation  r.  What  is  the  probability  that  he  gets  a

bullCs-eye, if the latter has unit radius? 

Solution: We begin by setting up the appropriate bivariate Normal distribution:

X
6

= 8x1, x2<; m6 = 80, 0<; S = s2  J 1 r
r 1

N;
dist = MultinormalDistribution@m6, SD;
cond = 8s > 0, -1 < r < 1, r > 0, 0 < q < 2 p<;
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Let f Hx1 , x2 L denote the joint pdf:

f = SimplifyAPDFAdist, X
6E, condE

domain@fD = 88x1, -�, �<, 8x2, -�, �<< && cond;
"

x1
2 -2 r x1 x2 +x2

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H-1+r2 L s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p

è!!!!!!!!!!!!!
1 - r2 s2

The solution requires a transformation to polar co-ordinates. Thus:

W = 8x1 Ø r Cos@qD, x2 Ø r Sin@qD<;
Here,  R = "#################X1

2 + X2
2  represents  the  distance  of  HX1 , X2 L  from  the  origin,  while

Q = arctanHX2 ê X1 L  represents  the  angle  of  HX1 , X2 L  with  respect  to  the  X1  axis.  Thus,

R = r ' !+  and  Q = q ' 8q : 0 < q < 2 p <.  We  seek  the  joint  pdf  of  R  and  Q.  We  thus

apply  the  transformation  method  (Chapter  4).  We  do  so  manually  (see  §4.2  C),  because

there are two solutions, differing only in respect to sign. The desired joint density is gHr, qL:

g = SimplifyAHf ê. WL JacobAX6 ê. W, 8r, q<E, condE
domain@gD = 88r, 0, �<, 8q, 0, 2 p<< && cond;

"- r2 H-1+r Sin@2 qDLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H-1+r2 L s2 r

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p

è!!!!!!!!!!!!!
1 - r2 s2

The  probability  of  hitting  the  bullCs-eye  is  given  by  PHR § 1L.  In  the  simple  case  of  zero

correlation Hr = 0L, this is:

pr = Prob@81, 2 p<, g ê. r Ø 0D
1 - "- 1ÅÅÅÅÅÅÅÅÅ

2 s2

As  expected,  this  probability  is  decreasing  in  the  standard  deviation  s,  as  Fig. 15

illustrates.
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Fig. 15:  Probability that Robin Hood hits a bullCs-eye, as a function of s  �
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More generally, in the case of non-zero correlation Hr � 0L, Mathematica cannot determine

this  probability  exactly.  This  is not  surprising  as  the solution  does  not  have  a convenient

closed form. Nevertheless, given values of the parameters s and r, one can use numerical

integration. For instance, if s = 2, and r = 0.7, the probability of a bullCs-eye is: 

NIntegrate@g ê. 8s Ø 2, r Ø 0.7<, 8r, 0, 1<, 8q, 0, 2 p<D
0.155593

which contrasts with a probability of 0.117503 when r = 0. More generally, it appears that

a contestant whose shooting is BellipticalC Hr � 0L will hit the bullCs-eye more often than an

BuncorrelatedC Hr = 0L contestant! "

�  Example 21:  Truncated Bivariate Normal

Let  HX, Y L ~ NI 0
!÷
, S M  with  joint  pdf  f Hx, y L  and  cdf  FHx, yL,  with  S = J 1 r

r 1
N,  where  we

shall  assume  that  0 < r < 1.  Corresponding  to  f Hx, yL,  let  gHx, yL  denote  the  pdf  of  a

truncated  distribution  with  Y  restricted  to  the  positive  real  line  HY > 0L.  We  wish  to  find

the pdf of the truncated distribution gHx, yL, the marginal distributions gX HxL and gY HyL, and

the new variance-covariance matrix.

Solution:  Since  the  truncated  distribution  is  not  a  BtextbookC  Normal  distribution,

MathematicaUs  Multinormal  package  is  not  designed  to  answer  such  questions.  By

contrast, mathStatica adopts a general approach and so can solve such problems. Given:

V = 8x, y<; m6 = 80, 0<; S = J 1 r
r 1

N; cond = 80 < r < 1<;
Then, the parent pdf f Hx, yL is:

f = Simplify@PDF@MultinormalDistribution@m6, SD, V D, condD;
domain@fD = 88x, -�, �<, 8y, -�, �<< && cond;

By familiar truncation arguments (§2.5 A):

        gHx, yL = f Hx, yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - FH�, 0L = 2 f Hx, yL,        for x ' !, y ' !+

which we enter as:

g = 2 f;
domain@gD = 88x, -�, �<, 8y, 0, �<< && cond;

The marginal pdf of Y, when Y  is truncated below at zero, is gY HyL:
gY = Marginal@y, gD
"- y2ÅÅÅÅÅÅ

2 $%%%%%%2ÅÅÅÅ
p
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This is the pdf of a half-Normal random variable, as illustrated in Fig. 16.
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Fig. 16:  The marginal pdf of Y , when Y  is truncated below at zero

By contrast, the marginal pdf of X, when Y  is truncated below at 0, is given by gX HxL:

gX = Marginal@x, gD
"- x2ÅÅÅÅÅÅ

2 I1 + ErfA x rÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!
2-2 r2

EM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!

2 p

which is AzzaliniCs skew-NormalHlL pdf with l = r ëè!!!!!!!!!!!!!
1 - r2  (see Chapter 2, Exercise 2).

Even though X is not itself truncated, gX HxL is affected by the truncation of Y , because X is

correlated with Y .  Now consider the two extremes:  if r = 0, X  and Y  are uncorrelated, so

gX H ÿ L = fX H ÿ L, and we obtain a standard Normal pdf; at the other extreme, if r = 1, X  and

Y  are  perfectly  correlated,  so  gX H ÿ L = gY H ÿ L,  and  we  obtain  a  half-Normal  pdf.  For

0 < r < 1, we obtain a result  between these two extremes. This can be seen from Fig. 17,

which plots both extremes, and three cases in between.
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Fig. 17:  The marginal pdf of X, when Y  is truncated below at zero.
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The mean vector, when Y is truncated below at zero, is: 

Expect@8x, y<, gD
9$%%%%%%2ÅÅÅÅ

p
r, $%%%%%%2ÅÅÅÅ

p
=

The variance-covariance matrix for HX, Y L, when Y is truncated below at zero, is:

Varcov@gD
ikjjjjj 1 - 2 r2

ÅÅÅÅÅÅÅÅp
H-2+pL rÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpH-2+pL rÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp

-2+pÅÅÅÅÅÅÅÅÅp

y{zzzzz
This illustrates that, in a mutually dependent setting, the truncation of one random variable

effects all the random variables (not just the truncated variable). "

6.4 B The Trivariate Normal
The  trivariate  Normal  distribution  for  HX, Y , ZL  is  fully  specified  by  the  H3ä 1L  vector  of

means  and  the  H3ä 3L  variance-covariance  matrix.  When  the  mean  vector  is  0
!÷

 and  the

variances are all equal to unity, we have:

V = 8x, y, z<; m6 = 80, 0, 0<; S =
i
k
jjjjjjj

1 rxy rxz

rxy 1 ryz

rxz ryz 1

y
{
zzzzzzz;

dist3 = MultinormalDistribution@m6, SD;
cond = 8-1 < rxy < 1, -1 < rxz < 1, -1 < ryz < 1, Det@SD > 0<;

where  rij  denotes  the  correlation  between  variable  i  and  variable  j,  and  the  condition

Det@SD > 0  reflects  the fact  that the variance-covariance  matrix is positive definite.  Let

gHx, y, zL denote the joint pdf:

g = PDF@dist3, VD êê Simplify

"
x2 +y2 +z2 -z2 rxy

2 -y2 rxz
2 -2 y z ryz -x2 ryz

2 -2 x rxz Hz-y ryz L+2 rxy H-x y+y z rxz +x z ryz LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H-1+rxy

2 +rxz
2 -2 rxy rxz ryz +ryz

2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
è!!!
2 p3ê2 è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1 - rxy
2 - rxz

2 + 2 rxy rxz ryz - ryz
2

with domain:

domain@gD = Thread@8V, -�, �<D && cond

88x, -�, �<, 8y, -�, �<, 8z, -�, �<< && 8-1 < rxy < 1,

-1 < rxz < 1, -1 < ryz < 1, 1 - rxy
2 - rxz

2 + 2 rxy rxz ryz - ryz
2 > 0<
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Here,  for  example,  is E@X Y 2Z D;  the calculation  takes  about  70 seconds  on our  reference

computer:

Expect@x y "z, gDè!!!
" Hrxy + rxz ryzL

Figure 12, above, illustrated that a contour plot of a bivariate Normal pdf yields an ellipse,

or  a circle  given zero  correlation.  Figure  18 illustrates  a specific  contour  of the  trivariate

pdf  gHx, y, zL,  when  rxy Ø 0.2, ryz Ø 0.3, rxz Ø 0.4,  and  gHx, y, zL = 0.05.  Once  again,

the symmetry of the plot will be altered by the choice of correlation coefficients. Whereas

the  bivariate  Normal  yields  elliptical  contours  (or  a  circle  given  zero  correlation),  the

trivariate case yields the intuitive 3D equivalent, namely the surface of an ellipsoid (or that

of  a  sphere  given  zero  correlations).  Here,  parameter  rxy  alters  the  BorientationC  of  the

ellipsoid in the x-y plane, just as ryz  does in the y-z plane, and rxz  does in the x-z plane.
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Fig. 18:  The contour gHx, y, zL = 0.05 for the trivariate Normal pdf  �

Just  as  in  the  2D  case,  we  can  plot  the  specific  ellipsoid  that  encloses  q%  of  the

distribution by using the function EllipsoidQuantile[dist, q]. This is illustrated in

Fig. 19 below, which plots the ellipsoids that enclose 60% (solid) and 90% (wireframe) of

the  distribution,  respectively,  given  rxy Ø 0.01, ryz Ø 0.01, rxz Ø 0.4.  Ideally,  one

would  plot  the  90%  ellipsoid  using  translucent  graphics.  Unfortunately,  Mathematica
Version 4 does not support translucent graphics, so we use a WireFrame instead.
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Fig. 19:  Quantiles: 60% (solid) and 90% (wireframe)

�  Example 22:  Correlation and Positive Definite Matrix

Let  X,  Y  and  Z  follow  a  standardised  trivariate  Normal  distribution.  It  is  known  that

rxy = 0.9  and  rxz = -0.8,  but  ryz  is  not  known.  What  can  we  say,  if  anything,  about  the

correlation ryz ?

Solution: Although there is not enough information to uniquely determine the value of ryz ,

there  is  enough  information  to  specify  a  range  of  values  for  it  (of  course,  -1 < ryz < 1

must  always  hold).  This  is  achieved  by  using  the  property  that  S  must  be  a  positive

definite matrix, which implies that the determinant of S must be positive:

dd = Det@SD ê. 8rxy Ø .9, rxz Ø -.8<
-0.45 - 1.44 ryz - ryz

2

This expression is positive when ryz  lies in the following interval: 

<< Algebra`
InequalitySolve@dd > 0, ryzD
-0.981534 < ryz < -0.458466

228 CHAPTER  6 §6.4 B



6.4 C CDF, Probability Calculations and Numerics
While it is generally straightforward to find numerical values for any multivariate Normal

pdf,  it is not quite as easy to do so for the cdf. To illustrate, we use the trivariate Normal

pdf  gHx, y, zL = PDF@dist3, 8x, y, z<D  defined  at  the  start  of  §6.4 B.  We  distinguish

between two possible scenarios: (i) zero correlation, and (ii) non-zero correlation.

È Zero Correlation

Under zero correlation, it is possible to find an exact symbolic solution using mathStatica
in  the  usual  way.3, 4  Let  GHx, y, zL  denote  the  cdf  PHX § x, Y § y, Z § zL  under  zero

correlation:

Clear@GD; G@x_, y_, z_D = Prob@8x, y, z<, g ê. r_ Ø 0D
1
ÅÅÅÅ
8

ikjjj1 + ErfA x
ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz ikjjj1 + ErfA y
ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz ikjjj1 + ErfA z
ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz
This  solution is virtuous in two respects: first,  it is an exact symbolic expression;  second,

because  the  solution  is  already  BevaluatedC,  it  will  be  computationally  efficient  in

application. Here, for instance, is the exact symbolic solution to PHX § -2, Y § 0, Z § 2L:
G@-2, 0, 2D
1
ÅÅÅÅ
8

I1 - ErfAè!!!
2 EM I1 + ErfAè!!!

2 EM
Because the solution is an exact symbolic expression, we can use MathematicaCs arbitrary

precision numerical engine to express it as a numerical expression, to any desired number

of digits of precision. Here is G[-2,0,2] calculated to 40 digits of precision:

N@G@-2, 0, 2D , 40D
0.01111628172225982147533684086722435761304

If  we require the probability content  of a region within the domain,  we could just type in

the whole integral. For instance, the probability of being within the region

         S = 8Hx, y, zL : 1 < x < 2, 3 < y < 4, 5 < z < 6 < 

is given by:

Integrate@g ê. r_ Ø 0,8x, 1, 2<, 8 y, 3, 4<, 8z, 5, 6<D êê N êê Timing

80.27 Second, 5.1178 µ 10-11<
Alternatively,  we can use the mathStatica  function MrSpeedy (Example 4). MrSpeedy

finds  the  probability  content  of  a  region  within  the  domain  just  by  using  the  known  cdf

G[]  (which  we  have  already  found)  and  the  boundaries  of  the  region,  without  any  need

for further integration:
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S = 881, 2<, 83, 4<, 85, 6<<; MrSpeedy@G, SD êê N êê Timing

80. Second, 5.1178 µ 10-11<
MrSpeedy often provides enormous speed increases over direct integration.

È Non-Zero Correlation

In  the  case  of  non-zero  correlation,  a  closed  form  solution  to  the  cdf  does  not  generally

exist,  so  that  numerical  integration  is  required.  Even  if  we  use  the  CDF  function  in

MathematicaCs  Multinormal  statistics  package,  ultimately,  in  the  background,  we  are

still  resorting  to numerical  integration.  This,  in turn,  raises  the  two interrelated  motifs  of

accuracy and computational efficiency, which run throughout this section. 

Consider,  again,  the  trivariate  Normal  pdf  gHx, y, zL = PDF@dist3, 8x, y, z<D
defined in §6.4 B. If rxy = rxz = ryz = 1ÅÅÅÅ

2
, the cdf is:

Clear@GD; G@var__D := CDF@dist3 ê. r_ Ø 1 ê 2, 8var<D
Hence, PHX § 1, Y § -7, Z § 3L evaluates to:5

G@1, -7, 3D
1.27981 µ 10-12

If we require the probability content of a region within the domain, we can again use

MrSpeedy. The probability of being within the region 

         S = 8Hx, y, zL : 1 < x < �, - 3 < y < 4, 5 < z < 6 <

is then given by: 

S = 881, �<, 8-3, 4<, 85, 6<<; MrSpeedy@G, SD êê Timing

80.55 Second, 2.61015 µ 10-7<
This is a significant improvement over using numerical integration directly, since the latter

is both less accurate (at default settings) and far more resource hungry:

NIntegrate@ g ê. r_ Ø 1 ê 2,8x, 1, �<, 8y, -3, 4<, 8z, 5, 6<D êê Timing

L NIntegrate::slwcon :  
Numerical integration converging too slowly; suspect one

of the following: singularity, value of the integration

being 0, oscillatory integrand, or insufficient

WorkingPrecision. If your integrand is oscillatory

try using the option Method->Oscillatory in NIntegrate.877.39 Second, 2.61013 µ 10-7<
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The direct numerical  integration approach can be Bsped upC by sacrificing some accuracy.

This can be done by altering the PrecisionGoal option; see Rose and Smith (1996a or

1996b).  This can be useful  when working with a distribution  whose cdf is not  known (or

cannot be derived), such that one has no alternative but to use direct numerical integration.

Finally,  it  is  worth  stressing  that  since  the  CDF  function  in  MathematicaCs

Multinormal  statistics  package  is  using  numerical  integration  in  the  background,  the

numerical  answer that is printed on screen is not exact. Rather, the answer will be correct

to  several  decimal  places,  and  incorrect  beyond that;  only symbolic entities  are exact.  To

assess  the  accuracy  of  the  CDF  function,  we  can  compare  the  answer  it  gives  with

symbolic  solutions  that  are  known for  special  cases.  For  example,  Stuart  and  Ord  (1994,

Section  15.10)  report  symbolic  solutions  for  the  standardised  bivariate  Normal  orthant

probability PHX § 0, Y § 0L as:

P2 =
1
ÅÅÅÅ
4

+
ArcSin@rD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 p
;

while the standardised trivariate Normal orthant probability PHX § 0, Y § 0, Z § 0L is:    

P3 =
1
ÅÅÅÅ
8

+
1

ÅÅÅÅÅÅÅÅ
4 p

 HArcSin@rxyD + ArcSin@rxzD + ArcSin@ryzDL;
We choose some values for rxy , rxz , ryz :

lis = 9rxy Ø
1

ÅÅÅÅÅÅÅ
17

, rxz Ø
1

ÅÅÅÅÅÅÅ
12

, ryz Ø
2
ÅÅÅÅ
5
= ;

Because  P3  is a  symbolic  entity,  we  can express  it  numerically  to any  desired  precision.

Here is the correct answer to 30 digits of precision:

N@P3 ê. lis, 30D
0.169070356956715121611195785538

By contrast, the CDF function yields:

CDF@dist3 ê. lis, 80, 0, 0<D êê InputForm

0.1690703504574683

In  this  instance,  the  CDF  function  has  only  8  digits  of  precision.  In  other  cases,  it  may

offer  12  digits  of  precision.  Even  so,  8  digits  of  precision  is  better  than  most  competing

packages. For more detail on numerical precision in Mathematica, see Appendix A.1.

In  summary,  MathematicaCs  CDF  function  and  mathStaticaCs  MrSpeedy  function

make an excellent  team; together,  they are more accurate  and faster than using numerical

integration  directly.  How  then  does  Mathematica  compare  with  highly  specialised

multivariate  Normal  computer  programs  (see  Schervish  (1984))  such  as

BohrerjSchervish,  MULNOR,  and  MVNORM?  For  zero-correlation,  Mathematica  can

easily  outperform such  programs  in both accuracy and  speed, due  to its  symbolic  engine.

For non-zero correlation, Mathematica performs well on accuracy grounds.
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6.4 D Random Number Generation for the Multivariate Normal

È Introducing MVNRandom

The  mathStatica  function  MVNRandom@n, m!÷ , SD  generates  n  pseudo-random  m-

dimensional  drawings  from the multivariate  Normal distribution  with mean vector m!÷ ,  and

Hmä mL  variance-covariance  matrix  S;  the  function  assumes  dimension  m  is  an  integer

larger  than  1.  Once  again,  S  is  required  to  be  symmetric  and  positive  definite.  The

function  has  been  optimised  for  speed.  To  demonstrate  its  application,  we  generate  6

drawings from a trivariate Normal with mean vector and variance-covariance matrix given

by:

m6 = 810, 0, -20<; S =
i
k
jjjjjj 1 0.2 0.4
0.2 2 0.3
0.4 0.3 3

y
{
zzzzzz; MVNRandom@6, m6, SD

i

k

jjjjjjjjjjjjjjjjjjjj
10.1802 0.792264 -20.7549
9.61446 0.936577 -20.3007
9.00878 1.51215 -17.9076
10.0042 -0.749123 -23.6165
12.2513 -1.28886 -19.8166
10.7216 -0.626802 -15.847

y

{

zzzzzzzzzzzzzzzzzzzz
The output  from MVNRandom  is a set of n lists (here n = 6). Each list  represents a single

pseudo-random  drawing  from  the  distribution  and  so  has  the  dimension  of  the  random

variable Hm = 3L. In this way, MVNRandom has recorded 6 pseudo-random drawings from

the 3-dimensional NHm!÷ , SL distribution.

Instead  of  using  mathStaticaCs MVNRandom  function,  one  can alternatively  use the

RandomArray  function  in  MathematicaCs  Multinormal  Statistics  package.  To

demonstrate, we generate 20000 drawings using both approaches: 

MVNRandom@20000, m6, SD; êê Timing

80.22 Second, Null<
RandomArray@

MultinormalDistribution@m6, SD, 20000D ; êê Timing

82.53 Second, Null<
In  addition  to  its  obvious  efficiency,  MVNRandom  has  other  advantages.  For  instance,  it

advises  the  user  if  the  variance-covariance  matrix  is  not  symmetric  and/or  if  it  is  not

positive definite.

È How MVNRandom Works

MVNRandom  works  by  transforming  a  pseudo-random  drawing  from  an  m-dimensional

NI0!÷ , Im M  distribution  into  a  NHm!÷ , SL  drawing:  the  transformation  is  essentially  the

multivariate  equivalent  of  a  location  shift  plus  a  scale  change.  The  transformation  relies

upon  the  spectral  decomposition  (using  Eigensystem)  of  the  variance-covariance
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matrix;  that  is,  the  decomposition  of  S = H D HT
 into  its  spectral  components  H  and  D.

The  columns  of  the  HmämL  matrix  H  are  the  eigenvectors  of  S,  and  the  Hmä mL  diagonal

matrix D  contains  the eigenvalues  of S. Then,  for a random vector Y
!÷÷

~ NI0!÷ , Im M,  a linear

transformation from Y
!÷÷
 to a new random vector X

!÷÷
, according to the rule

(6.31)X
!÷÷

= m!÷ + H D1ê2  Y
!÷÷

finds  X
!÷÷

~ NHm!÷ , SL.  By  examining  the  mean  vector  and  variance-covariance  matrix,  it  is

easy to see why this transformation works:

E@X!÷÷ D = E Am!÷ + H D1ê2  Y
!÷÷ E = m!÷ ,    because E@Y!÷÷ D = 0

!÷

and

VarcovHX!÷÷ L =   VarcovIm!÷ + H D1ê2  Y
!÷÷ M

=   VarcovIH D1ê2  Y
!÷÷ M

=   H D1ê2  VarcovHY!÷÷ L D1ê2  HT

=   H D HT

=   S

because VarcovHY!÷÷ L = Im . We wish to sample the distribution of X
!÷÷
, which requires that we

generate a pseudo-random drawing of Y
!÷÷
 and apply (6.31) to it. So, all that remains is to do

the  very  first  step!generate  Y
!÷÷ !but  that  is  the  easiest  bit!  Since  the  components  of  Y

!÷÷
are  independent,  it  suffices  to  combine  together  m  pseudo-random  drawings  from  the

univariate standard Normal distribution NH0, 1L into a single column.

È Visualising Random Data in 2D and 3D Space

With Mathematica, we can easily visualise random data that has been generated in two or

three dimensions. We will use the functions D2 and D3 to plot the data in two-dimensional

and three-dimensional space, respectively:

D2@x_D := ListPlot@x, PlotStyle Ø Hue@1D,
AspectRatio Ø 1, DisplayFunction Ø IdentityD;

D3@x_D :=
Graphics3D@ 8Hue@1D, Map@Point, xD<, Axes Ø TrueD

Not  only  can  we  plot  the  data  in  its  appropriate  space,  but  we  can  also  view  the  data

projected  onto  a hypersphere;  for  example, two-dimensional  data  can be projected onto a

circle,  while  three-dimensional  data  can  be  projected  onto  a  sphere.  This  is  achieved  by

normalising  the  data  by  using  the  norm  function  defined  below.  Finally,  the  function

MVNPlot provides a neat way of generating our desired diagrams:

norm@x_D := MapA #
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!
#.#

&, xE;
MVNPlot@DD_, w_D := Show@GraphicsArray@8DD@wD, DD@norm@wDD<, GraphicsSpacing Ø .3DD;
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The Two-Dimensional Case
(i) Zero correlation: Fig. 20 shows two plots: the left panel illustrates the generated data

in  two-dimensional  space;  the  right  panel  projects  this  data  onto  the  unit  circle.  A

random vector X
!÷÷
 is said to be spherically distributed if its pdf is equivalent to that of

Y
!÷÷

= H  X
!÷÷
,  for  all  orthogonal  matrices  H .  Spherically  distributed  random  variables

have  the  property  that  they  are  uniformly  distributed  on  the  unit  circle  ê  sphere  ê
hypersphere.  The  zero  correlation  bivariate  Normal  is  a  member  of  the  spherical

class.6 This explains why the generated data appears uniform on the circle. 

m6 = 80, 0<; S = J 1 0
0 1

N; w = MVNRandom@1500, m6, SD;
MVNPlot@D2, wD;
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Fig. 20:  Zero correlation bivariate Normal: random data

(ii) Non-zero correlation: Fig. 21 again shows two plots, but now in the case of non-zero

correlation. The left panel shows that the data has high positive correlation. The right

panel shows that the distribution is no longer uniform on the unit circle, for there are

relatively  few  points  projected  onto  it  in  the  north-west  and  south-east  quadrants.

This is because the correlated bivariate Normal does not belong to the spherical class;

instead,  it  belongs  to  the  elliptical  class  of  distributions.  For  further  details  on

elliptical distributions, see Muirhead (1982).

m6 = 80, 0<; S = J 1 .95
.95 1

N; w = MVNRandom@1500, m6, SD;
MVNPlot@D2, wD;
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Fig. 21:  Correlated bivariate Normal: random data
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The Three-Dimensional Case
(i) Zero  correlation:  Fig. 22  again  shows  two  plots.  The  left  panel  illustrates  the

generated data in three-dimensional  space. The right panel projects this data onto the

unit  sphere.  The  distribution  appears  uniform  on  the  sphere,  as  indeed  it  should,

because this particular trivariate Normal is a member of the spherical class.

m6 = 80, 0, 0<; S =
i
kjjjjjj
1 0 0
0 1 0
0 0 1

y
{zzzzzz; w = MVNRandom@2000, m6, SD;

MVNPlot@D3, wD;
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Fig. 22:  Zero correlation trivariate Normal: random data

(ii) Non-zero  correlation:  see  Fig. 23  below.  The  three-dimensional  plot  on  the  left

illustrates  that  the  data  is  now  highly  correlated,  while  the  projection  onto  the  unit

sphere  (on  the  right)  provides  ample  evidence  that  this  particular  trivariate  Normal

distribution is no longer spherical.

m6 = 80, 0, 0<; S =
i
kjjjjjj

1 .95 .95
.95 1 .95
.95 .95 1

y
{zzzzzz; w = MVNRandom@2000, m6, SD;

MVNPlot@D3, wD;

-3

0

3

-3

0

3

-3

0

3

-3

0

-3

0

-1

1

-1

1

-1

1

-1

1

Fig. 23:  Correlated trivariate Normal: random data
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6.5 The Multivariate t and Multivariate Cauchy

Let  HX1 , =, Xm L  have  a  joint  standardised  multivariate  Normal  distribution  with

correlation matrix R, and let Y ~ Chi-squaredHvL be independent of HX1 , =, Xm L. Then the

joint pdf of

(6.32)Tj =
XjÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!Y ê v

,    H j = 1, =, mL

defines the multivariate t distribution with v degrees of freedom and correlation matrix R,

denoted tHR, vL.  The multivariate  Cauchy distribution  is  obtained  when R = Im  and v = 1.

The multivariate t is included in MathematicaCs Multinormal Statistics package, so our

discussion here will be brief. First, we ensure the appropriate package is loaded: 

<< Statistics`

Let  random  variables  W1  and  W2  have  joint  pdf  tHR, vL  where  R = J 1 r
r 1

N,  and  r

denotes the correlation coefficient between W1  and W2 . So:

W
6

= 8w1, w2<; R = J 1 r
r 1

N ; cond = 8-1 < r < 1, v > 0<;
dist2 = MultivariateTDistribution@R, vD;

Then our bivariate t pdf f Hw1 , w2 L is given by:

f = FullSimplifyAPDFAdist2, W
6E, condE

v
2+vÅÅÅÅÅÅÅÅ
2 H1 - r2L 1+vÅÅÅÅÅÅÅÅ

2 Hv - v r2 + w1
2 - 2 r w1 w2 + w2

2L-1- vÅÅÅÅ
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p

with domain of support:

domain@fD = ThreadA9W6, -�, �=E && cond

88w1, -�, �<, 8w2, -�, �<< && 8-1 < r < 1, v > 0<
Example  23  below  derives  this  pdf  from  first  principles.  The  shape  of  the  contours  of

f Hw1 , w2 L  depend  on  r.  We  can  plot  the  specific  ellipse  that  encloses  q%  of  the

distribution by using the function EllipsoidQuantile[dist, q]. This is illustrated in

Fig. 24 which plots the ellipses that enclose 15% (bold), 90% (dashed) and 99% (plain) of

the  distribution,  respectively,  with  r = 0.4 and  v = 2 degrees  of  freedom.  The long-tailed

nature  of  the  t  distribution  is  apparent,  especially  when  this  diagram  is  compared  with

Fig. 13.
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Fig. 24:  Quantiles: 15% (bold), 90% (dashed) and 99% (plain)

The bivariate Cauchy distribution is obtained when R = I2  and v = 1:

f ê. 8r Ø 0, v Ø 1<
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p H1 + w1

2 + w2
2L3ê2

Under these conditions, the marginal distribution of W1  is the familiar (univariate) Cauchy

distribution:

Marginal@w1, f ê. 8r Ø 0, v Ø 1<D
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p + p w1

2

As in  §6.4  C,  one  can  use  functions  like  MrSpeedy  in  conjunction  with  MathematicaCs

CDF  function  to  find  probabilities,  and  RandomArray  to  generate  pseudo-random

drawings.  

�  Example 23:  Deriving the pdf of the Bivariate t  

Find the joint pdf of:

Tj =
XjÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!Y ê v

,           H j = 1, 2L

from  first  principles,  where  HX1 , X2 L  have  a  joint  standardised  multivariate  Normal

distribution, and Y ~ Chi-squaredHvL is independent of HX1 , X2 L.
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Solution: Due to independence, the joint pdf of HX1 , X2 , Y L, say jHx1 , x2 , yL, is just the pdf

of HX1 , X2 L multiplied by the pdf of Y:

j =
i
k
jjjjjjj "

x1
2 -2 r x1 x2 +x2

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-2+2 r2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p

è!!!!!!!!!!!!!
1 - r2

y
{
zzzzzzz *

ikjjjjj "- yÅÅÅÅ2  y
vÅÅÅÅ2 -1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2vê2 G@ vÅÅÅ

2
D y{zzzzz;

cond = 8v > 0, -1 < r < 1<;
domain@jD = 88x1, -�, �<, 8x2, -�, �<, 8y, 0, �<< && cond;

Let U = Y . Then, using mathStaticaCs Transform function,  the joint pdf of HT1 , T2 , UL
is:

f = TransformA 9t1 ==
x1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!
y ê v , t2 ==

x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!
y ê v , u == y=, jE

2-1- vÅÅÅÅ
2 "

u Hv-v r2 +t1
2 -2 r t1 t2 +t2

2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 v H-1+r2 L uvê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p v

è!!!!!!!!!!!!!
1 - r2 G@ vÅÅÅ

2
D

with domain:

domain@fD = 88t1, -�, �<, 8t2, -�, �<, 8u, 0, �<< && cond;

Then, the marginal joint pdf of random variables T1  and T2  is:

Marginal@8t1, t2<, fD
v
è!!!!!!!!!!!!!
1 - r2 I v-v r2 +t1

2-2 r t1 t2 +t2
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
v-v r2 M-1- vÅÅÅÅ

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p Hv - v r2L

which  is  the  desired  pdf.  Note  that  this  output  is  identical  to  the  answer  given  to

PDF@dist2, 8t1, t2<D êê FullSimplify . "

6.6 Multinomial and Bivariate Poisson
This section discusses two discrete multivariate distributions, namely the Multinomial and

the  bivariate  Poisson.  Both  of  these  distributions  are  also  discussed  in  MathematicaCs

Statistics`MultiDiscreteDistributions` package.

6.6 A The Multinomial Distribution

The Binomial distribution was discussed in Chapter 3. Here, we present it in its degenerate

form:  consider  an  experiment  with  n  independent  trials,  with  two  mutually  exclusive

outcomes  per  trial  (#1  or  #2 ).  Let  pi  Hi = 1, 2L  denote  the  probability  of  outcome  #i

(subject to p1 + p2 = 1, and 0 § pi § 1), with pi  remaining the same from trial to trial. Let
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the Brandom variablesC of interest be X1  and X2 , where Xi  is the number of trials in which

outcome #i  occurs (x1 + x2 = n). The joint pmf of X1  and X2  is

(6.33)f Hx1 , x2 L = PHX1 = x1 , X2 = x2 L = n!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx1 ! x2 !
p1

x1 p2

x2 , xi ' 80, 1, =, n<.

Since  X1 + X2 = n,  one  of  these  Brandom  variablesC  is  of  course  degenerate,  so  that  the

Binomial  is  actually a univariate  distribution,  as in Chapter  3. This framework can easily

be  generalised  into  a  Trinomial  distribution,  where  instead  of  having  just  two  possible

outcomes, we now have three (#1 , #2  or #3), subject to p1 + p2 + p3 = 1:

(6.34)f Hx1 , x2 , x3 L = PHX1 = x1 , X2 = x2 , X3 = x3 L = n!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx1 ! x2 ! x3 !
p1

x1 p2

x2 p3

x3 .

 More generally, the m-variate Multinomial distribution has pmf

(6.35)f Hx1 , =, xm L = PHX1 = x1 , =, Xm = xm L = n!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx1 ! � xm !
p1

x1  � pm
xm       

 subject to  
i=1

m

pi = 1,  and  
i=1

m
xi = n.

Since  i=1

m xi = n,  it  follows,  for  example,  that xm = n - i=1

m-1 xi .  This  implies  that,  given

n,  the  m-variate  multinomial  can  be  fully  described  using  only  m - 1  variables;  see  also

Johnson et al. (1997).7 We enter (6.35) into Mathematica as:

Clear@fD; f@X_List, p_List, n_D := n! Â
i=1

Length@XD
pPiTXPiT
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
XPiT!

The multinomial  moment  generating  function  is derived in Example  26  below,  where we

show that

(6.36)MH t!L =
i
k
jjjj

i=1

m
pi 2ti

y
{
zzzz

n

.

�  Example 24:  Age Profile

Table 5 gives the age profile of people living in Australia (Australian Bureau of Statistics,

1996 Census). The data is divided into five age classes.

class age proportion

   I 0 j14 21.6 %
II 15 j 24 14.5 %

III 25 j 44 30.8 %

IV 45 j 64 21.0 %

V 65 + 12.1 %

Table 5:  Age profile of people living in Australia
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Let p!÷  denote the probability vector Hp1 , p2 , p3 , p4 , p5 L:
p6 = 80.216, 0.145, 0.308, 0.210, 0.121<;

(a) If we randomly select 10 people from the population,  what is the probability they all

come from Class I?

Solution:

x6 = 810, 0, 0, 0, 0<; f@x6 , p6, 10D
2.21074 µ 10-7

(b) If  we  again randomly  select  10  people,  what  is the probability  that 3  people  will  be

from Class I,  1 person  from Class II,  2 from Class  III,  4 from Class IV,  and 0 from

Class V?

Solution:

x6 = 83, 1, 2, 4, 0<; f@x6 , p6, 10D
0.00339687

(c) If  we  again  randomly  select  10  people,  what  is  the  probability  that  Class  III  will

contain exactly 1 person?  

Solution:  If  Class  III  contains  1  person,  then  the  remaining  classes  must  contain  9

people.  Thus,  we  need  to  calculate  every  possible  way  of  splitting  9  people  over  the

remaining four classes, then calculate the probability for each case, and then add it all up.

The composition of 9 into 4 parts can be obtained using the Compositions function in

the DiscreteMath`Combinatorica` package, which we load as follows:

<< DiscreteMath`

Here  are  the  compositions  of  9  into 4  parts.  The  list  is  very  long,  so  we  just  display  the

first few compositions:

lis = Compositions@9, 4D; lis êê Shallow

880, 0, 0, 9<, 80, 0, 1, 8<, 80, 0, 2, 7<,80, 0, 3, 6<, 80, 0, 4, 5<, 80, 0, 5, 4<, 80, 0, 6, 3<,80, 0, 7, 2<, 80, 0, 8, 1<, 80, 0, 9, 0<, á210à<
Since Class III must contain 1 person in our example, we need to insert a B1C at position 3

of each of these lists, so that, for instance, {0, 0, 0, 9} becomes {0, 0, 1, 0, 9}: 

lis2 = Map@Insert@#, 1, 3D &, lisD; lis2 êê Shallow

880, 0, 1, 0, 9<, 80, 0, 1, 1, 8<,80, 0, 1, 2, 7<, 80, 0, 1, 3, 6<, 80, 0, 1, 4, 5<,80, 0, 1, 5, 4<, 80, 0, 1, 6, 3<, 80, 0, 1, 7, 2<,80, 0, 1, 8, 1<, 80, 0, 1, 9, 0<, á210à<
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We can now compute the pmf at each of these cases, and add them all up:

Plus üü Map@f@#, p6, 10D &, lis2D
0.112074

So,  the  probability  that  a  random sample  of  10  Australians  will  contain  exactly  1  person

aged 25j44 is 11.2%. For the 15j24 age group, this probability rises to 35.4%.

An  alternative  (more  automated,  but  less  flexible)  approach  to  solving  (c)  is  to  use

the summation operator, taking great care to ensure that the summation iterators satisfy the

constraint i=1

5 xi = 10. So, if Class III is fixed at x3 = 1, then x1  can take values from 0 to

9; x2  may take values from 0 to H9 - x1 L;  and x4  may take values from 0 to H9 - x1 - x2 L.
That  leaves x5  which  is degenerate:  that is, given x1 , x2 , x3 = 1, and x4 ,  we know that x5

must equal 9 - x1 - x2 - x4 . Then the required probability is:

Sum@f@8x1, x2, 1, x4, x5<, p6, 10D,8x1, 0, 9<,8x2, 0, 9 - x1<,8x4, 0, 9 - x1 - x2<,8x5, 9 - x1 - x2 - x4, 9 - x1 - x2 - x4<D
0.112074

Example 26 provides another illustration of this summation approach. "

�  Example 25:  Working with the mgf

In the case of the Trinomial, the mgf is:

mgf =
i
kjjjjj9i=1

3

pi "ti
y
{zzzzz
n

H"t1 p1 + "t2 p2 + "t3 p3Ln
The  product  raw  moments  E@ X1

a X2
b X3

c D  can  now be  obtained  from the  mgf  in  the  usual

fashion.  To  keep  things  neat,  we  write  a  little  Mathematica  function  Moment[a,  b,  c]
function to calculate E@ X1

a X2
b X3

c D from the mgf, now noting that i=1

m pi = 1: 

Moment@a_, b_, c_D :=

D@mgf, 8t1, a<, 8t2, b<, 8t3, c<D ê.  t_ Ø 0 ê. 9
i=1

3

pi Ø 1

The moments are now easy to obtain. Here is the first moment of X2 , namely m
£

0, 1, 0
:

Moment@0, 1, 0D
n p2
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Here is the second moment of X2 , namely m
£

0, 2, 0
:

Moment@0, 2, 0D
n p2 + H-1 + nL n p22

By  symmetry,  we  then  have  the  more  general  result  that  E@Xi D = n pi  and

E@Xi
2 D = n pi + Hn - 1L n pi

2 . Here is the product raw moment E@X1
2 X2 X3 D = m

£
2, 1, 1

:

Moment@2, 1, 1D êê Simplify

H-2 + nL H-1 + nL n p1 H1 + H-3 + nL p1L p2 p3
The  covariance  between  X1  and  X3  is  given  by  m

1, 0, 1
,  which  can  be  expressed  in  raw

moments as:

cov = CentralToRaw@81, 0, 1<D
m1,0,1 Ø -m

£
0,0,1

m
£
1,0,0

+ m
£
1,0,1

Evaluating each m
£

_
 term with the Moment function then yields this covariance:

cov ê. m
£
r__ ß Moment@rD êê Simplify

m1,0,1 Ø -n p1 p3

Similarly, the product cumulant k3, 1, 2  is given by:

CumulantToRaw@83, 1, 2<D ê. m
£
x__ ß Moment@xD êê Simplify

k3,1,2 Ø 2 n p1 p2 p3 H1 + p1
2 H12 - 60 p3L - 3 p3 + 9 p1 H-1 + 4 p3LL

�  Example 26:  Deriving the Multinomial mgf

Consider a model with m = 4 classes. The pmf is:

x6 = 8x1, x2, x3, x4<;
p6 = 8p1, p2, p3, p4<;
pmf = f@x6, p6, nD
n! p1

x1 p2
x2 p3

x3 p4
x4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x1 ! x2 ! x3 ! x4 !

Recall that the moment generating function for a discrete distribution is:

EA2 t!. X
!÷÷ E = K

x1

�K
xm

exp
i
k
jjj

i=1

m
ti  xi

y
{
zzz f Hx1 , =, xm L.
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Some  care  must  be  taken  here  to  ensure  the  summation  iterators  satisfy  the  constrainti=1

m xi = n;  thus, if  we let  x1  take  values from 0 to n,  then x2  may take  values from 0 to

n - x1 ,  and  then  x3  may  take  values  from  0  to  n - x1 - x2 .  That  leaves  x4  which  is

degenerate; that is, given x1 , x2  and x3 , we know that x4  must be equal to n - x1 - x2 - x3 .

Then the mgf is:

t
6

= 8t1, t2, t3, t4<;
mgf = FullSimplifyA

9
x1 =0

n 9
x2 =0

n-x1 9
x3=0

n-x1-x2 9
x4=n-x1 -x2-x3

n-x1-x2 -x3

EvaluateA"t
6
.x6  pmfE,

n = IntegersE êê PowerExpand

H"t1 p1 + "t2 p2 + "t3 p3 + "t4 p4Ln
It  follows  by  symmetry  that  the  general  solution  is  MH t!L = Hi=1

m pi 2ti Ln ,  wherei=1

m pi = 1. "

6.6 B The Bivariate Poisson

Clear@gD
Let Y0 ,  Y1  and Y2  be mutually stochastically  independent  Poisson random variables,  with

non-negative parameters l0 , l1  and l2 , respectively, and pmfCs gi Hyi L for i ' 80, 1, 2<:

gi_ =
"-li li

yi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
yi !

;

defined on yi ' 80, 1, 2, =<. Due to independence, the joint pmf of HY0 , Y1 , Y2 L is:

g = g0  g1  g2

"-l0 -l1-l2 l0

y0 l1

y1 l2

y2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
y0 ! y1 ! y2 !

with domain:

domain@gD = 88y0, 0, �<, 8y1, 0, �<, 8y2, 0, �<<
&& 8l0 > 0, l1 > 0, l2 > 0< && 8Discrete<;

A non-trivial bivariate Poisson distribution is the joint distribution of X1  and X2  where

(6.37)X1 = Y1 + Y0           and         X2 = Y2 + Y0 .
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È Probability Mass Function

We shall consider four approaches for deriving the joint pmf of X1  and X2 , namely: (i) the

transformation  method,  (ii)  the  probability  generating  function  (pgf)  approach,

(iii) limiting forms, and (iv) MathematicaCs Statistics package.

(i) Transformation method
We wish to find the joint pmf of X1  and X2 ,  as defined in (6.37). Let X0 = Y0  so that the

number  of new variables Xi  is equal  to the  number of old  variables Yi . Then,  the desired

transformation here is: 

eqn = 8x1 == y1 + y0, x2 == y2 + y0, x0 == y0<;
Then, the joint pmf of HX0 , X1 , X2 L, say yHx0 , x1 , x2 L, is:

y = Transform@eqn, gD
"-l0-l1 -l2 l0

x0 l1

-x0 +x1 l2

-x0 +x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x0 ! H-x0 + x1L! H-x0 + x2L!

We desire the joint marginal pmf of X1  and X2 , so we now need to Bsum outC X0 . Since Y1

is non-negative, it follows that X0 § X1 : 

pmf = 9
x0 = 0

x1

Evaluate@yD
J"-l0 -l1-l2 HypergeometricUA-x1, 1 - x1 + x2, -

l1 l2ÅÅÅÅÅÅÅÅÅÅÅÅÅ
l0

E
l1

x1 l2

x2 J-
l1 l2ÅÅÅÅÅÅÅÅÅÅÅÅÅ

l0

N-x1 N í HG@1 + x1D G@1 + x2DL
Mathematica,  ever  the  show-off,  has  found  the  pmf  in  terms  of  the  confluent

hypergeometric function. Here, for instance, is PHX1 = 3, X2 = 2L:

pmf ê. 8x1 Ø 3, x2 Ø 2< êê Simplify

1
ÅÅÅÅÅÅÅ
12

"-l0 -l1-l2 l1 H6 l0
2 + 6 l0 l1 l2 + l1

2 l2
2L

(ii) Probability generating function approach
By (6.21), the joint pgf is EAt1

X1  t2

X2  � tm
Xm E: 

pgf = 9
y0 =0

� 9
y1=0

� 9
y2 =0

�

Evaluate@t1y1+y0 t2
y2 +y0 gD

"-l0+t1 t2 l0 -l1 +t1 l1 -l2 +t2 l2

The pgf, in turn, determines the probabilities by (6.22). Then, PHX1 = r, X2 = sL is:
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Clear@PD;
P@r_, s_D :=

D@pgf, 8t1, r<, 8t2, s<D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r! s!
ê. 8t_ Ø 0< êê Simplify

For instance, PHX1 = 3, X2 = 2L is:

P@3, 2D
1

ÅÅÅÅÅÅÅ
12

"-l0 -l1-l2 l1 H6 l0
2 + 6 l0 l1 l2 + l1

2 l2
2L

as per our earlier result.

(iii) Limiting forms
Just  as  the  univariate  Poisson  can  be  obtained  as  a  limiting  form  of  the  Binomial,  the

bivariate Poisson can similarly be obtained as a limiting form of the Multinomial. Hamdan

and  Al-Bayyati  (1969)  discuss  this  approach,  while  Johnson et al.  (1997,  p. 125) provide

an overview.

(iv) MathematicaCs statistics package
The  bivariate  Poisson  pmf  can  also  be  obtained  by  using  MathematicaCs

Statistics`MultiDiscreteDistributions` package, as follows:

<< Statistics`

dist = MultiPoissonDistribution@l0, 8l1, l2<D;
Then, the package gives the joint pmf of HX1 , X2 L as:

MmaPMF = PDF@dist, 8x1, x2<D êê Simplify

"-l0-l1 -l2 l1

x1 l2

x2ikjjjjj-
ikjjjHypergeometricPFQA81, 1 + Min@x1, x2D - x1, 1 +

Min@x1, x2D - x2<, 82 + Min@x1, x2D<, l0ÅÅÅÅÅÅÅÅÅÅÅÅÅ
l1 l2

E
J l0ÅÅÅÅÅÅÅÅÅÅÅÅÅ

l1 l2

N1+Min@x1 ,x2Dy{zzz ì HG@2 + Min@x1, x2DD
G@-Min@x1, x2D + x1D G@-Min@x1, x2D + x2DL +

HypergeometricU@-x1, 1 - x1 + x2, - l1 l2ÅÅÅÅÅÅÅÅÅÅl0
D H- l1 l2ÅÅÅÅÅÅÅÅÅÅl0

L-x1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@1 + x1D G@1 + x2D y{zzzzz

While this is not as neat as the result obtained above via the transformation  method (i), it

nevertheless gives the same results. Here, again, is PHX1 = 3, X2 = 2L:

MmaPMF ê. 8x1 Ø 3, x2 Ø 2< êê Simplify

1
ÅÅÅÅÅÅÅ
12

"-l0 -l1-l2 l1 H6 l0
2 + 6 l0 l1 l2 + l1

2 l2
2L
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È Moments

We shall consider three approaches for deriving moments, namely: (i) the direct approach,

(ii) the mgf approach, and (iii) moment conversion formulae.

(i) Direct approach
Even  though  we  know  the  joint  pmf  of  X1  and  X2 ,  it  is  simpler  to  work  with  the

underlying  Yi  random  variables.  For  instance,  suppose  we  wish  to  find  the  product

moment m
£

1, 1
 for the bivariate Poisson. This can be expressed as:

           m
£

1, 1
= E@X1 X2 D = E@HY1 + Y0 L HY2 + Y0 LD

which is then evaluated as:

9
y2 =0

� 9
y1 =0

� 9
y0 =0

�

Evaluate@Hy1 + y0L Hy2 + y0L gD êê Expand

l0 + l0
2 + l0 l1 + l0 l2 + l1 l2

(ii) MGF approach
The joint mgf of X1  and X2  is:

        EAexpIt1  X1 + t2  X2 ME = EAexpIt1  Y1 + t2  Y2 + Ht1 + t2 L Y0 ME

which is then evaluated as:8

mgf = SimplifyA9
y1 =0

� 9
y2=0

� 9
y0 =0

�

Evaluate@"t1 y1 +t2 y2 +Ht1 +t2L y0 gDE
"H-1+"t1 +t2 L l0 +H-1+"t1 L l1+H-1+"t2 L l2

Differentiating the mgf yields the raw product moments, as per (6.18). 

Moment@r_, s_D := D@mgf, 8t1, r<, 8t2, s<D ê. t_ Ø 0

Then, m
£

1, 1
= E@X1 X2 D is now obtained by:

Moment@1, 1D êê Expand

l0 + l0
2 + l0 l1 + l0 l2 + l1 l2

which is the same result we obtained using the direct method. Here is m
£

3, 1
= E@X1

3 X2
1 D:

Moment@3, 1D
l0 + 6 l0 Hl0 + l1L + 3 l0 Hl0 + l1L2 + Hl0 + l1L Hl0 + l2L +

3 Hl0 + l1L2 Hl0 + l2L + Hl0 + l1L3 Hl0 + l2L
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The mean vector m!÷ = HE@X1 D, E@X2 DL is:

m6 = 8Moment@1, 0D, Moment@0, 1D<
8l0 + l1, l0 + l2<

By (6.19), the central mgf is given by:

t
6

= 8t1, t2<; mgfc = "-t
6
.m6 mgf êê Simplify

"H-1+"t1 +t2 -t1 -t2L l0 +H-1+"t1 -t1L l1+H-1+"t2 -t2L l2

Then, m
1, 1

= CovHX1 , X2 L is:

D@mgfc, 8t1, 1<, 8t2, 1<D ê. t_ Ø 0

l0

while the variances of X1  and X2  are, respectively:

D@mgfc, 8t1, 2<D ê. t_ Ø 0

l0 + l1

D@mgfc, 8t2, 2<D ê. t_ Ø 0

l0 + l2

(iii) Conversion formulae
The pgf (derived above) can be used as a factorial moment generating function, as follows:

Fac@r_, s_D := D@pgf, 8t1, r<, 8t2, s<D ê. t_ Ø 1

Thus, the factorial moment m@1, 2D = E@X1

@1D X2

@2D D is given by:

Fac@1, 2D
2 l0 Hl0 + l2L + Hl0 + l1L Hl0 + l2L2

In  part  (ii),  we  found  m
£

3, 1
= E@X1

3 X2
1 D  using  the  mgf  approach.  We  now  find  the  same

expression, but this time do so using factorial moments. The solution, in terms of factorial
moments, is:

sol = RawToFactorial@83, 1<D
m
£
3,1

Ø m
£@1, 1D + 3 m

£@2, 1D + m
£ @3, 1D

so m
£
3,1

 can be obtained as:
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sol ê. m
£@r__D ß Fac@rD

m
£
3,1

Ø l0 + 3 l0 Hl0 + l1L2 + Hl0 + l1L Hl0 + l2L +Hl0 + l1L3 Hl0 + l2L + 3 H2 l0 Hl0 + l1L + Hl0 + l1L2 Hl0 + l2LL
It is easy to show that this is equal to Moment[3,1], as derived above.

6.7 Exercises
1. Let  random  variables  X  and  Y  have  GumbelCs  bivariate  Logistic  distribution  with

joint pdf

f Hx, yL = 2 2-y-x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + 2-y + 2-x L3 ,    Hx, yL ' !2 .

(i) Plot the joint pdf; (ii) plot the contours of the joint pdf; (iii) find the joint cdf; (iv)

show that the marginal pdfCs are Logistic; (v) find the conditional pdf f HY * X = xL.
2. Let random variables X and Y  have joint pdf

f Hx, yL = 1ÅÅÅÅÅÅÅÅÅÅÅ
l m

 expA-J xÅÅÅÅÅ
l

+ yÅÅÅÅÅÅ
m
NE,    defined on   x > 0, y > 0

with parameters l > 0 and m > 0. Find the bivariate mgf. Use the mgf to find (i) E@XD,
(ii) E@YD, (iii) m£

3, 4
= E@X3  Y4 D, (iv) m

3, 4
. Verify by deriving each expectation directly.

3. Let  random  variables  X  and  Y  have  McKayCs  bivariate  Gamma  distribution,  with

joint pdf

f Hx, yL = ca+b
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@aD G@bD  xa-1 Hy - xLb-1  2-c y ,     defined on    0 < x < y < � 

with parameters a, b, c > 0. Hint: use domain@ fD = 88x, 0, y<, 8y, x, �<< etc. 

(i) Show that the marginal pdf of X is Gamma.

(ii) Find the correlation between X and Y .

(iii) Derive the bivariate mgf. Use it to find m
£

3, 2
= E@X3Y 2 D.

(iv) Plot  f Hx, yL  when  a = 3, b = 2  and  c = 2.  Hint:  use  an  If  statement,  as  per

Plot3D@ If@0 < x < y, f , 0D, 8x, 0, 4<, 8y, 0, 4< , etc. D
(v) Create an animation showing how the pdf plot changes as parameter a increases

from 2 to 5! the animation should look similar to the solution given here: �

4. Let  random variable  X ~ NH0, 1L  and  let  Y = X2 - 2.  Show that  CovHX, Y L = 0, even

though X and Y  are clearly dependent.

5. Let  random  variables  X  and  Y  have  a  Gumbel  (1960)  bivariate  Exponential

distribution  (see  Example  12).  Find  the  regression  function  E@Y * X = xD  and  the

scedastic function VarHY * X = xL. Plot both when q = 0,
1ÅÅÅÅ
2

, 1.

6. Find a  NormaljExponential  bivariate  distribution  (i.e.  a distribution  whose marginal

pdfCs  are  standard  Normal  and  standard  Exponential)  using  the  Morgenstern  copula

method. Find the joint cdf and the variance-covariance matrix.
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7. Find  a  bivariate  distribution  whose  marginal  distributions  are  both  standard

Exponential,  using  FrankCs  copula  method.  Plot  the  joint  pdf  hHx, yL  when a = -10.

Find the conditional pdf hHx * Y = yL.
8. GumbelCs  bivariate  Logistic  distribution  (defined  in  Exercise  1)  has  no  parameters.

While this is virtuous in being simple, it can also be restrictive.

(i) Construct  a  more  general  bivariate  distribution  hHx, y; aL  whose  marginal

distributions  are  both  standard  Logistic,  using  the  AlijMikhailjHaq  copula,

with parameter a.

(ii) Show  that  GumbelCs  bivariate  Logistic  distribution  is  obtained  as  the  special

case hHx, y; a = 1L.
(iii) Plot the joint pdf hHx, yL when a = 1ÅÅÅÅ

2
. 

(iv) Find the conditional pdf hHx * Y = yL.
9. Let  f Hx, y ; m!÷ , SL  denote  the  joint  pdf  of  a  bivariate  Normal  distribution  NH m!÷ , S L.

For 0 < w < 1, define a bivariate Normal component-mixture density by:

fèHx, yL = w f Hx, y ; m!÷
1
, S1 L + H1 - wL f Hx, y; m!÷

2
, S2 L

Let m>
1

= H2, 2L,  S1 = J 1 0

0 1
N,  m>

2
= H0, 0L  and  S2 =

i
k
jjjjj

1
3ÅÅÅÅ
4

3ÅÅÅÅ
4

1

y
{
zzzzz. 

(i) Find the functional form for fèHx, yL. 
(ii) Plot  fèHx, yL  when  w = 7ÅÅÅÅÅÅÅ

10
.  Construct  contour  plots  of  fèHx, yL  when  w = 0  and

when w = 1.

(iii) Create  an animation showing how the contour plot changes as w increases from

0  to  1  in  step  sizes  of  0.025! the  animation  should  look  something  like  the

solution given here: �
(iv) Find  the  marginal  pdf  of  X,  namely  f

è
x HxL.  Find  the  mean  and  variance  of  the

latter.

(v) Plot the marginal pdf derived in (iv) when w = 0,
1ÅÅÅÅ
2

 and 1.

10. Let random variables HW , X, Y , ZL have a multivariate Normal distribution NH m!÷ , S L,
with:

m!÷ = H0, 0, 0, 0L,   S =

i

k

jjjjjjjjjjjjjjjjjj

1
2ÅÅÅÅ
3

3ÅÅÅÅ
4

4ÅÅÅÅ
5

2ÅÅÅÅ
3

1
1ÅÅÅÅ
2

8ÅÅÅÅÅÅÅ
15

3ÅÅÅÅ
4

1ÅÅÅÅ
2

1
3ÅÅÅÅ
5

4ÅÅÅÅ
5

8ÅÅÅÅÅÅÅ
15

3ÅÅÅÅ
5

1

y

{

zzzzzzzzzzzzzzzzzz
(i) Find the joint pdf f Hw, x, y, zL.
(ii) Use  the  multivariate  Normal  mgf,  expH t!.m!÷ + 1ÅÅÅÅ

2
 t!.S.t!L,  to  find  E@W X Y ZD  and

E@W X2  Y Z2 D. 
(iii) Find E@W expHX + Y + ZLD .
(iv) Use  Monte  Carlo  methods  (not  numerical  integration)  to  check  whether  the

solution to (iii) seems BcorrectC. 

(v) Find PH-3 < W < 3, -2 < X < �, -7 < Y < 2, -1 < Z < 1 L. 
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Chapter 7
Moments of Sampling Distributions

7.1 Introduction

7.1 A Overview
Let  HX1 , ', Xn L  denote  a  random  sample  of  size  n  drawn  from  a  population  random

variable X. We can then distinguish between population moments:

m
£

r = E@Xr D raw moment of the population

mr = E@HX - mLr D central moment of the population, where m = E@XD
and sample moments:

m
£

r = 1ÅÅÅÅÅn 
i=1

n

Xi
r                sample raw moment

mr = 1ÅÅÅÅÅ
n 

i=1

n HXi - X
êêêLr     sample central moment, where X

êêê
= m

£
1

where r is a positive integer. A statistic is a function of HX1 , ', Xn L that does not depend

on any unknown parameter. Given this terminology, this chapter addresses two topics:

(i) Unbiased estimators of population moments

Given  a  random  sample  HX1 , ', Xn L,  we  want  to  find  a  statistic  that  is  an  unbiased

estimator  of  an  unknown  population  moment.  For  instance,  we  might  want  to  find

unbiased  estimators  of  population  raw  moments  m
£

r ,  or  of  central  moments  mr ,  or  of

cumulants  kr . We might  even want  to find unbiased estimators of products  of population

moments such as m2  m4 . These problems are discussed in §7.2.

(ii) Population moments of sample moments

Because  HX1 , ', Xn L  is  a collection  of random variables,  it  follows  that  statistics  like  m
£

r

and mr  are themselves random variables, having their own distribution, and thus their own

population moments. Thus, for instance, we may want to find the expectation of m2 . Since

E@m2 D  is  just  the  first  raw  moment  of  m2 ,  we  can  denote  this  problem  by  m
£

1 Hm2 L.
Similarly, VarIm£ 1 M is just the second central moment of m

£
1 , so we can denote this problem

by m2 Im£ 1 M. This is the topic of moments of moments, and it is discussed in §7.3.



7.1 B Power Sums and Symmetric Functions
Power sums are the lingua franca of this chapter. The r th  power sum is defined as

(7.1)sr = 
i=1

n

Xi
r ,       r = 1, 2, '

The sample raw moments can easily be expressed in terms of power sums:

(7.2)m
£

1 = s1ÅÅÅÅÅÅÅÅ
n

,   m
£

2 = s2ÅÅÅÅÅÅÅÅ
n

,  ',  m
£

r = srÅÅÅÅÅÅÅ
n

 .

One  can  also  express  the  sample  central  moments  in  terms  of  power  sums,  and

mathStatica  automates these conversions.1 Here, for example, we express the 2 nd  sample

central moment m2  in terms of power sums:

SampleCentralToPowerSum@2D
m2 Ø -

s12ÅÅÅÅÅÅÅ
n2

+
s2ÅÅÅÅÅÅÅ
n

Next, we express m
£

3  and m4  in terms of power sums:

SampleRawToPowerSum@3D
m
£
3 Ø

s3ÅÅÅÅÅÅÅ
n

SampleCentralToPowerSum@4D
m4 Ø -

3 s14ÅÅÅÅÅÅÅÅÅÅÅ
n4

+
6 s12 s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n3

-
4 s1 s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n2

+
s4ÅÅÅÅÅÅÅ
n

These  functions  also  handle  multivariate  conversions.  For  instance,  to  express  the

bivariate  sample  central  moment  m3, 1 = 1ÅÅÅÅn i=1
n IHXi - X

êêêL3  HYi - Y
êêêL1 M  into  power  sums,

enter:

SampleCentralToPowerSum@83, 1<D
m3,1 Ø -

3 s0,1 s1,03

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n4

+
3 s1,02 s1,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n3
+

3 s0,1 s1,0 s2,0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n3

-
3 s1,0 s2,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n2
-
s0,1 s3,0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n2
+
s3,1ÅÅÅÅÅÅÅÅÅÅÅ
n

where each bivariate power sum sr, t  is defined by

(7.3)sr, t = 
i=1

n

Xi
r  Yi

t .

For a multivariate application, see Example 7. Power sums are also discussed in §7.4.
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A  function  f Hx1 , ', xn L  is  said  to  be  symmetric  if  it  is  unchanged  after  any

permutation of the xXs; that is, if say f Hx1 , x2 , x3 L = f Hx2 , x1 , x3 L. Thus,

x1 + x2 + � + xn = 
i=1

n

xi

is  a  symmetric  function  of  x1 , x2 , ', xn .  Examples  of  symmetric  statistics  include

moments,  product  moments,  h-statistics  Hhr L  and  k-statistics  Hkr L.  Symmetry  is  a  most

desirable property for an estimator to have: it generally amounts to saying that an estimate

should not depend on the order in which  the observations  were made. The tools  provided

in this chapter apply to any rational, integral, algebraic symmetric function.  This includes

mr , mr kr  or mr + hr ,  but not mr êkr  nor 
è!!!!!!

mr . Symmetric  functions  are also discussed in

more detail in §7.4.

7.2 Unbiased Estimators of Population Moments
On  browsing  through  almost  any  statistics  textbook,  one  encounters  an  estimator  of

population variance defined by 1ÅÅÅÅÅÅÅÅÅÅ
n-1

 i=1
n HXi - X

êêêL2 , where X
êêê

 is the sample mean. It is only

natural  to  ponder  why  the  denominator  in  this  expression  is  n - 1  rather  than  n.  The

answer is that n - 1 yields an unbiased estimator of the population variance, while n yields

a biased estimator. This section provides a toolset to attack such questions, not only for the

variance,  but  for  any  population  moment.  We  introduce  h-statistics  which  are  unbiased

estimators  of  central  population  moments,  and  k-statistics  which  are  unbiased  estimators

of  population  cumulants,  and  then  generalise  these  statistics  to  encompass  products  of

moments  as  well  as multivariate  moments.  To do  so,  we couch  our  language  in terms  of

power  sums  (see  §7.1 B),  which  are  closely  related  to  sample  moments.  Although  we

assume  an  infinite  universe,  the  results  do  extend  to  finite  populations.  For  the  finite

univariate  case,  see Stuart  and Ord (1994,  Section 12.20); for the finite multivariate  case,

see Dwyer and Tracy (1980). 

7.2 A Unbiased Estimators of Raw Moments of the Population

By  the  fundamental  expectation  result  (7.15),  it  can  be  shown that  sample  raw moments

m
£

r  are unbiased estimators of population raw moments m
£

r . That is,

(7.4)EAm£ r E = m
£

r .

However,  products  of  sample  raw  moments  are  not  unbiased  estimators  of  products  of

population  raw  moments.  For  instance,  m
£

2  m
£

3  is  not  an  unbiased  estimator  of  m
£

2  m
£

3 .

Unbiased estimators of products of raw moments are discussed in Example 6 and in §7.4 A.

7.2 B h-statistics: Unbiased Estimators of Central Moments
The h-statistic hr  is an unbiased estimator of mr , defined by

(7.5)E@hr D = mr .
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That  is,  hr  is  the  statistic  whose  expectation  is  the  central  moment  mr .  Of  all  unbiased

estimators  of mr ,  the  h-statistic  is the  only one that  is symmetric.  Halmös (1946)  showed

that  not  only is hr  unique,  but  its  variance  VarHhr L = E@Hhr - mr L2D  is a  minimum relative

to all other unbiased estimators. We express h-statistics in terms of power sums, following

Dwyer (1937) who introduced the term h-statistic. Here are the first four h-statistics:

Table@HStatistic@iD, 8i, 4<D êê TableForm

h1 Ø 0

h2 Ø -s12+n s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1+nL n

h3 Ø 2 s13-3 n s1 s2 +n2 s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2+nL H-1+nL n

h4 Ø -3 s14 +6 n s12 s2 +H9-6 nL s22 +H-12+8 n-4 n2L s1 s3 +H3 n-2 n2+n3L s4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-3+nL H-2+nL H-1+nL n

If we express the results in terms of sample central moments mi , they appear neater: 

Table@HStatisticToSampleCentral@iD, 8i, 4<D êê TableForm

h1 Ø 0
h2 Ø n m2ÅÅÅÅÅÅÅÅÅ-1+n

h3 Ø n2 m3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2+nL H-1+nL
h4 Ø H9-6 nL n2 m22 +n H3 n-2 n2 +n3L m4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-3+nL H-2+nL H-1+nL n

�  Example 1:  Unbiased Estimator of the Population Variance

We  wish  to  find  an  unbiased  estimator  of  the  population  variance  m2 .  It  follows

immediately  that  an  unbiased  estimator  of  m2  is  h2 .  Here  is  h2  expressed  in  terms  of

sample central moments:

HStatisticToSampleCentral@2D
h2 Ø

n m2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + n

which is identical to the standard textbook result 1ÅÅÅÅÅÅÅÅÅÅ
n-1

 i=1
n HXi - X

êêêL2 . Given that nÅÅÅÅÅÅÅÅÅÅÅÅ
n - 1

 m2  is

an  unbiased  estimator  of  population  variance,  it  follows  that  m2  is  a  biased  estimator  of

population variance; §7.3 provides a toolset that enables one to calculate E@m2D, and hence

measure the bias. !

�  Example 2:  Unbiased Estimator of m5  when n = 11

If  the  sample  size  n  is  known,  and  n > r,  the  function  HStatistic[r,  n]  returns  hr .

When n = 11, h5  is: 

HStatistic@5, 11D
h5 Ø

4 s15 - 110 s13 s2 + 270 s1 s22 + 850 s12 s3 - 990 s2 s3 - 4180 s1 s4 + 9196 s5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
55440
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�  Example 3:  Working with Data

The  following  data  is  a  random  sample  of  30  lightbulbs,  recording  the  observed  life  of

each bulb in weeks:

data = 816.34, 10.76, 11.84, 13.55, 15.85, 18.20,
7.51, 10.22, 12.52, 14.68, 16.08, 19.43,
8.12, 11.20, 12.95, 14.77, 16.83, 19.80,
8.55, 11.58, 12.10, 15.02, 16.83, 16.98,
19.92, 9.47, 11.68, 13.41, 15.35, 19.11< ;

We  wish  to  estimate  the  third  central  moment  m3  of  the  population.  If  we  simply

calculated m3  (a biased estimator), we would get the following estimate:

<< Statistics`

CentralMoment@data, 3D
-1.30557

By contrast, h3  is an unbiased estimator. Evaluating the power sums sr = i=1
n Xi

r  yields:

HStatistic@3, 30D ê. sr_ ß Plus üü datar

h3 Ø -1.44706

mathStaticaXs  UnbiasedCentralMoment  function  automates  this  process,  making  it

easier  to  use.  That  is,  UnbiasedCentralMoment[data,  r]  estimates  mr  using  the

unbiased estimator hr . Of course, it yields the same result: 

UnbiasedCentralMoment@data, 3D
-1.44706

Chapter 5 makes frequent use of this function. !

È Polyaches (Generalised h-statistics)

The generalised h-statistic (Tracy and Gupta (1974)) is defined by

(7.6)E@h8r, s, ', t< D  =  mr  ms  � mt .

That  is,  h8r, s, ', t<  is  the  statistic  whose  expectation  is  the  product  of  the central  moments

mr  ms  � mt .  Just  as  Tukey (1956)  created  the onomatopoeic  term fpolykayX  to denote  the

generalised  k-statistic  (discussed  below),  we  neologise  fpolyacheX  to  denote  the

generalised  h-statistic.  Perhaps,  to paraphrase  Kendall,  there really  are limits to linguistic

miscegenation  that  should  not  be  exceeded  Ã.2  Note  that  the  polyache  of  a  single  term

PolyH[{r}] is identical to HStatistic[r]. 
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�  Example 4:  Find an Unbiased Estimator of m2
2  m3

The solution is the polyache h82, 2, 3< :
PolyH@82, 2, 3<D
h82,2,3< ØH2 s17 - 7 n s1

5 s2 + H30 - 18 n + 8 n2L s13 s22 + H60 - 63 n + 21 n2 - 3 n3L s1
s2
3 + H-40 + 24 n + n2L s14 s3 + H-120 + 96 n - 24 n2 - 2 n3L s12 s2 s3 +H-20 n + 21 n2 - 7 n3 + n4L s22 s3 + H80 - 40 n - 4 n2 + 4 n3L s1 s32 +H60 - 8 n - 12 n2L s13 s4 + H-120 + 140 n - 63 n2 + 13 n3L s1 s2 s4 +H-20 n + 10 n2 + n3 - n4L s3 s4 + H48 - 92 n + 30 n2 + 2 n3L s12 s5 +H36 n - 34 n2 + 12 n3 - 2 n4L s2 s5 +H-28 n + 42 n2 - 14 n3L s1 s6 + H4 n2 - 6 n3 + 2 n4L s7L êHH-6 + nL H-5 + nL H-4 + nL H-3 + nL H-2 + nL H-1 + nL nL

Because h-statistics are symmetric functions, the ordering of the arguments, h82, 3, 2<  versus

h82, 2, 3< , does not matter:

PolyH@82, 3, 2<DP2T == PolyH@82, 2, 3<DP2T
True

When using generalised h-statistics h8r, s, ', t< , the weight of the statistic can easily become

quite  large.  Here,  h82, 2, 3<  has  weight  7 = 2 + 2 + 3,  and  it  contains  terms  such  as  s7 .

Although  h82, 2, 3<  is  an  unbiased  estimator  of  m2
2  m3 ,  some  care  must  be  taken  in  small

samples  because  the  variance  of  the  estimator  may  be  large.  Intuitively,  the  effect  of  an

outlier  in  a  small  sample  is  accentuated  by  terms  such  as  s7 .  In  this  vein,  Example  11

compares the performance of h82, 2<  to h2
2 . !

7.2 C k-statistics: Unbiased Estimators of Cumulants
The k-statistic kr  is an unbiased estimator of kr , defined by

(7.7)E@kr D = kr ,    r = 1, 2, '

That  is,  kr  is  the  (unique)  symmetric  statistic  whose  expectation  is  the  r th  cumulant  kr .

From Halmös (1946), we again know that, of all unbiased estimators of kr , the k-statistic

is  the  only  one  that  is  symmetric,  and  its  variance  VarHkr L = E@Hkr - kr L2 D  is  a  minimum

relative to all other unbiased estimators. Following Fisher (1928), we define k-statistics in

terms of power sums. Here, for instance, are the first four k-statistics:

Table@KStatistic@iD, 8i, 4<D êê TableForm

k1 Ø s1ÅÅÅÅÅn

k2 Ø -s12+n s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1+nL n

k3 Ø 2 s13-3 n s1 s2 +n2 s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2+nL H-1+nL n

k4 Ø -6 s1
4 +12 n s1

2 s2 +H3 n-3 n2L s2
2 +H-4 n-4 n2L s1 s3 +Hn2+n3L s4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-3+nL H-2+nL H-1+nL n
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Once  again,  if  we  express  these  results  in  terms  of  sample  central  moments  mi ,  they

appear neater: 

Table@KStatisticToSampleCentral@iD, 8i, 4<D êê TableForm

k1 Ø 0

k2 Ø n m2ÅÅÅÅÅÅÅÅÅ-1+n

k3 Ø n2 m3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2+nL H-1+nL
k4 Ø n2 H3 n-3 n2L m2

2 +n Hn2 +n3L m4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-3+nL H-2+nL H-1+nL n

Stuart  and  Ord  (1994)  provide  tables  of  k-statistics  up  to  r = 8,  though  published

results  do  exist  to r = 12. Ziaud-Din  (1954)  derived  k9 ,  and  k10  (contains  errors),  Ziaud-

Din (1959) derived k11  (contains errors), while Ziaud-Din and Ahmad (1960) derived k12 .

The KStatistic function makes it simple to derive correct solutions fon the flyX, and it

extends  the  analysis  well  past  k12 .  For  instance,  it  takes  just  a few seconds  to  derive  the

15 th  k-statistic on our reference personal computer:

KStatistic@15D; êê Timing

82.8 Second, Null<
But beware! the printed result will fill many pages!

È Polykays (Generalised k-statistics)

Dressel  (1940)  introduced  the  generalised  k-statistic  k8r, s, ', t<  (now  also  called  polykay)

defined by

(7.8)E@k8r, s, ', t< D = kr  ks  � kt .

That  is,  a  polykay  k8r, s, ', t<  is  the  statistic  whose  expectation  is  the  product  of  the

cumulants kr  ks  � kt . Here is the polykay k82, 4<  in terms of power sums:

PolyK@82, 4<D
k82,4< Ø H6 s16 - 18 n s1

4 s2 + H30 - 27 n + 15 n2L s12 s22 +H60 - 60 n + 21 n2 - 3 n3L s23 + H-40 + 36 n + 4 n2L s13 s3 +H-120 + 100 n - 24 n2 - 4 n3L s1 s2 s3 + H40 - 10 n - 10 n2 + 4 n3L s32 +H60 - 20 n - 15 n2 - n3L s12 s4 + H-60 + 45 n - 10 n2 + n4L s2 s4 +H24 - 42 n + 12 n2 + 6 n3L s1 s5 + H-4 n + 7 n2 - 2 n3 - n4L s6L êHH-5 + nL H-4 + nL H-3 + nL H-2 + nL H-1 + nL nL
Finally,  note  that  the  polykay  of  a  single  term  PolyK[{r}]  is  identical  to

KStatistic[r]; however, they use different algorithms, and the latter function is more

efficient computationally.
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�  Example 5:  Find an Unbiased Estimator of k2
2

Solution: The required unbiased estimator is the polykay k82, 2< :
PolyK@82, 2<D
k82,2< Ø

s14 - 2 n s12 s2 + H3 - 3 n + n2L s22 + H-4 + 4 nL s1 s3 + Hn - n2L s4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-3 + nL H-2 + nL H-1 + nL n

For the lightbulb data set of Example 3, this yields the estimate:

PolyK@82, 2<, 30D ê. sr_ ß Plus üü datar

k82,2< Ø 154.118

By contrast, k2
2  is a biased estimator of k2

2 , and yields a different estimate: 

k2 = KStatistic@2, 30D ê. sr_ ß Plus üü datar

k2P2T2
k2 Ø 12.6501

160.024

Example  11  compares  the  performance  of  the  unbiased  estimator  h82, 2<  to  the  biased

estimator h2
2  (note that k82, 2< = h82, 2< , and k2 = h2 ). !

�  Example 6:  Find an Unbiased Estimator of the Product of Raw Moments m
£

3 m
£

4

Polykays  can  be  used  to  find  unbiased  estimators  of  quite  general  expressions.  For

instance,  to  find  an  unbiased  estimator  of  the  product  of  raw  moments  m
£

3 m
£

4 ,  we  may

proceed as follows:

Step (i): Convert m
£

3 m
£

4  into cumulants:

p = m
£
3 m

£
4 ê. Table@RawToCumulant@iD, 8i, 3, 4<D êê Expand

k1
7 + 9 k1

5 k2 + 21 k1
3 k2

2 + 9 k1 k2
3 + 5 k1

4 k3 +

18 k1
2 k2 k3 + 3 k2

2 k3 + 4 k1 k3
2 + k1

3 k4 + 3 k1 k2 k4 + k3 k4

Step (ii): Find an unbiased estimator of each term in this expression. Since each term

is a product of cumulants, the unbiased estimator of each term is a polykay. The first term

k1
7  becomes  k81, 1, 1, 1, 1, 1, 1< ,  while  9 k1

5 k2  becomes  9 k81, 1, 1, 1, 1, 2< ,  and  so  on.  While  we

could do all this manually,  there is an easier way! If pHxL is a symmetric polynomial in x,

the  mathStatica  function  ListForm[p,  x]  will  convert  p  into  a  flist  formX  suitable  for

use  by PolyK  and many other functions.  Note that ListForm  should only be called on

polynomials  that  have  just been expanded  using Expand.  The order  of the terms  is now

reversed:
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p1 = ListForm@p, kD
k@83, 4<D + 3 k@81, 2, 4<D + 4 k@81, 3, 3<D + 3 k@82, 2, 3<D +

k@81, 1, 1, 4<D + 18 k@81, 1, 2, 3<D + 9 k@81, 2, 2, 2<D +
5 k@81, 1, 1, 1, 3<D + 21 k@81, 1, 1, 2, 2<D +
9 k@81, 1, 1, 1, 1, 2<D + k@81, 1, 1, 1, 1, 1, 1<D

Replacing each k term by PolyK yields the desired estimator:

p1 ê. k@x_D ß PolyK@xDP2T êê Factor

s3 s4 - s7ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n
which  is  surprisingly  neat.  Example  15  provides  a  more  direct  way  of  finding  unbiased

estimators  of  products  of  raw  moments,  but  requires  some  knowledge  of  augmented

symmetrics to do so. !

7.2 D Multivariate h- and k-statistics
The multivariate h-statistic hr, s, ', t  is defined by

(7.9)E@hr, s, ', t D = mr, s, ', t .

That  is, hr, s, ', t  is the statistic whose expectation  is the q-variate central moment  mr, s, ', t

(see §6.2 B), where

(7.10)mr, s, ', t = EAHX1 - E@X1 DLr HX2 - E@X2 DLs  � HXq - E@XqDLt E
Some care with notation is required here. We use curly brackets {} to distinguish between

the  multivariate  h-statistics  hr, s, ', t  of  this  section  and  the  univariate  polyaches  h8r, s, ', t<
(generalised h-statistics) discussed in §7.2 B.

The  mathStatica  function  HStatistic[{r,  s,  ',  t}]  yields  the  multivariate  h-

statistic hr, s, ', t . Here are two bivariate examples:

HStatistic@81, 1<D
HStatistic@82, 1<D
h1,1 Ø

-s0,1 s1,0 + n s1,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n
h2,1 Ø

2 s0,1 s1,02 - 2 n s1,0 s1,1 - n s0,1 s2,0 + n2 s2,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL n
where each bivariate power sum sr, t  is defined by

sr, t = 
i=1

n

Xi
r  Yi

t .
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Higher variate examples soon become quite lengthy. Here is a simple trivariate example:

HStatistic@82, 1, 1<D
h2,1,1 Ø H-3 s0,0,1 s0,1,0 s1,0,0

2 + n s0,1,1 s1,0,0
2 + 2 n s0,1,0 s1,0,0 s1,0,1 +

2 n s0,0,1 s1,0,0 s1,1,0 - 2 H-3 + 2 nL s1,0,1 s1,1,0 -
2 H3 - 2 n + n2L s1,0,0 s1,1,1 + n s0,0,1 s0,1,0 s2,0,0 -H-3 + 2 nL s0,1,1 s2,0,0 - H3 - 2 n + n2L s0,1,0 s2,0,1 -H3 - 2 n + n2L s0,0,1 s2,1,0 + n H3 - 2 n + n2L s2,1,1L êHH-3 + nL H-2 + nL H-1 + nL nL

In similar fashion, the multivariate k-statistic kr, s, ', t  is defined by

(7.11)E@kr, s, ', t D = kr, s, ', t .

That  is,  kr, s, ', t  is  the  statistic  whose  expectation  is  the  multivariate  cumulant  kr, s, ', t .

Multivariate  cumulants  were  briefly  discussed  in  §6.2  C  and  §6.2  D.  Here  is  a  bivariate

result originally given by Fisher (1928):

KStatistic@83, 1<D
k3,1 ØH-6 s0,1 s1,0

3 + 6 n s1,0
2 s1,1 + 6 n s0,1 s1,0 s2,0 - 3 H-1 + nL n s1,1 s2,0 -

3 n H1 + nL s1,0 s2,1 - n H1 + nL s0,1 s3,0 + n2 H1 + nL s3,1L êHH-3 + nL H-2 + nL H-1 + nL nL
Multivariate  polykays  and  multivariate  polyaches  are  not  currently  implemented  in

mathStatica. 

�  Example 7:  American NFL Matches: Estimating the Central Moment m2, 1

The following data is taken from American National Football  League games in 1986; see

Csörgö and Welsh (1989). Variable X1  measures the time from the start of the game until

the  first  points  are scored  by  kicking  the  ball  between  the end-posts  (a  field  goal),  while

X2  measures  the  time  from  the  start  of  the  game  until  the  first  points  are  scored  by  a

touchdown.  Times are given  in minutes and seconds.  If X1 < X2 ,  the first  score  is a  field

goal; if X1 = X2 , the first  score is a converted touchdown;  if X1 > X2 , the first score is an

unconverted touchdown:

data = 882.03, 3.59<, 87.47, 7.47<, 87.14, 9.41<,831.08, 49.53<, 87.15, 7.15<, 84.13, 9.29<, 86.25, 6.25<,810.24, 14.15<, 811.38, 17.22<, 814.35, 14.35<,817.5, 17.5<, 89.03, 9.03<, 810.34, 14.17<, 86.51, 34.35<,814.35, 20.34<, 84.15, 4.15<, 815.32, 15.32<, 88.59, 8.59<,82.59, 2.59<, 81.23, 1.23<, 811.49, 11.49<, 810.51, 38.04<,80.51, 0.51<, 87.03, 7.03<, 832.27, 42.21<, 85.47, 25.59<,81.39, 1.39<, 82.54, 2.54<, 810.09, 10.09<, 83.53, 6.26<,810.21, 10.21<, 85.31, 11.16<, 83.26, 3.26<, 82.35, 2.35<,88.32, 14.34<, 813.48, 49.45<, 86.25, 15.05<, 87.01, 7.01<,88.52, 8.52<, 80.45, 0.45<, 812.08, 12.08<, 819.39, 10.42<<;

260 CHAPTER  7 §7.2 D



Then, X1  and X2  are given by:

8X1, X2< = Transpose@dataD;
There are n = 42 pairs. An unbiased estimator of the central moment m2, 1  is given by the h-

statistic h2, 1 . Using it yields the following estimate of m2, 1 :

HStatistic@82, 1<, 42D ê. si_, j_ ß X1i.X2j

h2,1 Ø 752.787

An alternative estimator of m2, 1  is the sample central moment m2, 1 :

m21 = SampleCentralToPowerSum@82, 1<D
m2,1 Ø

2 s0,1 s1,02

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n3

-
2 s1,0 s1,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n2
-
s0,1 s2,0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n2
+
s2,1ÅÅÅÅÅÅÅÅÅÅÅ
n

Unfortunately, m2, 1  is a biased estimator, and it yields a different estimate here:

m21 ê. 8si_, j_ ß X1i.X2j, n Ø 42<
m2,1 Ø 699.87

The CentralMoment function in MathematicaXs Statistics package also implements the

biased estimator m2, 1 :

<< Statistics`MultiDescriptiveStatistics`

CentralMoment@data, 82, 1<D
699.87

7.3 Moments of Moments

7.3 A Getting Started

Let  HX1 , ', Xn L  denote  a  random  sample  of  size  n  drawn  from  the  population  random

variable  X.  Because  HX1 , ', Xn L  are  random  variables,  it  follows  that  a  statistic  like  the

sample  central  moment  mr  is  itself  a  random  variable,  with  its  own  distribution  and  its

own population moments. Suppose we want to find the expectation of m2 . Since E@m2 D is
just  the  first  raw  moment  of  m2 ,  we  can  denote  this  problem  by  m

£
1 Hm2 L.  Similarly,  we

might want to find the population variance of m
£

1 . Since VarIm£ 1 M is just the second central

moment  of  m
£

1 ,  we  can  denote  this  problem  by  m2 Im£ 1 M.  Or,  we  might  want  to  find  the

fourth cumulant of m3 , which we denote by k4 Hm3 L. In each of these cases, we are finding

a population moment of a sample moment, or, for short, a moment of a moment.
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The  problem  of  moments  of  moments  has  attracted  a  prolific  literature  containing

many  beautiful  formulae.  Such  formulae  are  listed  over  pages  and  pages  of  tables  in

reference  texts  and  journals.  Sometimes  these  tables  contain  errors;  sometimes  one

induces  errors  oneself  by  typing  them  in  incorrectly;  sometimes  the  desired  formula  is

simply  not  available  and  deriving  the  solution  oneself  is  cumbersome  and  tricky.  Some

authors have devoted years to this task! The tools presented in this chapter change all that:

they  enable  one  to  generate  any  desired  formula,  usually  in  just  a  few  seconds,  without

even having to worry about typing it in incorrectly.

Although the problem of moments  of moments  has produced a long and complicated

literature,  conceptually  the  problem  is  rather  simple.  Let  pHsL  denote  any  symmetric

rational  polynomial  expressed in terms of power sums sr  (§7.1 B). Our goal is to find the

population  moments  of p,  and to express the  answer in terms  of the population  moments

of X. Let m
£

r HpL, mr HpL and kr HpL denote, respectively, the r th  raw moment, central moment

and  cumulant  of  p.  In  each  case,  we  can  present  the  solution  in  terms  of  raw  moments

m
£

i HXL  of  the  population  of  X,  or  central  moments  mi HXL  of  the  population  of  X,  or

cumulants  ki HXL  of  the  population  of  X.  As  such,  the  problem  can  be  expressed  in  9

different ways:

 

m
£

r HpL
mr HpL
kr HpL

|oooo}~oooo in terms of  

loooomnoooo
m
£

i HXL
mi HXL
ki HXL 

Consequently,  mathStatica  offers  9  functions  to  tackle  the  problem  of  moments  of

moments, as shown in Table 1. 

function description

RawMomentToRaw@r, pD m
£

r HpL  in  terms  of  m
£

i HXL
RawMomentToCentral@r, pD m

£
r HpL  in  terms  of  mi HXL

RawMomentToCumulant@r, pD m
£

r HpL  in  terms  of  ki HXL
CentralMomentToRaw@r, pD mr HpL  in  terms  of  m

£
i HXL

CentralMomentToCentral@r, pD mr HpL  in  terms  of  mi HXL
CentralMomentToCumulant@r, pD mr HpL  in  terms  of  ki HXL
CumulantMomentToRaw@r, pD kr HpL  in  terms  of  m

£
i HXL

CumulantMomentToCentral@r, pD kr HpL  in  terms  of  mi HXL
CumulantMomentToCumulant@r, pD kr HpL  in  terms  of  ki HXL

Table 1:  Moments of moments functions

For instance, consider the function CentralMomentToRaw[r, p]:

l the  term  CentralMoment  indicates  that  we  wish  to  find  mr HpL;  i.e.  the  r th

central moment of p;

l the  term  ToRaw  indicates  that  we  want  the  answer  expressed  in  terms  of  raw

moments m
£

i  of the population of X. 
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These functions nest common operators such as:

l the expectation operator:       E@pD = m
£

1 HpL = RawMomentTo?@1, pD
l the variance operator:        VarHpL = m2 HpL = CentralMomentTo?@2, pD

There is often more than one correct  way of thinking about these problems. For example,

the expectation  E@p3 D  can be thought  of as either m
£

1 Hp3 L  or as m
£

3 HpL.  Endnote  3 provides

more  detail  on  the  ___ToCumulant  functions;  it  should  be  carefully  read  before  using

them.

�  Example 8:  Checking if the Unbiased Estimators Really Are Unbiased

We are now equipped to test,  for  instance,  whether the unbiased estimators  introduced in

§7.2 really are unbiased. In §7.2 C, we obtained the polykay k82, 4<  in terms of power sums:

p = PolyK@82, 4<D
k82,4< Ø H6 s16 - 18 n s1

4 s2 + H30 - 27 n + 15 n2L s12 s22 +H60 - 60 n + 21 n2 - 3 n3L s23 + H-40 + 36 n + 4 n2L s13 s3 +H-120 + 100 n - 24 n2 - 4 n3L s1 s2 s3 + H40 - 10 n - 10 n2 + 4 n3L s32 +H60 - 20 n - 15 n2 - n3L s12 s4 + H-60 + 45 n - 10 n2 + n4L s2 s4 +H24 - 42 n + 12 n2 + 6 n3L s1 s5 + H-4 n + 7 n2 - 2 n3 - n4L s6L êHH-5 + nL H-4 + nL H-3 + nL H-2 + nL H-1 + nL nL
This statistic is meant to have the property that E@pD = k2  k4 . Since E@pD = m

£
1 HpL, we will

use  the RawMomentTo?[1,  p]  function;  moreover,  since the  answer is  desired  in terms

of cumulants, we use the suffix ToCumulant:

RawMomentToCumulant@1, pP2TD
k2 k4

... so all is well. Similarly, we can check the h-statistics. Here is the 4 th  h-statistic in terms

of power sums:

p = HStatistic@4D
h4 Ø

-3 s14 + 6 n s12 s2 + H9 - 6 nL s22 + H-12 + 8 n - 4 n2L s1 s3 + H3 n - 2 n2 + n3L s4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-3 + nL H-2 + nL H-1 + nL n
This is meant to have the property that E@pD = m4 . And '

RawMomentToCentral@1, pP2TD
m4

' all is well. !
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�  Example 9:  The Variance of the Sample Mean m
£

1

Step (i): Express m
£

1  in terms of power sums: trivially, we have m
£

1 = s1ÅÅÅÅÅÅÅn .

Step (ii): Since VarIm£ 1 M = m2 I s1ÅÅÅÅÅÅÅn M, the desired solution is:

CentralMomentToCentralA2, s1
ÅÅÅÅÅÅÅ
n

E
m2ÅÅÅÅÅÅÅ
n

where  m2  denotes  the  population  variance.  This  is  just  the  well-known  result  that  the

variance of the sample mean is VarHXL ên. !

�  Example 10:  The Variance of m2

Step (i): Convert m2  into power sums (§7.1 B):

m2 = SampleCentralToPowerSum@2DP2T
-
s12ÅÅÅÅÅÅÅ
n2

+
s2ÅÅÅÅÅÅÅ
n

Step (ii): Since VarHm2 L = m2 Hm2 L, the desired solution is:

CentralMomentToCentral@2, m2D
-
H-3 + nL H-1 + nL m2

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n3
+

H-1 + nL2 m4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n3

�  Example 11:  Mean Square Error of Two Estimators

Which  is the  better  estimator  of m2
2 :  (a)  the square  of the second  h-statistic  h2

2 ,  or (b)  the

polyache h82, 2<?
Solution:  We know that  the  polyache  h82, 2<  is an  unbiased  estimator  of  m2

2 ,  while  h2
2  is  a

biased  estimator  of  m2
2 .  But  bias  is  not  everything:  variance  is  also  important.  The  mean

square  error  of  an  estimator  is  a  measure  that  takes  account  of  both  bias  and  variance,

defined  by  MSEHq`L = E AIq` - qM2E,  where  q
`

 denotes  the  estimator,  and  q  is  the  true

parameter  value  (see  Chapter  9  for  more  detail).  For  this  particular  problem,  the  two

estimators are q
êê

= h2
2  and q

è
= h82, 2< :

q
ê

= HStatistic@2DP2T2
q
è

= PolyH@82, 2<DP2TH-s12 + n s2L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n2
s14 - 2 n s12 s2 + H3 - 3 n + n2L s22 + H-4 + 4 nL s1 s3 + Hn - n2L s4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-3 + nL H-2 + nL H-1 + nL n
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If  we  let  p = Iq` - qM2 ,  then  MSEHq`L = E@pD = m
£

1 HpL,  so  the  mean  square  error  of  each

estimator is (in terms of central moments):

MSE@q
êD = RawMomentToCentralA1, Hq

ê
- m2

2L2E;
MSE@q

èD = RawMomentToCentralA1, Hq
è

- m2
2L2E;

Now consider the ratio of the mean square errors of the two estimators.  We are interested

to see whether this ratio is greater than or smaller than 1. If it is always greater than 1, then

the polykay q
è

= h82, 2<  is the strictly preferred estimator:

rat =
MSE@q

êD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
MSE@q

èD êê Factor

HH-3 + nL H-2 + nLH-630 m2
4 + 885 n m2

4 - 507 n2 m2
4 + 159 n3 m2

4 - 31 n4 m2
4 + 4 n5 m2

4 +
560 m2 m3

2 - 840 n m2 m3
2 + 520 n2 m2 m3

2 - 168 n3 m2 m3
2 + 24 n4 m2 m3

2 +
420 m2

2 m4 - 690 n m2
2 m4 + 430 n2 m2

2 m4 - 138 n3 m2
2 m4 +

30 n4 m2
2 m4 - 4 n5 m2

2 m4 - 35 m4
2 + 60 n m4

2 - 42 n2 m4
2 +

12 n3 m4
2 - 3 n4 m4

2 - 56 m3 m5 + 104 n m3 m5 - 72 n2 m3 m5 +
24 n3 m3 m5 - 28 m2 m6 + 64 n m2 m6 - 48 n2 m2 m6 +
16 n3 m2 m6 - 4 n4 m2 m6 + m8 - 3 n m8 + 3 n2 m8 - n3 m8LL êH2 H-1 + nL2 n2 H-66 m2

4 + 51 n m2
4 - 17 n2 m2

4 + 2 n3 m2
4 +

48 m2 m3
2 - 28 n m2 m3

2 + 4 n2 m2 m3
2 + 36 m2

2 m4 - 36 n m2
2 m4 +

14 n2 m2
2 m4 - 2 n3 m2

2 m4 - 6 m4
2 + 5 n m4

2 - n2 m4
2LL

This expression seems too complicated to immediately say anything useful about it, so let

us consider an example. If the population is NHm, s2 L with pdf f HxL:
f =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 ExpA-
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2
E;

domain@fD = 8x, -�, �< && 8m 1 Reals, s > 0<;
' then the first 8 central moments of the population are:

mgfc = Expect@3t Hx-mL, fD;
cm = Table@mi Ø D@mgfc, 8t, i<D ê. t Ø 0, 8i, 8<D
8m1 Ø 0, m2 Ø s2, m3 Ø 0, m4 Ø 3 s4,

m5 Ø 0, m6 Ø 15 s6, m7 Ø 0, m8 Ø 105 s8<
so the ratio becomes:

rr = rat ê. cm êê FactorH-3 + nL H-2 + nL n H3 + nL H1 + 2 nL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 H-1 + nL2 H3 + 3 n - 4 n2 + n3L
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Figure 1 shows that this ratio is always greater than 1, irrespective of s, so the polyache is

strictly preferred, at least for this distribution.

100 200 300 400 500
n

1.1

1.2

1.3

1.4

1.5

ratio

Fig. 1:  MSEHq
êêLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

MSEHqèL  as a function of n, for the Normal distribution

We  plot  for  n > 9  because  the  moments  of  moments  functions  are  well-defined  only  for

n > w, where w is the weight of the statistic. !

7.3 B Product Moments
Product  moments  (multivariate  moments)  were introduced  in §6.2 B  and  §6.2 D. We are

interested here in expressions such as:

m
£

r, s Hpa , pb L = E @pa
r pb

s D
mr, s Hpa , pb L = E AHpa - E@paDLr Hpb - E@pb DLs E
kr, s Hpa , pb L

where each pi  is a symmetric polynomial in power sums si . All of mathStaticaXs moment

of  moment  functions  generalise  to  neatly  handle  product  moments!given  mr HpL,  simply

think of r and p as lists.

�  Example 12:  Find the Covariance Between the Sample Moments m2  and m3

Step (i): Express m2  and m3  in terms of power sums:

m2 = SampleCentralToPowerSum@2DP2T;
m3 = SampleCentralToPowerSum@3DP2T;

Step  (ii):  Example  13  of  Chapter  6  showed  that  CovHm2 , m3 L  is  just  the  product

moment m1, 1 Hm2 , m3 L. Thus, the solution is:

CentralMomentToCentral@81, 1<, 8m2, m3<D
-
2 H-2 + nL H-1 + nL H-5 + 2 nL m2 m3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n4
+

H-2 + nL H-1 + nL2 m5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n4
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7.3 C Cumulants of k-statistics
Following  the  work  of  Fisher  (1928),  the  cumulants  of  k-statistics  have  received  great

attention, for which two reasons are proffered. First, it is often claimed that the cumulants

of  the  k-statistics  yield  much  more  compact  formulae  than  other  derivations.  This  is  not

really  true.  Experimentation  with  the  moment  of  moment  functions  shows  that  m
£

r  Iki M  is

just  as  compact  as  kr Hki L,  provided  both  results  are  expressed  in  terms  of  cumulants.  In

this sense, there is nothing special about cumulants of k-statistics per se; the raw moments

of the k-statistics are just as compact. Second, Fisher showed how the cumulants of the k-

statistics can be derived using a combinatoric method, in contrast to the algebraic method

du  jour.  While  FisherXs  combinatorial  approach  is  less  burdensome  algebraically,  it  is

tricky  and  finicky,  which  can  easily  lead  to  errors.  Indeed,  with  mathStatica,  one  can

show  that  even  after  70  years,  a  reference  bible  such  as  Stuart  and  Ord  (1994)  still

contains  errors  in  its  listings  of  cumulants  of  k-statistics;  examples  are  provided  below.

mathStatica  uses  an  internal  algebraic  approach  because  (i)  this  is  general,  safe  and

secure,  and  (ii)  the  burdensome  algebra  ceases  to  be  a  constraint  when  you  can  get  a

computer  to  do  all  the  dreary  work  for  you.  It  is  perhaps  a  little  ironic  then  that  modern

computing  technology  has  conceptually  taken  us  full  circle  back  to  the  work  of  Pearson

(1902), Thiele (1903), and fStudentX (1908). 

In this section, we will make use of the following k-statistics:

k2 = KStatistic@2DP2T;
k3 = KStatistic@3DP2T;

Here are the first four cumulants of k2 , namely kr Hk2 L for r = 1, 2, 3, 4:

CumulantMomentToCumulant@1, k2D
k2

CumulantMomentToCumulant@2, k2D
2 k2

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + n

+
k4ÅÅÅÅÅÅÅ
n

CumulantMomentToCumulant@3, k2D
8 k2

3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 +

4 H-2 + nL k3
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n +
12 k2 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n +

k6ÅÅÅÅÅÅÅ
n2

CumulantMomentToCumulant@4, k2D
48 k2

4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 +

96 H-2 + nL k2 k3
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n +
144 k2

2 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n +

8 H6 - 9 n + 4 n2L k4
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +
32 H-2 + nL k3 k5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n2 +

24 k2 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n2 +
k8ÅÅÅÅÅÅÅ
n3
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Next,  we  derive  the  product  cumulant  k3, 1 Hk3 , k2 L,  expressed  in  terms  of  cumulants,  as

obtained by David  and Kendall  (1949,  p.433).  This takes less than 2 seconds to solve on

our reference computer:

CumulantMomentToCumulant@83, 1<, 8k3, k2<D
1296 n H-12 + 5 nL k2

4 k3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL2 H-1 + nL3 +
324 H164 - 136 n + 29 n2L k2 k3

3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL2 H-1 + nL3 +

648 H137 - 126 n + 29 n2L k2
2 k3 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL2 H-1 + nL3 +

108 H-390 + 543 n - 257 n2 + 41 n3L k3 k4
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL2 H-1 + nL3 n +

108 H110 - 122 n + 33 n2L k2
3 k5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL2 H-1 + nL3 +

54 H-564 + 842 n - 421 n2 + 71 n3L k3
2 k5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL2 H-1 + nL3 n +

54 H316 - 340 n + 93 n2L k2 k4 k5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

54 H178 - 220 n + 63 n2L k2 k3 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

9 H103 - 134 n + 49 n2L k5 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +

54 H-23 + 12 nL k2
2 k7ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL2 n +

27 H22 - 31 n + 11 n2L k4 k7ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +

9 H-26 + 17 nL k3 k8ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n2 +
45 k2 k9ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n2

+
k11ÅÅÅÅÅÅÅÅÅ
n3

�  Example 13:  Find the Correlation Coefficient Between k2  and k3

Solution:  If  rXY  denotes  the  correlation  coefficient  between  random  variables  X  and  Y,

then by definition:

 rXY  =  
EAHX-E@XDL HY-E@YDLE
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

VarHXL VarHY L     so that     rk2  k3
 =   

EAHk2 -k2 L Hk3 -k3 LEÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!m2 Hk2 L m2 Hk3 L
The solution (expressed here in terms of cumulants) is thus:

RawMomentToCumulant@1, Hk2 - k2L Hk3 - k3LD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
CentralMomentToCumulant@2, k2D CentralMomentToCumulant@2, k3D

6 k2 k3ÅÅÅÅÅÅÅÅÅÅÅÅ-1+n + k5ÅÅÅÅÅnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"################################################################################################H 2 k2
2

ÅÅÅÅÅÅÅÅÅ-1+n + k4ÅÅÅÅÅn L H 6 n k2
3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2+nL H-1+nL + 9 k3
2

ÅÅÅÅÅÅÅÅÅ-1+n + 9 k2 k4ÅÅÅÅÅÅÅÅÅÅÅÅ-1+n + k6ÅÅÅÅÅn L
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Since EAHX - E@XDL HY - E@YDLE = m1, 1 HX, YL, we could alternatively derive the numerator

as:

CentralMomentToCumulant@81, 1<, 8k2, k3<D
6 k2 k3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + n

+
k5ÅÅÅÅÅÅÅ
n

which gives the same answer. !

È Product Cumulants

These tools can be used to check the tables of product cumulants provided in texts such as

Stuart  and  Ord  (1994),  which  in  turn  are  based  on  FisherXs  (1928)  results  (with

corrections).  We  find  full  agreement,  except  for  k2, 2 Hk3 , k2 L  (Stuart  and  Ord,  equation

12.70) which we correctly obtain as:

CumulantMomentToCumulant@82, 2<, 8k3, k2<D
288 n k2

5
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

288 H-23 + 10 nL k2
2 k3

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

360 H-7 + 4 nL k2
3 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

36 H160 - 155 n + 38 n2L k3
2 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

36 H93 - 103 n + 29 n2L k2 k4
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

24 H202 - 246 n + 71 n2L k2 k3 k5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +
2 H113 - 154 n + 59 n2L k5

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +

6 H-131 + 67 nL k2
2 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL2 n +

3 H117 - 166 n + 61 n2L k4 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +

6 H-27 + 17 nL k3 k7ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n2 +
37 k2 k8ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n2

+
k10ÅÅÅÅÅÅÅÅÅ
n3

By  contrast,  Fisher  (1928)  and  Stuart  and  Ord  (1994)  give  the  coefficient  of  the  k2
3 k4

term  as  72 H-23+14 nLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2+nL H-1+nL3 ;  for  the  k2
2 k3

2  term:  144 H-44+19 nLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2+nL H-1+nL3 .  There  is  also  a  small

typographic  error  in  Stuart  and  Ord  equation  12.66,  k2, 1 Hk4 , k2 L,  though  this  is  correctly

stated in Fisher (1928).

�  Example 14:  Show That FisherXs (1928) Solution for k2, 2 Hk3, k2 L Is Incorrect

If  we  can  show  that  FisherXs  solution  is  wrong  for  one  distribution,  it  must  be  wrong

generally.  In  this  vein,  let  X ~ BernoulliH 1ÅÅÅÅ
2
L,  so  that  Xi = X  for  any  integer  i.  Hence,

s1 = s2 = s3 = Y ~ BinomialHn, 1ÅÅÅÅ
2
L  (cf.  Example  21  of  Chapter  4).  Recall  that  the  k-

statistics k2  and k3  were defined above in terms of power sums si . We can now replace all

power sums si  in k2  and k3  with the random variable Y :
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K2 = k2 ê. si_ Ø y

n y - y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n
K3 = k3 ê. si_ Ø y

n2 y - 3 n y2 + 2 y3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL n

where random variable Y ~ BinomialHn, 1ÅÅÅÅ
2
L, with pmf gHyL: 

g = Binomial@n, yD py H1 - pLn-y ê. p Ø
1
ÅÅÅÅ
2
;

domain@gD = 8y, 0, n< && 8n > 0, n 1 Integers< && 8Discrete<;
We  now  want  to  calculate  the  product  cumulant  k2, 2 HK3 , K2 L  directly,  when

Y ~ BinomialHn, 1ÅÅÅÅ
2
L. The product cumulant k2, 2  can be expressed in terms of product raw

moments as follows:

k22 = CumulantToRaw@82, 2<D
k2,2 Ø -6 m

£
0,1

2
m
£
1,0

2
+ 2 m

£
0,2 m

£
1,0

2
+ 8 m

£
0,1 m

£
1,0 m

£
1,1 - 2 m

£
1,1

2
-

2 m
£
1,0 m

£
1,2 + 2 m

£
0,1

2
m
£
2,0 - m

£
0,2 m

£
2,0 - 2 m

£
0,1 m

£
2,1 + m

£
2,2

as  given  in  Cook  (1951).  Here,  each  term  m
£

r, s  denotes  m
£

r, s HK3 , K2 L = E@K3
r  K2

s D,  and

hence can be evaluated with the Expect function.  In the next input, we calculate each of

the expectations that we require:

W = k22P2T ê. m
£
r_,s_ ß Expect@K3r K2s, gD êê Simplify

496 - 405 n + 124 n2 - 18 n3 + n4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

32 H-2 + nL H-1 + nL3 n3
Hence, W is the value of k2, 2 Hk3 , k2 L when X ~ BernoulliH 1ÅÅÅÅ

2
L.

Fisher (1928) obtains, for any distribution whose moments exist, that k2, 2 Hk3 , k2 L is:

Fisher =
288 n k2

5

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +
144 H-44 + 19 nL k2

2 k3
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

72 H-23 + 14 nL k2
3 k4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +
36 H160 - 155 n + 38 n2L k3

2 k4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

36 H93 - 103 n + 29 n2L k2 k4
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +
24 H202 - 246 n + 71 n2L k2 k3 k5
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

2 H113 - 154 n + 59 n2L k5
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +
6 H-131 + 67 nL k2

2 k6
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL2 n +

3 H117 - 166 n + 61 n2L k4 k6
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +

6 H-27 + 17 nL k3 k7
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n2 +

37 k2 k8
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n2 +

k10
ÅÅÅÅÅÅÅÅÅ
n3

;
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Now, when X ~ BernoulliH 1ÅÅÅÅ2 L, with pmf f HxL:
f =

1
ÅÅÅÅ
2
; domain@fD = 8x, 0, 1< && 8Discrete<;

... the cumulant generating function is:

cgf = Log@Expect@3t x, fDD
LogA 1

ÅÅÅÅ
2

H1 + -tLE
and so the first 10 cumulants are:

klis = Table@kr Ø D@cgf, 8t, r<D ê. t Ø 0, 8r, 10<D
9k1 Ø

1
ÅÅÅÅ
2
, k2 Ø

1
ÅÅÅÅ
4
, k3 Ø 0, k4 Ø -

1
ÅÅÅÅ
8
, k5 Ø 0,

k6 Ø
1
ÅÅÅÅ
4
, k7 Ø 0, k8 Ø -

17
ÅÅÅÅÅÅÅ
16

, k9 Ø 0, k10 Ø
31
ÅÅÅÅÅÅÅ
4

=
' so FisherXs solution becomes:

Fsol = Fisher ê. klis êê Simplify

496 - 405 n + 124 n2 - 72 n3 + 28 n4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

32 H-2 + nL H-1 + nL3 n3
which is not equal to W derived above. Hence, FisherXs (1928) solution must be incorrect.

How does mathStatica fare? When X ~ BernoulliH 1ÅÅÅÅ
2
L, our solution is:

CumulantMomentToCumulant@82, 2<, 8k3, k2<Dê. klis êê Simplify

496 - 405 n + 124 n2 - 18 n3 + n4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

32 H-2 + nL H-1 + nL3 n3
which  is  identical  to  W,  as  we  would  expect.  How big  is  the  difference  between  the  two

solutions?  The  following  output  shows  that,  when  X ~ BernoulliH 1ÅÅÅÅ
2
L,  FisherXs  solution  is

at least 28 times too large, and as much as 188 times too large:

Fsol
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

W
ê. n Ø 811, 20, 50, 100, 500, 1000000000< êê N

8188.172, 68.0391, 38.7601, 32.8029, 28.882, 28.<
This  comparison  is  only  valid  for  n  greater  than  the  weight  w  of  k2, 2 Hk3 , k2 L,  where

w = 10 here. Weights are defined in the next section. !
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7.4 Augmented Symmetrics and Power Sums

7.4 A Definitions and a Fundamental Expectation Result
This  section  does  not  strive  to  solve  new  problems;  instead,  it  describes  the  building

blocks  upon  which  unbiased  estimators  and  moments  of  moments  are  built.  Primarily,  it

deals with converting expressions such as the three-part sum i� j�k Xi  Xj
2  Xk

2  into one-part

sums  such  as  i=1
n Xi

r .  The  former  are  called  augmented  symmetrics  functions,  while  the

latter  are  one-part  symmetrics,  more  commonly  known  as  power  sums.  Formally,  as  per

§7.1 B, the r th  power sum is defined as

(7.12)sr = 
i=1

n

Xi
r ,        r = 1, 2, '

Further,  let  A8a, b, c, '<  denote  an  augmented  symmetric  function  of  the  variates.  For

example,

(7.13) A83, 2, 2, 1< = 
i� j�k�m

Xi
3  Xj

2  Xk
2  Xm

1

where each index in the four-part sum ranges from 1 to n. For any list of positive integers

t,  the  weight  of At  is  w = S t,  while the  order,  or number  of  parts,  is  the  dimension  of  t,

which we denote by r. For instance, A83, 2, 2, 1<  has weight 8, and order 4. For convenience,

one  can  notate  A83, 2, 2, 1, 1, 1, 1<  as  A83, 22 , 14 <  corresponding  to  an  fextended  formX  and

fcondensed  formX  notation,  respectively.  Many  authors  would  denote  A83, 22 , 14 <  by  the

expression  @3 22  14 D ;  unfortunately,  this  notation  is  ill-suited  to  Mathematica  where

[ ] notation is already ftakenX.

This section provides tools that enable one to:

(i) express  an  augmented  symmetric  function  in  terms  of  power  sums;  that  is,  find

function f  such that At = f Hs1 , s2 , ', sw L!each term in f will be isobaric (have the

same weight w);

(ii) express  products  of  power  sums  (e.g.  s1  s2  s3 )  in  terms  of  augmented  symmetric

functions.

Past  attempts:  Considerable  effort  has  gone  into deriving  tables  to  convert  between

symmetric functions and power sums. This includes the work of OXToole (1931, weight 6,

contains  errors),  Dwyer  (1938,  weight  6),  Sukhatme  (1938,  weight  8), and  Kerawala  and

Hanafi  (1941,  1942,  1948)  for  w = 9  through  12  (errors).  David  and  Kendall  (1949)

independently  derived  a  particularly  neat  set  of  tables  up to  weight  12,  though this  set  is

also not free of error, though a later version,  David et al. (1966, weight 12) appears to be

correct.  With  mathStatica,  we can  extend  the  analysis  far  beyond  weight  12,  and  derive

correct solutions of even weight 20 in just a few seconds.
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È Augmented Symmetrics to Power Sums

The  mathStatica  function  AugToPowerSum  converts  a  given  augmented  symmetric

function into power sums. Here we find @3 23 D = A83, 23 <  in terms of power sums: 

AugToPowerSum@83, 2, 2, 2<D
A83,2,2,2< Ø s2

3 s3 - 3 s2 s3 s4 - 3 s2
2 s5 + 3 s4 s5 + 2 s3 s6 + 6 s2 s7 - 6 s9

The integers  in AugToPowerSum[{3, 2,  2,  2}] do not  need to be any  particular order.

In fact, one can even use fcondensed-formX notation:4

AugToPowerSum@83, 23<D
A83,2,2,2< Ø s23 s3 - 3 s2 s3 s4 - 3 s22 s5 + 3 s4 s5 + 2 s3 s6 + 6 s2 s7 - 6 s9

Standard  tables  also  list  the  related  monomial  symmetric  functions,  though  these  are

generally  less useful than the augmented symmetrics. Using condensed form notation, the

monomial symmetric M8aa , bb , cc , '<  is defined by:

(7.14)M8aa , bb , cc , '<    =   
A8aa , bb , cc , '<ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a! b! c! '

 .

mathStatica  provides  a  function  to  express  monomial  symmetric  functions  in  terms  of

power sums. Here is M83, 23 < :
MonomialToPowerSum@83, 23<D
M83,2,2,2< Ø

1
ÅÅÅÅ6 s2

3 s3 -
1
ÅÅÅÅ2 s2 s3 s4 -

1
ÅÅÅÅ2 s2

2 s5 +
s4 s5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 +

s3 s6ÅÅÅÅÅÅÅÅÅÅÅÅÅ3 + s2 s7 - s9

È Power Sums to Augmented Symmetrics

The  mathStatica  function  PowerSumToAug  converts  products  of  power  sums  into

augmented symmetric functions. For instance, to find s1  s2
3  in terms of A8< :

PowerSumToAug@81, 2, 2, 2<D
s1 s2

3 Ø A87< + 3 A84,3< + 3 A85,2< + A86,1< + 3 A83,2,2< + 3 A84,2,1< + A82,2,2,1<
Here  is  an  example  with  weight  20  and  order  20.  It  takes  less  than  a  second  to  find  the

solution, but many pages to display the result:

PowerSumToAug@8120<D; êê Timing

80.93 Second, Null<
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Like  most  other  converter  functions,  these  functions  also  allow  one  to  specify  ones  own

notation. Here, we keep fsX to denote power sums, but change the A8<  terms to l8< :
PowerSumToAug@83, 2, 3<, s, lD
s2 s3

2 Ø l88< + 2 l85,3< + l86,2< + l83,3,2<

È A Fundamental Expectation Result

A fundamental expectation result (Stuart and Ord (1994), Section (12.5)) is that

(7.15)E@A8a, b, c, '< D = m
£

a  m
£

b  m
£

c  � ä n Hn - 1L� Hn - r + 1L
where, given At ,  the symbol  r  denotes the number  of elements  in the list t.  This result  is

important  because  it  lies  at  the  very  heart  of  both  the  unbiased  estimation  of  population

moments,  and  the  moments  of  moments  literature  (see §7.4 B and  C below).  As a simple

illustration,  suppose  we want  to prove  that m
£

r  is an unbiased estimator  of m
£

r  (7.4): to do

so, we first express m
£

r = srÅÅÅÅÅÅ
n

= A8r<ÅÅÅÅÅÅÅÅÅÅÅ
n

  so that we have an expression  in A8r< , and then apply

(7.15) to yield EAm£ r E = 1ÅÅÅÅ
n

 E@A8r< D = m
£

r .

We can implement (7.15) in Mathematica as follows:

ExpectAug@t_D :=

IThreadAm
£
tE ê. List Ø TimesM 0

i=0

Length@tD-1 Hn - iL
Thus, the expectation of say A82, 2, 3<  is given by:

ExpectAug@82, 2, 3<D
H-2 + nL H-1 + nL n m

£
2

2
m
£
3

�  Example 15:  An Unbiased Estimator of m
£

3  m
£

4

In Example  6,  we found an unbiased  estimator  of m
£

3  m
£

4  by converting  to cumulants,  and

then finding an unbiased estimator for each cumulant by using polykays. It is much easier

to  apply  the  expectation  theorem (7.15)  directly,  from  which  it  follows  immediately  that

an unbiased estimator of m
£

3  m
£

4  is 
A83, 4<ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
nHn-1L , where A83, 4<  is given by:

AugToPowerSum@83, 4<D
A83,4< Ø s3 s4 - s7

as we found in Example 6. !
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7.4 B Application 1: Understanding Unbiased Estimation
Augmented Symmetrics Ø Power Sums

Let  us  suppose  that  we  wish  to  find  an  unbiased  estimator  of  k2  k1  k1  from  first

principles. Now, k2  k1  k1  can be written in terms of raw moments:

z1 = Times üü
Map@CumulantToRaw@#DP2T &, 82, 1, 1<D êê Expand

-m
£
1

4
+ m

£
1

2
m
£
2

We have  just  found  the  coefficients  of  the  polykay  k82, 1, 1<  in  terms  of  so-called  Wishart

Tables  (see  Table  1  of  Wishart  (1952)  or  Appendix  11  of  Stuart  and  Ord  (1994)).  To

obtain  the  inverse  relation  in  such  tables,  use  RawToCumulant  instead  of

CumulantToRaw.  In  ListForm  notation  (noting  that  the  order  of  the  terms  is  now

reversed), we have:

z2 = ListFormAz1, m
£ E

m
£ @81, 1, 2<D - m

£ @81, 1, 1, 1<D
By the fundamental expectation result (7.15), an unbiased estimator of z1 (or z2) is:

z3 = z2 ê. m
£@x_D ß

AugToPowerSum@xDP2T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ¤i=0

Length@xD-1 Hn - iL êê Factor

-s14 + 3 s12 s2 + n s12 s2 - n s22 - 2 s1 s3 - 2 n s1 s3 + 2 n s4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-3 + nL H-2 + nL H-1 + nL n

This result is identical to PolyK[{2,1,1}], other than the ordering of the terms.

7.4 C Application 2: Understanding Moments of Moments
Products of Power Sums Ø Augmented Symmetrics

We wish to find an exact method for  finding moments of sampling  distributions  in terms

of  population  moments,  which  is  what  the  moments  of  moments  functions  do,  but  now

from first principles.  Equation (7.15) enables one to find the expectation of a moment, by

implementing the following three steps:

(i) convert that moment into power sums, 

(ii) convert the power sums into augmented symmetrics, and 

(iii) then apply the fundamental expectation result (7.15) using ExpectAug.

For example, to find E@m4 D, we first convert m4  into power sums si :

m4 = SampleCentralToPowerSum@4DP2T
-
3 s14ÅÅÅÅÅÅÅÅÅÅÅ
n4

+
6 s12 s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n3

-
4 s1 s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n2

+
s4ÅÅÅÅÅÅÅ
n
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Then, after converting into ListForm, convert into augmented symmetrics:

z1 = ListForm@m4, sD ê. s@x_D ß PowerSumToAug@xDP2T
A84<ÅÅÅÅÅÅÅÅÅÅÅ
n

-
4 HA84< + A83,1<LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n2
+
6 HA84< + A82,2< + 2 A83,1< + A82,1,1<LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n3
-

3 HA84< + 3 A82,2< + 4 A83,1< + 6 A82,1,1< + A81,1,1,1<LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n4

We can now apply the fundamental expectation result (7.15):

z2 = z1 ê. At_ ß ExpectAug@tD êê Simplify

-
1

ÅÅÅÅÅÅÅ
n3

 JH-1 + nL J3 H6 - 5 n + n2L m
£
1

4
- 6 H6 - 5 n + n2L m

£
1

2
m
£
2 +

H9 - 6 nL m
£
2

2
+ 4 H3 - 3 n + n2L m

£
1 m

£
3 - H3 - 3 n + n2L m

£
4NN

This  output  is  identical  to  that  given  by  RawMomentToRaw[1,m4],  except  that  the

latter does a better job of ordering the terms of the resulting polynomial.

7.5 Exercises
1. Which of the following are rational, integral, algebraic symmetric functions? 

(i) 
i=1

n

Xi
2    (ii) 

ikjjjji=1

n

X i

y{zzzz
2

   (iii) 1ÅÅÅÅÅ
n 

i=1

n HXi - X
êêêL2  (iv)  $%%%%%%%%%%%%%%%%%%%%%%%%%%%

i=1

n HXi - X
êêêL2

(v) h2  m3
2    (vi) h2 êm3

2    (vii) h2 + m3
2    (viii) "############h2  m3

2

2. Express each of the following in terms of power sums:

(i) 
i=1

n

Xi
4  (ii) 

ikjjjji=1

n

X i

y{zzzz
2

   (iii)  m3 = 1ÅÅÅÅÅ
n 

i=1

n HXi - X
êêêL3    

(iv) k4  m2
3    (v)  Hh3 - 5L2  (vi) 

i=1

n IH Xi - X
êêê L3  H Yi - Y

êêê L2 M
3. Find  an  unbiased  estimator  of:    (i) m3     (ii)  m3

2  m2     (iii)  k13  Ã     (iv)  the  sixth

factorial moment. Verify that each solution is, in fact, an unbiased estimator.

4. Solve the following: (i) VarHm4 L  (ii) EA
i=1

n

Xi
2 E  (iii)  E

Ä
ÇÅÅÅÅÅÅÅÅÅikjjjji=1

n

X i

y{zzzz
2 ÉÖÑÑÑÑÑÑÑÑÑ    

(iv) k4 Hk2 L  (v)  m3, 2 Hh2 , h3 L.
5. Let HX1 , ', Xn L denote a random sample of size n drawn from X ~ LognormalHm, sL.

Let Y = 
i=1

n

X i . Find the first 4 raw moments of Y .

6. Find  the  covariance  between  1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn - 1 
i=1

n HXi - X
êêêL2   and   1ÅÅÅÅÅn  

i=1

n

Xi .  What  can  be  said

about the covariance if the population is symmetric?
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Chapter 8
Asymptotic Theory

8.1 Introduction
Asymptotic  theory is often used to justify the selection of particular estimators. Indeed,  it
is commonplace in modern statistical practice to base inference upon a suitable asymptotic
theory.  Desirable  asymptotic  properties! consistency  and  limiting  Normality! can
sometimes  be  ascribed  to  an  estimator,  even  when  there  is  relatively  little  known,  or
assumed  known,  about  the  population  in  question.  In  this  chapter,  we  focus  on  both  of
these properties in the context of the sample mean,

X
êêê

n = 1ÅÅÅÅÅn  
i=1

n
Xi

and the sample sum,

Sn = 
i=1

n
Xi

where  symbol  n  denotes  the sample  size.  We have especially attached n  as  a subscript  to
emphasise  that X

êêê
n  and Sn  are random variables that depend on n.  In subsequent  chapters,

we shall examine the asymptotic properties of estimators with more complicated structures
than X

êêê
n  and Sn .  Our discussion  of asymptotic theory centres  on asking:  What  happens to

an estimator (such as the sample mean) as n becomes large (in fact, as n Ø �)? Thus, our
presentation of asymptotic theory can be viewed as a theory relevant to increasing sample
sizes.  Of course, we require that  the random variables used to form X

êêê
n  and Sn  must  exist

at each and every value of n. Accordingly, for an asymptotic theory to make sense, infinite-
length  sequences  of  random variables  must  be allowed  to exist.  For example, for  X

êêê
n  and

Sn , the sequence of underlying random variables would be

X1 , X2 , L, Xi , Xi+1 , L = Xn n=1
� .

Throughout  this chapter,  apart  from one or two exceptions,  we shall  work with examples
dealing  with  the  simplest  of  cases;  namely,  when  all  variables  in  the  sequence  are
independent  and  identically  distributed.  Our  treatment  is  therefore  pitched  at  an
elementary level.



The  asymptotic  properties  of  consistency  and  asymptotic  normality  are  due  to,
respectively,  the  concepts  of  convergence  in  probability  (§8.5)  and  convergence  in
distribution  (§8.2).  Moreover,  these  properties  can  often  be  established  in  a  variety  of
situations  through  application  of  two  fundamental  theorems  of  asymptotic  theory:
KhinchineRs Weak Law of Large Numbers and Lindeberg>LévyRs Central Limit Theorem.

The  Mathematica  tools  needed  in  a  chapter  on  asymptotic  theory  depend,  not
surprisingly,  in large  part  on  the  built-in  Limit  function;  however,  we will  also  use the
add-on  package  Calculus`Limit`.  The  add-on  removes  and  replaces  the  built-in
Limit  function  with  an  alternate  algorithm  for  computing  limits.  As  its  development
ceased a few years ago, we would ideally prefer to ignore this package altogether and use
only  the  built-in  Limit  function,  for  the  latter  is  subject  to  ongoing  research  and
development.1  Unfortunately,  the  world  is  not  ideal!  The  built-in  Limit  function  in
Version  4  of  Mathematica  is  unable  to  perform  some  limits  that  are  commonplace  in
statistics,  whereas  if  Calculus`Limit`  is  implemented,  a  number  of  these  limits  can
be  computed  correctly.  The  solution  that  we  adopt  is  to  load  and  unload  the  add-on  as
needed.  To  illustrate  our  approach,  consider  the  following  limit  (see  Example  2)  which
cannot be solved by built-in Limit (try it and see!):

limnØ�  Binomialn, x  qÅÅÅÅÅn x 1 - qÅÅÅÅÅn n - x
.

With Calculus`Limit` loaded, a solution to the limit is reported. Enter the following:

<< Calculus`Limit`

LimitABinomial@n, xD J q
ÅÅÅÅ
n
Nx J1 -

q
ÅÅÅÅ
n
Nn - x

, n Ø �E;
Unprotect@LimitD; Clear@LimitD;

The limit is computed correctly!we suppress the output  here!what  is important  to see
is the procedure for loading and unloading the Calculus`Limit` add-on.

Asymptotic  theory  is  so  widespread  in  its  application  that  there  is  already  an
extensive field of literature in probability and statistics that contributes to its development.
Accordingly,  we  shall  cite  only  a  select  collection  of  works  that  we have  found  to be  of
particular  use  in  preparing  this  chapter:  Amemiya  (1985),  Bhattacharya  and  Rao  (1976),
Billingsley  (1995),  Chow  and  Teicher  (1978),  Hogg  and  Craig  (1995),  McCabe  and
Tremayne (1993) and Mittelhammer (1996).

8.2 Convergence in Distribution

The  cumulative  distribution  function  (cdf)  has  three  attractive  properties  associated  with
it,  namely (i)  all  random variables  possess  a cdf,  (ii)  the  cdf  has  a  range  that  is  bounded
within  the  closed  unit  interval  [0,1],  and  (iii)  the  cdf  is  monotonic  increasing.  So  when
studying the behaviour of a sequence of random variables, we may, possibly just as easily,
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consider  the  behaviour  of  the  infinite  sequence  of  associated  cdfRs.  This  leads  to  the
concept of convergence in distribution, a definition of which follows.

Let  the  random variable  Xn  have  cdf  Fn  at  each  value  of  n = 1, 2, L .  Also,  let  the
random variable X  have  cdf F,  where X  and  F  do not  depend upon  n. If it  can be shown
that

(8.1)lim nØ� Fn x = Fx
for  all points x  at which Fx is continuous,  then Xn  is said to converge in distribution  to
X.2 A common notation to denote convergence in distribution is

(8.2)Xn  ö
d

 X.

F is termed the limit distribution of Xn .

�  Example 1:  The Limit Distribution of a Sample Mean

In this example, the limiting distribution of the sample mean is derived, assuming that the
population from which random samples are drawn is N0, 1. For a random sample of size
n,  the  sample  mean  X

êêê
n ~ N0, 1ÅÅÅÅÅn   (established  in  Example  24  of  Chapter  4).  Therefore,

the pdf and support of X
êêê

n  are:

f =
'- x

ê2
ÅÅÅÅÅÅÅÅ
2ên

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!
2 p ê n ; domain@fD = 8xê, -�, �< && 8n > 0<;

while the cdf (evaluated at a point x) is:

Fn = Prob@x, fD
1
ÅÅÅÅ
2

ikjjj1 + ErfA è!!!n x
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 Ey{zzz

The  limiting  behaviour  of  the  cdf  depends  on  the  sign  of  x.  Here,  we  evaluate
lim nØ� Fn x when x is negative (say x = -1), zero, and positive (say x = 1):

<< Calculus`Limit`

Limit@Fn ê. x Ø 8-1, 0, 1<, n Ø �D
Unprotect@LimitD; Clear@LimitD;
90, 1

ÅÅÅÅ
2
, 1=

The left-hand side of (8.1) is, in this case, a step function with a discontinuity at the origin,
as the left panel of Fig. 1 shows.
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x

0.5
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Limit cdf of X

êêê
n

x

0.5

1
cdf of X

Fig. 1:  Limit cdf of X
êêê

n , and cdf of X

Now consider a random variable X whose cdf evaluated at a point x is given by

Fx =  0 if x < 0
1 if x ¥ 0

Comparing the graph of the cdf of X (given in the right panel of Fig. 1) to the graph of the
limit  of  the cdf of  X

êêê
n ,  we  see that  both  are identical at  all  points  apart  from when x = 0.

However,  because  both  graphs  are  discontinuous  at  x = 0,  it  follows  that  definition  (8.1)
holds, and so

X
êêê

n ö
d

 X.

F  is  the limiting  distribution  function of  X
êêê

n .  Now,  focusing  upon  the  random variable  X
and  its cdf  F,  notice  that F  assigns  all  probability  to a single  point at  the origin. Since X
takes only one value, 0, with probability one, then X  is a degenerate random variable, and
F  is termed a degenerate distribution.  This is one instance where the limiting distribution
provides information about the probability space of the underlying random variable. !

�  Example 2:  The Poisson as the Limit Distribution of a Binomial

It  is  sometimes  possible  to  show  convergence  in  distribution  by  deriving  the  limiting
behaviour  of  functions  other  than  the  cdf,  such  as  the  pdf/pmf,  the  mgf,  or  the  cf.  This
means  that  convergence  in  distribution  becomes  an  issue  of  convergence  of  an  infinite-
length sequence of pdf/pmf, mgf, or cf.

In  this  example,  convergence  in  distribution  is  illustrated  by  deriving  the  limit  of  a
sequence  of  pmf.  Recall  that  the  Binomialn, p  distribution  has  mean  n p.  Suppose  that
Xn ~ Binomialn, q n  (then  0 < q < n);  furthermore,  assume  that  q  remains  finite  as  n
increases.  To  interpret  the  assumption  on  q,  note  that  EXn  = n q n = q;  thus,  for  every
sample size n, the mean remains fixed and finite at the value of q. Let f  denote the pmf of
Xn . Then:

f = Binomial@n, xD J q
ÅÅÅÅ
n
Nx J1 -

q
ÅÅÅÅ
n
Nn - x

;

domain@fD =8x, 0, n< && 80 < q < n, n > 0, n + Integers< && 8Discrete<;
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<< Calculus`Limit`
Limit@f, n Ø �D
Unprotect@LimitD; Clear@LimitD;

#-q qx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@1 + xD

Because  G1 + x = x!  for  integer  x ¥ 0,  this  expression  is  equivalent  to  the  pmf  of  a
variable which is Poisson distributed with parameter q. Therefore, under our assumptions,

Xn  ö
d

 X ~ Poissonq.
The limiting distribution of the Binomial random variable Xn  is thus Poisson(q). �

�  Example 3:  The Normal as the Limit Distribution of a Binomial

In  the  previous  example,  both  the  limit  distribution  and  the  random  variables  in  the
sequence  were defined  over a discrete  sample  space.  However,  this  equivalence need not
always  occur:  the  limit  distribution  of  a  discrete  variable  may  be  continuous,  or  a
continuous  random  variable  may  have  a  discrete  limit  distribution,  as  seen in  Example  1
(albeit that it was a degenerate limit distribution).

In  this  example,  convergence  in  distribution  is  illustrated  by  deriving  the  limit  of  a
sequence of moment generating functions (mgf). Suppose that Xn ~ Binomialn, q, where
0 < q < 1.  Unlike  the  previous  example  where  the  probability  of  a  isuccessR  diminished
with n,  in this  example  the probability  stays fixed  at q  for  all  n.  Let  f  once again denote
the pmf of Xn :

f = Binomial@n, xD qx H1 - qLn - x;
domain@fD =8x, 0, n< && 80 < q < 1, n > 0, n + Integers< && 8Discrete<;

Then, the mgf of Xn  is derived as:

mgfX = Expect@'t x, fD
H1 + H-1 + #tL qLn

Now consider the standardised random variable Yn  defined as

Yn =
Xn - EXnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVarXn   =  

Xn - n qÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn q1-q .

Yn  necessarily has  a mean of 0 and a variance of 1. The mgf of Yn  can be obtained using
the MGF Theorem (§2.4 D), setting a and b in that theorem equal to:
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a =
- n q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!
n q H1 - qL ; b =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!
n q H1 - qL ;

to find:

mgfY = 'a t  HmgfX ê. t Ø b tL
#

- n t qÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!n H1-qL q I1 + I-1 + #
tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!n H1-qL q M qMn

Executing built-in Limit, we find the limit mgf of the infinite sequence of mgfRs equal to:

Limit@mgfY, n Ø �D
#

t2ÅÅÅÅÅÅ2

As this last expression is equivalent to the mgf of a N0, 1 variable, it follows that

Yn  ö
d

 Z ~ N0, 1.
Thus,  the limiting distribution of a standardised Binomial  random variable is the standard
Normal distribution. !

8.3 Asymptotic Distribution
Suppose,  for  example,  that  we  have  established  the  following  limiting  distribution  for  a
random variable Xn :

(8.3)Xn  ö
d

 Z ~ N0, 1.
Let  n*  denote  a  fixed  and  finite  sample  size;  for  example,  n*  might  correspond  to  the
sample  size of the data set with which we are working.  In the absence of any  knowledge
about the exact distribution of Xn , it makes sense to use the limiting distribution of Xn  as
an approximation  to the distribution  of Xn* ,  for if  n*  is sufficiently large,  the discrepancy
between  the  exact  distribution  and  the  posited  approximation  must  be small  due to  (8.3).
This  approximation  is  referred  to  as  the  asymptotic  distribution.  A  commonly  used
notation for the asymptotic distribution is

(8.4)Xn* ~a N0, 1
which reads literally as ithe asymptotic distribution of Xn*

 is N0, 1R, or ithe approximate
distribution of Xn*  is N0, 1R.

Of course, the variable that is of interest to us need not necessarily be Xn* . However,
if  we  know the  relationship  between  Xn*  and  the  variable  of  interest,  Yn*  say,  it  is  often
possible  to  derive  the  asymptotic  distribution  for  the  latter.  For  example,  if
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Yn* = m + s Xn* , where m 2 ! and s 2 !+ , then the asymptotic distribution of Yn*  may be
obtained directly from (8.4) using the properties of the Normal distribution:

Yn* ~a Nm, s2 .
As  a  second  example,  suppose  that  Wn*  is  related  to  Xn*  by  the  transformation

Wn* = Xn*

2 .  Once again,  the asymptotic  distribution  of Wn*  may be deduced  by using the
properties of the Normal distribution:

Wn* ~a Chi-squared1.
Typically,  the distinction  between arbitrary  n  and  a specific  value n*  is  made implicit  by
dropping the * subscript. We too shall adopt this convention from now on.

�  Example 4:  The Asymptotic Distribution of a Method of Moments Estimator

Let X ~ Chi-squaredq,  where q 2 !+  is unknown. Let X1 , X2 , L, Xn  denote  a random
sample of size n drawn on X. The method of moments  (§5.6) estimator  of q is the sample
mean X

êêê
n . Further, let Zn  be related to X

êêê
n  by the following location shift and scale change,

(8.5)Zn = X
êêê

n - qÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 q  n

Since it can be shown that Zn ö
d

Z ~ N0, 1, it follows that the asymptotic distribution of
the estimator is

                                                          X
êêê

n  ~a Nq, 2 qÅÅÅÅÅÅÅÅÅn . !

È van Beek Bound

One  way  to  assess  the  accuracy  of  the  asymptotic  distribution  is  to  calculate  an  upper
bound on the approximation error of its cdf. Such a bound has been derived by van Beek,3
and  generally  applies  when  the limiting  distribution  is the standard  Normal.  The relevant
result is typically expressed in the form of an inequality.

Let W1 , L, Wn  be a set of n  independent variables, each with zero mean and finite
third absolute moment. Define

(8.6)

m2 =  1ÅÅÅÅÅn  
i=1

n
EWi

2 
m3

+ =  1ÅÅÅÅÅn  
i=1

n
E  Wi 3 

B =  1ÅÅÅÅÅÅÅÅÅÅÅÅn  0.7975 m3
+ m2

-32
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and let

W* = W
êêê

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2  n

where W
êêê

 denotes the sample mean 1ÅÅÅÅn  i=1
n Wi . Then van BeekRs inequality holds for all w*

in the support of the variable W* , namely,

(8.7) Fn w* - Fw*   § B

where Fn w*  is the cdf of W*  evaluated at w* ,  and Fw*  is the cdf of a N0, 1 variable
evaluated at the same point.4 Some features of this result that are worth noting are: (i) the
variables W1 , L, Wn  need not be identically distributed,  nor does their distribution need
to be specified; (ii) van BeekRs bound B decreases as the sample size increases, eventually
reaching zero in the limit; and (iii) if W1 , L, Wn  are identical in distribution to a random
variable W, then m2 = EW2  = VarW and m3

+ = E  W 3 . These simplifications  will be
useful in the next example.

�  Example 5:  van BeekRs Bound for the Method of Moments Estimator

We shall derive van BeekRs bound B on the error induced by using the N0, 1 distribution
to approximate the distribution of Zn , where Zn  is the scaled method of moments estimator
given  in (8.5)  in Example  4.  Recall  that  Zn = Xêêê

n - q 2 q n ,  where  X
êêê

n  is  the sample
mean  of  n  independent  and  identically  distributed  Chi-squaredq  random variables,  each
with pdf f x:

f =
xqê2 - 1 '-xê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@q ê 2D 2qê2 ; domain@fD = 8x, 0, �< && 8q > 0<;

Note that van BeekRs bound assumes a zero mean, whereas X  has mean q. To resolve this
difference,  we  shall  work  about  the  mean  and  take  W = X - q.  We  now  derive
m2 = EW2 :

w = x - q; m2 = Expect@w2, fD
2 q

To derive m3
+ = E  W 3  = E  X - q 3 , note that Mathematica has difficulty integrating

expressions with absolute values. Fortunately, mathStatica allows us to replace  W  with
an If[] statement. The calculation takes about 30 seconds on our reference machine:5

m3
+ = Expect@ If@x < q, -w, wD3, fD

q
ikjjj-8 +

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@4 + qÅÅÅ2 D  IH2 #L-qê2 q

4+qÅÅÅÅÅÅÅÅ2 H6 + qL
I2 + q + #qê2 q ExpIntegralEA-2 -

q
ÅÅÅÅ
2
, q

ÅÅÅÅ
2
EMMy{zzz

284 CHAPTER  8 §8.3 



Since m2 = 2 q, we have

Zn = X
êêê

n - qÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 q  n
= W

êêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m2  n
= W*

allowing us to apply van BeekRs bound (8.7):

B =
0.7975
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

n
 

m3
+

ÅÅÅÅÅÅÅÅÅÅÅ
m2
3ê2 ;

which depends on q and n. To illustrate, we select a sample size of n = 20 and set q = 1, to
find:

B ê. 8n Ø 20, q Ø 1< êê N

0.547985

At our chosen point, van BeekRs bound is particularly large, and so will not be of any real
use  in  judging  the  effectiveness  of  the  asymptotic  distribution  in  this  case.  Fortunately,
with  mathStatica,  it  is  reasonably  straightforward  to  evaluate  the  exact  value  of  the
approximation  error by computing the left-hand side of (8.7). Recalling that Sn = i=1

n Xi ,
we have

Fn w*  =   PZn § w* 
=   P n-1  Sn - qÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 q  n

§ w*
=   PSn § w*  

2 q n + n q.
Example  23  of  Chapter  4  shows  that  the  random  variable  Sn ~ Chi-squaredn q.  Its  pdf
gsn  is thus:

g =
sn

n qÅÅÅÅÅÅÅ2 -1 '- snÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

n qÅÅÅÅÅÅÅ2  G@ n qÅÅÅÅÅÅ
2

D ; domain@gD = 8sn, 0, �< && 8q > 0, n > 0<;
Then, Fn w*  is:

Fn = ProbAw*  
è!!!!!!!!!!!
2 q n + n q, gE

1 -
GammaA n qÅÅÅÅÅÅ2 , n qÅÅÅÅÅÅ2 +

è!!!!!!!n q w*ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!2 E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@ n qÅÅÅÅÅÅ2 D
After  evaluating  Fw*,  we  can  plot  the  actual  error  caused  by  approximating  Fn  with  a
Normal distribution, as shown in Fig. 2.
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Fig. 2:  Actual approximation error (n = 20, q = 1) in absolute value  �

It  is easy to see  from this diagram that  at  our selected  values of n  and  q,  the discrepancy
(in  absolute  value)  between the exact  cdf  and the cdf  of the asymptotic  distribution  is no
larger  than  approximately  0.042.  This  is  considerably  lower  than  the  reported  van  Beek
bound  of  approximately  0.548.  The  error  the  asymptotic  distribution  induces  is
nevertheless  fairly substantial in this case. Of course, as sample size increases, the size of
the error must decline. !

8.4 Central Limit Theorem
§8.2  discussed  the  convergence  in  distribution  of  a  sequence  of  random  variables  whose
distribution  was  known.  In  practice,  such  information  is  often  not  available,  thus
jeopardising the derivation of the limiting distribution. In such cases, if the variables in the
sequence are used to form sums and averages, such as Sn  and X

êêê
n , the limiting distribution

can  often  be  derived  by  applying  the  famous  Central  Limit  Theorem.  Since  many
estimators  are  functions  of  sums  of  random  variables,  the  Central  Limit  Theorem  is  of
considerable  importance  in statistics.  See  Le  Cam (1986)  for  an interesting  discussion  of
the history of the Central Limit Theorem.

We consider random variables constructed in the following manner,

(8.8)Sn - anÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅbn

where  an n=1
�  and  bn n=1

�  represent  sequences  of  real  numbers.  The  random  variables
appearing  in  the  sum  Sn ,  namely,  Xi i=1

n ,  are  the  first  n  elements  of  the  infinite-length
sequence Xn n=1

� . If we set

(8.9)an = 
i=1

n
EXi  and bn

2 = 
i=1

n
VarXi 
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then  (8.8)  would  be  a  standardised  random  variable! it  has  mean  0  and  variance  1.
Notice  that  this  construction  necessarily  requires  that  the  mean  and  variance  of  every
random  variable  in  the  sequence  Xnn=1

�  exists.  The  Central  Limit  Theorem  states  the
conditions for Xn , an  and bn  in order that

(8.10)Sn - anÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅbn
 ö

d
 Z

for some random variable Z. We shall only consider cases for which Z ~ N0, 1.
We present the Lindeberg>Lévy version of the Central Limit Theorem, which applies

when the variables Xnn=1
�  are mutually independent  and identically distributed  (iid). The

LindeberglLévy  version  is  particularly  relevant  for  determining  asymptotic  properties  of
estimators  such as X

êêê
n ,  where X

êêê
n  is constructed from size n  random samples collected  on

some variable which we may label X. Assuming that EX = m and VarX = s2 , under the
iid assumption, each variable in Xn n=1

�  may be viewed as a copy of X.  Hence EXi  = m
and VarXi  = s2 . The constants in (8.9) therefore become

an = n m and bn
2 = n s2

and the theorem states the conditions that m and s2  must satisfy in order that the limiting
distribution of Sn - n m n s2  is Z ~ N0, 1.
Theorem  (Lindeberg>Lévy):  Let  the  random  variables  in  the  sequence  Xn n=1

�  be
independent  and  identically  distributed,  each  with  finite  mean  m  and  finite  variance  s2 .
Then the random variable

(8.11)
Sn -  n mÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s
n

converges in distribution to a random variable Z ~ N0, 1.
Proof:  See, for example, Mittelhammer (1996, p.270).

The strength  of  the  Central  Limit  Theorem  is  that  the  distribution  of  X  need not  be
known.  Of  course,  if  X ~ Nm, s2 ,  then  the  theorem  holds  trivially,  since  the  sampling
distribution  of  the  sample  sum  is  also  Normal.  On  the  other  hand,  for  any  non-Normal
random  variable  X  that  possesses  a  finite  mean  and  variance,  the  theorem  permits  us  to
construct  an  approximation  to  the  sampling  distribution  of  the  sample  sum  which  will
become increasingly accurate with sample size. Thus, for the sample sum,

(8.12)Sn ~a Nn m, n s2 
and, for the sample mean,

(8.13)X
êêê

n ~a Nm, s2
ÅÅÅÅÅÅÅÅÅÅn .
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�  Example 6:  The Sample Mean and the Uniform Distribution

Let X ~ Uniform0, 1, the Uniform distribution on the interval 0, 1. Enter its pdf f x as:

f = 1; domain@fD = 8x, 0, 1<;
The mean m and the variance s2  of X are, respectively:

Expect@x, fD
1
ÅÅÅÅ
2

Var@x, fD
1

ÅÅÅÅÅÅÅ
12

Let  X
êêê

3  denote  the  sample  mean  of  a  random  sample  of  size  n = 3  collected  on  X.
Now suppose, for some reason, that we wish to obtain the probability:

p = P 1ÅÅÅÅÅ6 < X
êêê

3 < 5ÅÅÅÅÅ6 .
As  the  conditions  of  the  Central  Limit  Theorem are  satisfied,  it  follows  from (8.13)  that
the asymptotic distribution of X

êêê
3  is:

X
êêê

3 ~a N 1ÅÅÅÅÅ2 , 1ÅÅÅÅÅÅÅÅ36 .
We  may  therefore  use this  asymptotic  distribution  to find  an approximate  solution  for  p.
Let gxêê denote the pdf of the asymptotic distribution:

g =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 '- Hxê - mL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2 ê. 9m Ø

1
ÅÅÅÅ
2
, s Ø

1
ÅÅÅÅ
6
=;

domain@gD = 8xê, -�, �<;
Then p is approximated by:

ProbA 5
ÅÅÅÅ
6
, gE - ProbA 1

ÅÅÅÅ
6
, gE êê N

0.9545

Just  as  we  were  concerned  about  the  accuracy  of  the  asymptotic  distribution  in
Example  5,  it  is  quite  reasonable  to  be  concerned  about  the  accuracy  of  the  asymptotic
approximation for the probability that we seek; after all, a sample size of n = 3 is far from
large!  Generally  speaking,  the  answer  to  iHow  large  does  n  need  to  be?R  is  context
dependent.  Thus,  our  answer  when  X ~ Uniform0, 1  may  be  quite  inadequate  under
different distributional assumptions for X.
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È Small Sample Accuracy

In  this  subsection,  we  wish  to  compare  the  exact  solution  for  p,  with  our  asymptotic
approximation  0.9545. For the exact  solution, we require the sampling distribution  of X

êêê
3 .

More generally, if X ~ Uniform0, 1, the sampling distribution of X
êêê

n  is known as BatesRs
distribution;  for  a  derivation,  see  Bates  (1955)  or  Stuart  and  Ord  (1994,  Example  11.9).
The Batesn distribution has an n-part piecewise structure:

Bates@x_, n_D := TableA9 k
ÅÅÅÅ
n

§ x <
k + 1
ÅÅÅÅÅÅÅÅÅÅÅÅ
n

,

ExpandA nn 0
i=0

k H-1Li Binomial@n, iD Hx - iÅÅÅ
n
Ln-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn - 1L!
E=,

8k, 0, n - 1<E
For instance, when n = 3, the pdf of Y = X

êêê
3  has the 3-part form:

Bates@y, 3D
i
k
jjjjjjjjjjj
0 § y < 1ÅÅÅ3

27 y2ÅÅÅÅÅÅÅÅÅÅ2
1ÅÅÅ3 § y < 2ÅÅÅ3 - 9ÅÅÅ2 + 27 y - 27 y2

2ÅÅÅ3 § y < 1 27ÅÅÅÅÅ2 - 27 y + 27 y2ÅÅÅÅÅÅÅÅÅÅ2

y
{
zzzzzzzzzzz

This means if 0 § y < 1ÅÅÅÅ3 , the pdf of Y  is given by hy = 27 y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ,  and so on. In the past,  we

have  used  If  statements  to represent  2-part  piecewise  functions.  However,  for  functions
with  at  least  three  parts,  a  Which  statement  is  required.  Given  Y = X

êêê
n ~ Batesn  with

pdf hy, we may create the Which structure as follows:

h@y_D = Which üü Flatten@Bates@y, 3DD
domain@h@yDD = 8y, 0, 1<;
WhichA0 § y <

1
ÅÅÅÅ
3
, 27 y2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

, 1
ÅÅÅÅ
3

§ y <
2
ÅÅÅÅ
3
,

-
9
ÅÅÅÅ
2

+ 27 y - 27 y2, 2
ÅÅÅÅ
3

§ y < 1, 27
ÅÅÅÅÅÅÅ
2

- 27 y +
27 y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

E
Then,  the  natural  way  to  find  p  with  mathStatica  would  be  to  evaluate
Prob@ 5ÅÅÅÅÅ6 , h[y]D - Prob@ 1ÅÅÅ6 , h[y]D.  Unfortunately,  at  present,  neither  Mathematica
nor mathStatica can perform integration on Which statements. However, implementation
of  this  important  feature  is  already  being  planned  for  version  2  of  mathStatica.
Nevertheless, we can still compute the exact value of p manually, as follows:

1
1
ÅÅÅÅ6

1
ÅÅÅÅ
3 27 y2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

 5y + 1
1
ÅÅÅÅ3

2
ÅÅÅÅ
3 ikjj-

9
ÅÅÅÅ
2

+ 27 y - 27 y2y{zz 5y + 1
2
ÅÅÅÅ3

5
ÅÅÅÅ
6 ikjjjj 27

ÅÅÅÅÅÅÅ
2

- 27 y +
27 y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

y{zzzz 5y

23
ÅÅÅÅÅÅÅ
24
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where  23 24 > 0.958333.  By  contrast,  the  approximation  based  on  the  asymptotic
distribution  was  0.9545.  Thus,  asymptotic  theory  is  doing  fairly  well  here! especially
when we remind ourselves that the sample size is only three! Figure 3 illustrates the pdf of
X
êêê

3 ,  which  certainly  has  that  nice  ibell-shapedR  look  associated  with  the  Normal
distribution.

PlotDensity@h@yDD;

0.2 0.4 0.6 0.8 1
y

0.5

1

1.5

2

hy

Fig. 3:  Density of X
êêê

3  o the Bates(3) distribution

Next,  we  examine  the  approximation  provided  by  the  cdf  of  the  asymptotic  N0, 1
distribution.  In Example  5,  a  similar  exercise  was  undertaken  using  the van  Beek  bound,
as well as plotting the absolute difference of the exact to the asymptotic distribution. This
time, however, we shall take a different route. We now conduct a Monte Carlo exercise to
compare  an  artificially  generated  distribution  with  the  asymptotic  distribution.  To  do  so,
we  generate  a  pseudo-random  sample  of  size  n = 3  from  the  Uniform0, 1  distribution
using MathematicaRs internal pseudo-random number generator:  Random[]. The sample
mean  X

êêê
3  is  then  computed.  This  exercise  is  repeated  T = 2000  times.  Here  then  are  T

realisations of the random variable X
êêê

3 :

realisations =

TableA Plus üü Table@Random@D, 83<D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, 82000<E;

We  now  standardise  these  realisations  using  the  true  mean  ( 1ÅÅÅÅ2 )  and  the  true  standard
deviation ( 1ÅÅÅÅ6 ):

Sdata =
realisations - 1ÅÅÅ

2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1ÅÅÅ
6

;
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We may use a quantile>quantile plot to examine the closeness of the realised standardised
sample  means to the  N0, 1  distribution.  If the  plot  lies close  to the 45°  line, it  suggests
that  the  distribution  of  the  standardised  realisations  is  close  to  the  N0, 1.  The
mathStatica function QQPlot constructs this quantilelquantile plot.

QQPlot@SdataD;
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Fig. 4:  Quantiles of X
êêê

3  against the quantiles of N0, 1
The  plotted  points  appear  slightly  S-shaped,  with  the  elongated  centre  portion  (from
values  of  about  -2  to  +2  along  the  horizontal  axis)  closely  hugging  the  45°  line.
However, in the tails of the distribution (values below -2, and above +2), the accuracy of
the  Normal  approximation  to  the  true  cdf  weakens.  The  main  reason  for  this  is  that  the
standardised statistic 6 Xêêê

3 - 1ÅÅÅÅ2  is bounded between -3 and +3 (notice that the plot stays
within this interval of the vertical axis), whereas the Normal is unbounded. Evidently, the
asymptotic distribution provides an accurate approximation except in the tails.

These  ideas  have  practical  value:  they  can  be  used  to  construct  a  pseudo-random
number  generator  for  standard  Normal  random  variables.  The  Normal  pseudo-random
number  generators  considered  previously  were  based  on  the  inverse  cdf  method  (see
§2.6 B  and  §2.6 C)  and  the  rejection  method  (see  §2.6 D).  By  appealing  to  the  Central
Limit  Theorem,  a  third  possibility  arises.  We  have  seen  that  the  cdf  of  6 Xêêê

3 - 1ÅÅÅÅ2 
performs  fairly  well  in  mimicking  the  cdf  of  the  N0, 1  distribution,  apart  from  in  the
tails.  This  suggests,  due  to  the  Central  Limit  Theorem,  that  an  increase  in  sample  size
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might  improve  tail behaviour;  in this respect,  using a sample size of n = 12 is a common
choice. When n = 12, the statistic with a limiting N0, 1 distribution is

12 Xêêê
12 - 1ÅÅÅÅ2  = S12 - 6

which  is  now  bounded  between  -6  and  +6.  The  generator  works  by  taking  12  pseudo-
random  drawings  from  the  Uniform0, 1  distribution,  and  then  subtracts  6  from  their
sum! easy!

N01RNG := Plus üü Table@Random@D, 812<D - 6

The function N01RNG returns a single number each time it is executed. For example:

N01RNG

-0.185085

The suitability of this generator can be investigated by using QQPlot.6 !

8.5 Convergence in Probability

8.5 A Introduction
For a sequence of random variables Xn n=1

� , convergence in probability is concerned with
establishing  whether  or not  the outcomes  of those  variables  become increasingly  close to
the  outcomes  of  another  random  variable  X  with  high  probability.  A  formal  definition
follows:

Let the sequence  of random variables Xn n=1
�  and the random variable X  be defined

on the same probability space. If for every � > 0,

(8.14)lim nØ�  P  Xn - X  ¥ � = 0

then Xn  is said to converge in probability to X, written Xn  ö
p

 X.

The implication of the definition is that, if indeed Xn n=1
�  is converging in probability

to  X,  then  for  a  fixed  and  finite  value  of  n,  say  n* ,  the  outcomes  of  X  can  be  used  to
approximate  the  outcomes  of  Xn* .  As  we  are  now  referring  to  outcomes  of  random
variables,  it  is necessary  to insist  that all  random variables in Xn n=1

�  be measured  in the
same  sample  space  as  X.7  This  was  not  the  case  when  we  considered  convergence  in
distribution,  for  this property  concerned  only the  cdf  function,  and  variables  measured  in
different  sample  spaces  are  not  generally  restricted  from  having  equivalent  cdfRs.
Accordingly,  convergence  in  probability  is  a  stronger  concept  than  convergence  in
distribution.
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The  following  rule  establishes  the  relationship  between  convergence  in  probability
and  convergence  in  distribution.  If  Xn  ö

p
 X,  then  it  follows  that  the  limiting  cdf  of  Xn

must be identical to that of X, and hence,

(8.15)Xn  ö
p

 X implies Xn  ö
d

 X.

On  the  other  hand,  by  the  argument  of  the  preceding  paragraph,  the  converse  is  not
generally true. The situation when the converse is true occurs only when X is a degenerate
random  variable,  for  then  convergence  in  distribution  specifies  exactly  what  that  value
must be. For a fixed constant c,

(8.16)Xn  ö
p

 X = c implies and is implied by Xn  ö
d

 X = c.

The following two examples  show the use of mathStatica  in establishing convergence  in
probability.

�  Example 7:  Convergence in Probability to a Normal Random Variable

Suppose  that  the  random variable  Xn = 1 + 1ÅÅÅÅn  X,  where  n = 1, 2, L .  Clearly,  Xn  and  X
must  lie  within  the  same  sample  space  for  all  n,  as  they  are  related  by  a  simple  scaling
transformation. Moreover, it is easy to see that  Xn - X  = 1ÅÅÅÅn  X . Therefore,

(8.17)P  Xn - X  ¥ � = P  X  ¥ n �.
For any random variable X, and any scalar a > 0, we may express the event   X  ¥ a as
the  union  of  two  disjoint  events,  X ¥ a X § -a.  Therefore,  the  occurrence
probability can be written as

(8.18)P  X  ¥ a = PX ¥ a + PX § -a.
Now  if  we  suppose  that  X ~ N0, 1,  and  take  a = n �,  the  right-hand side  of  (8.17)

becomes

1 - Fn � + F-n � = 2 1 - Fn �
where  F  denotes  the  cdf  of  X,  and  the  symmetry  of  the  pdf  of  X  about  zero  has  been
exploited. This can be entered into Mathematica as:

f =
'- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<;
sol = 2 H1 - Prob@n �, fDL êê Simplify

1 - ErfA n �
ÅÅÅÅÅÅÅÅÅè!!!2 E
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In  light of definition  (8.14),  we now show that Xn  converges  in probability to X  because
the following limit is equal to zero:

<< Calculus`Limit`

Limit@sol, n Ø �D
Unprotect@LimitD; Clear@LimitD;
0

As the  limit  of  (8.17) is  zero,  Xn  ö
p

 X.  Of course,  this  outcome should  be  immediately
obvious  by  inspection  of  the  relationship  between  Xn  and  X;  the  transforming  scalar1 + 1ÅÅÅÅn  Ø 1 as n Ø �. !

Showing  convergence  in  probability  often  entails  complicated  calculations,  for  as
definition  (8.14)  shows,  the  joint  distribution  of  the  random  variables  Xn  and  X  must
typically be known for all n. This, fortunately,  was not necessary in the previous example
because  the  relation  Xn = 1 + 1ÅÅÅÅn  X  was  known.  In  any  case,  from now  on,  our  concern
lies  predominantly  with  convergence  in  probability  to  a  constant.  Although  this  type  of
convergence  is  easier  to  deal  with,  this  does  not  mean  that  it  is  less  important.  In  fact,
when it comes to determining properties of estimators, it is of vital importance to establish
whether or not the estimator converges in probability to the (constant) parameter for which
it  is  proposed.  Under  this  scenario,  we  take  X  to  be  constant  in  (8.14).  Then  X  can  be
thought  of  as  representing  a  parameter  q,  while  Xn  may  be  viewed  as  the  estimator
proposed to estimate it. Under these conditions, if (8.14) holds, Xn  is said to be consistent
for q, or Xn  is a consistent estimator of q.

�  Example 8:  Convergence in Probability to a Constant

For  a  random  sample  of  size  n  from  a  Nq, s2   population,  the  sample  mean  X
êêê

n  is
proposed  as  an  estimator  of  q.  We  shall  show,  using  definition  (8.14),  that  X

êêê
n  is  a

consistent estimator of q; that is, we shall show, for every � > 0,

lim nØ�  P  X
êêê

n - q  ¥ � = 0.

Input into Mathematica the pdf of X
êêê

n , which we know to be exactly Nq, s2
ÅÅÅÅÅÅÅÅÅn :

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 '- Hxê - mL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2 ê. 9m Ø q, s Ø s ëè!!!!

n =;
domain@fD =8xê, -�, �< && 8q + Reals, s > 0, n > 0, n + Integers<;

Now, by (8.18),

P  X
êêê

n - q  ¥ � =  PXêêê
n - q ¥ � + PXêêê

n - q § -�
=  PXêêê

n ¥ � + q + PXêêê
n § -� + q
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which is equal to:

sol = 1 - Prob@� + q, fD + Prob@-� + q, fD êê FullSimplify

ErfcA è!!!n �
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 s

E
Taking the limit, we find:

<< Calculus`Limit`

lsol = Limit@sol, n Ø �D
Unprotect@LimitD; Clear@LimitD;
#

-� Sign@�D2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Sign@sD2 s

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�

The  output  is  not  zero  as  we  had  hoped  for,  but  if  we  apply  Simplify  along  with  the
conditions on � and s:

Simplify@lsol, 8� > 0, s > 0<D
0

Thus, X
êêê

n  ö
p

 q; that is, X
êêê

n  is a consistent estimator of q. !

8.5 B Markov and Chebyshev Inequalities 
In  the previous  example,  the  sample  mean was shown to be a  consistent  estimator  of the
population  mean  (under  Normality)  by  applying  the  definition  of  convergence  in
probability  (8.14). Essentially,  this requires deriving the cdf of the estimator,  followed by
taking  a  limit.  This  procedure  may  become  less  feasible  in  more  complicated  settings.
Fortunately,  it  is often  possible  to establish  consistency  (or  otherwise) of an estimator  by
only knowing its first two moments. This is done using probability inequalities. Consider,
initially, MarkovRs Inequality

(8.19)P  X  ¥ a § a-k E  X k 
valid for a > 0 and provided the k th  moment of X  exists. Notice that  the inequality holds
for X  having any distribution.  For a proof of MarkovRs Inequality, see Billingsley (1995).
A special case of MarkovRs Inequality is obtained by replacing  X  with  X - m , where
m = EX, and setting k = 2. Doing so yields

(8.20)P  X - m  ¥ a § a-2 EX - m2  = a-2 VarX
which is usually termed ChebyshevRs Inequality.
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�  Example 9:  Applying the Inequalities

Let  X  denote  the  number  of  customers  using  a  particular  gas  pump  on  any  given  day.
What can be said about P150 < X < 250 when it is known that:  

(i) EX = 200 and EX - 2002  = 400, and

(ii) EX = 200 and EX - 2004  = 106?

Solution (i): We have m = 200 and VarX = 400. Note that

P150 < X < 250 = P  X - 200  < 50 = 1 - P  X - 200  ¥ 50.
By ChebyshevRs Inequality (8.20), with a = 50,

P  X - 200  ¥ 50 § 400ÅÅÅÅÅÅÅÅÅÅÅÅÅ2500 = 0.16.

Thus,  P150 < X < 250 ¥ 0.84.  The  probability  that  the  gas  pump  will  be  used  by
between 150 and 250 customers each day is at least 84%.

Solution (ii): Applying MarkovRs Inequality (8.19) with X  replaced by X - 200, with a set
to 50 and k set to 4, finds

P  X - 200  ¥ 50 § 106
ÅÅÅÅÅÅÅÅÅÅÅ
504 = 0.16.

In this case, the results from (i) and (ii) are equivalent. !

8.5 C Weak Law of Large Numbers
There exist general conditions under which estimators such as X

êêê
n  converge in probability,

as  sample  size  n  increases.  Inequalities  such  as  ChebyshevRs  play  a  vital  role  in  this
respect, as we now show.

In ChebyshevRs  Inequality  (8.20), replace  X,  m  and  a  with the symbols  X
êêê

n ,  q  and �,
respectively. That is,

(8.21)P  X
êêê

n - q  ¥ � § �-2 EXêêê
n - q2 

where  we  interpret  q  to  be  a  parameter,  and  given  constant  � > 0.  Let  MSE  denote  the
expectation  on  the  right-hand  side  of  (8.21).  Under  the  assumption  that  X1 , L, Xn   is  a
random sample of size n drawn on a random variable X, it can be shown that:8

(8.22)MSE = EXêêê
n - q2 = 1ÅÅÅÅÅn EX - q2  + n-1ÅÅÅÅÅÅÅÅÅÅÅn  EX - q2 .

In  the  following example,  MSE is used  to  show that  the  sample mean  X
êêê

n  is  a  consistent
estimator of the population mean.
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�  Example 10:  Consistent Estimation

Let X ~ Uniform0, 1 with pdf:

f = 1; domain@fD = 8x, 0, 1<;
Let parameter q 2 0, 1. We may evaluate MSE (8.22) as follows:

MSE =
1
ÅÅÅÅ
n

 Expect@Hx - qL2, fD +Hn - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n
 HExpect@x, fD - qL2 êê Simplify

1
ÅÅÅÅ
4

+
1

ÅÅÅÅÅÅÅÅÅÅÅ
12 n

- q + q2

Accordingly,  the  right-hand  side  of  (8.21)  is  given  simply  by  �-2  1ÅÅÅÅ4 + 1ÅÅÅÅÅÅÅÅÅÅ12 n - q + q2  ,
when X ~ Uniform0, 1.
Taking limits of both sides of (8.21) yields

lim nØ� P  X
êêê

n - q  ¥ � § �-2  1ÅÅÅÅ4 - q + q2 .
Figure 5 plots the limit of MSE across the parameter space of q:

0.2 0.4 0.6 0.8 1
q
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0.1

0.15

0.2

0.25

Fig. 5:  Limit of MSE against q

Since  the  plot  is  precisely  0  when  q = q0 = 1ÅÅÅÅ2 ,  for  every  � > 0,  it  follows  from  the
definition  of  convergence  in  probability  (8.14)  that  X

êêê
n  ö

p
 1ÅÅÅÅ2 ,  and  ensures,  due  to

uniqueness,  that  X
êêê

n  cannot  converge  in  probability  to  any  other  point  in  the  parameter
space.  X

êêê
n  is a consistent  estimator of q0 = 1ÅÅÅÅ2 . What,  if anything, is special about 1ÅÅÅÅ2  here?

Put  simply,  EX = 1ÅÅÅÅ2 .  Thus,  the  sample  mean  X
êêê

n  is  a  consistent  estimator  of  the
population mean. !
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Example  10  is suggestive  of a more  general  result  encapsulated  in a set  of theorems
known  as  Laws  of  Large  Numbers.  These  laws  are  especially  relevant  when  trying  to
establish  consistency  of  parameter  estimators.  We  shall  present  just  one!KhinchineWs
Weak Law of Large Numbers:

Theorem (Khinchine):  Let  Xn n=1
�  be a sequence  of mutually independent  and identically

distributed random variables with finite mean m. The sample mean:

(8.23)X
êêê

n ö
p

 m.

Proof: See, for example, Mittelhammer (1996, pp. 259l260).

In KhinchineRs  theorem,  existence of a finite  variance s2  for  the random variables in the
sequence  is  not  required.  If  s2  is  known  to  exist,  a  simple  proof  of  (8.23)  is  to  use
ChebyshevRs Inequality, because EXêêê

n - m2  = VarXêêê
n  = s2

ÅÅÅÅÅÅÅÅÅn .

8.6 Exercises
1. Let  Xn ~ Bernoulli 1ÅÅÅÅ2 + 1ÅÅÅÅÅÅÅÅ2 n ,  for  n 2 1, 2, L.  Show  that  Xn  ö

d
 X ~ Bernoulli 1ÅÅÅÅ2 

using (i) the pmf of Xn , (ii) the mgf of Xn , and (iii) the cdf of Xn .

2. Let  X ~ Poissonl.  Derive  the  cf  of  Xl = X - l 
l .  Then,  use  it  to  show  that

Xl  ö
d

 Z ~ N0, 1 as l Ø �.

3. Let  X ~ Uniform0, q,  where  q > 0.  Define  X j  as  the  j th  order  statistic  from  a
random sample of size n  drawn on X, for j 2 1, L, n; see §9.4 for details  on order
statistics.  Consider  the  transformation  of  X j  to  Yj  such  that  Yj = nq - X j .  By
making  use  of  mathStaticaRs  OrderStat,  OrderStatDomain,  Transform,
TransformExtremum  and  Prob  functions,  derive  the  limit  distribution  of  Yj
when (i) j = n, (ii) j = n - 1, and (iii) j = n - 2. From this pattern, can you deduce the
limit distribution of Yn-k , where constant k is a non-negative integer k?

4. Let X ~ Cauchy, and let  X1 , L, Xn  denote a random sample of size n drawn on X.
Derive the cf of X. Then, use it to show that the sample mean X

êêê
n = 1ÅÅÅÅn  i=1

n Xi  cannot
converge in probability to a constant.

5. Let  X ~ Uniform0, p,  and  let  X1 , X2 , L, Xn   denote  a  random  sample  of  size  n
drawn  on  X.  Determine  an  and  bn  such  that  Sn - anÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅbn

 öd  Z ~ N0, 1,  where  Sn =i=1
n cosXi . Then evaluate van BeekRs bound.

6. Simulation I: At the conclusion of Example 6, the function

N01RNG := Plus üü Table@Random@D, 812<D - 6

was  proposed  as  an  approximate  pseudo-random  number  generator  for  a  random
variable X ~ N0, 1. Using QQPlot, investigate the performance of N01RNG.
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7. Simulation  II:  Let  X ~ N0, 1,  and  let  Y = X2 ~ Chi-squared1.  From the  relation
between  X  and  Y ,  it  follows  that  N01RNG2  is  an  approximate  pseudo-random
number generator for Y . That is, if

N01RNG ö
d

 X,   then   N01RNG2  ö
d

 Y .

(i) Noting  that  the  sum  of  m  independent  Chi-squared1  random  variables  is
distributed  Chi-squaredm,  propose  an  approximate  pseudo-random  number
generator for Z ~ Chi-squaredm based on N01RNG.

(ii) Provided that X and Z  are independent, T = X Z m ~ StudentRs tm. Hence,
propose  an  approximate  pseudo-random  number  generator  for  T  based  on
N01RNG, and investigate its performance when m = 1 and 10.

8. Simulation  III:  Let  W1 , W2 , L, Wm   be  mutually  independent  random  variables
such that Wi ~ Nmi , 1. Define V = i=1

m Wi
2 ~ Noncentral Chi-squared m, l, where

l = i=1
m  mi

2 .

(i) Use  the  relationship  between  V  and  Wi   to  propose  an  approximate  pseudo-
random number  generator  for  V  based  on N01RNG,  as a  Mathematica  function
of m and l.

(ii) Use N01RNG  and  DiscreteRNG  to construct  an approximate  pseudo-random
number generator for V based on the parameter-mix

Noncentral Chi-squared m, l = Chi-squared m + 2 K 
K

Poisson lÅÅÅÅÅ
2


as a Mathematica function of m and l.

9. For  a  random  variable  X  with  mean  m � 0  and  variance  s2 ,  reformulate  the
Chebyshev  Inequality  (8.20)  in  terms  of  the  relative  mean  deviationX - mÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ m  =  X - mÅÅÅÅÅÅÅÅÅÅÅÅÅm . That is, using pen and paper, show that

P  X - mÅÅÅÅÅÅÅÅÅÅÅÅÅm  ¥ b § r b-2

where b > 0, and r denotes the signal-to-noise ratio  m  s. Then evaluate r2  for the
Binomialn, p, Uniforma, b, Exponentiall and Fisher Fa, b distributions.

10. Let  X  denote  a  random  variable  with  mean  m  and  variance  s2 .  In  ChebyshevRs
Inequality,  show  (you  need  only  use  pencil  and  paper)  that  if  a ¥ 10 s,  then
P  X - m  ¥ a § 0.01.  Next,  suppose  there  is  more  known  about  X;  namely,
X ~ Nm, s2 .  By  evaluating  P  X - m  ¥ a,  show  that  the  assumption  of
Normality  has  the  effect  of  allowing  the  inequality  to  hold  over  a  larger  range  of
values for a.

11. Let  X ~ Binomialn, p,  and  let  a § b  be  non-negative  integers.  The  Normal
approximation to the Binomial is given by

Pa § X § b > Fd - Fc
where F denotes the cdf of a standard Normal distribution, and

c =
a - n p - 1ÅÅÅÅ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn p 1-p  and  d =

b - n p + 1ÅÅÅÅ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn p 1-p .
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Investigate  the  accuracy  of  the  approximation  by  plotting  the  error  of  the
approximation when a = 20, b = 80 and p = 0.1, against values of n from 100 to 500
in increments of 10.

12. Let X ~ Binomialn, p and Y ~ Poissonn p,  and let a § b  be non-negative  integers.
The Poisson approximation to the Binomial is given by

Pa § X § b > Pa § Y § b.
Investigate the accuracy of the approximation.
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Chapter 9
Statistical Decision Theory

9.1 Introduction
Statistical  decision  theory  is  an  approach  to  decision  making  for  problems  involving

random  variables.  For  any  given  problem,  we  use  the  notation  D  to  denote  the  set  that

contains  all  the  different  decisions  that  can  be  made.  There  could  be  as  few  as  two

elements in D, or even an uncountably large number of possibilities. The aim is to select a

particular  decision  from  D  that  is,  in  some  sense,  optimal.  A  wide  range  of  statistical

problems  can be tackled using  the tools  of decision theory,  including estimator  selection,

hypothesis  testing,  forecasting,  and  prediction.  For  discussion  ranging  across  different

types  of  problems,  see,  amongst  others,  Silvey  (1975),  Gourieroux  and  Monfort  (1995),

and  Judge  et  al.  (1985).  In  this  chapter,  emphasis  focuses  on  using  decision  theory  for

estimator selection.

Because the decision problem involves random variables, the impact of any particular

choice  will  be  uncertain.  We  represent  uncertainty  by  assuming  the  existence  of  a

parameter  q " Q  whose  true value q0  is  unknown.  The  decision problem is then  to select

an  estimator  from  the  set  D  whose  elements  are  the  estimators  proposed  for  a  given

problem. Our goal, therefore, is to select an estimator from D in an optimal fashion.

9.2 Loss and Risk
Optimality  in  decision  theory  is  defined  according  to  a  loss  structure,  the  latter  being  a

function  that  applies  without  variation  to  all  estimators  in  the  decision  set  D.  The  loss
function,  denoted  by  L = LIq` , qM,  measures  the  disadvantages  of  selecting  an  estimator

q
`

" D.  Loss  takes  a  single,  non-negative  value  for  each  and every  combination  of  values

of q
`

" D  and q " Q, but,  apart from that, its  mathematical  form is discretionary.  This,  for

example,  means  that  two  individuals  tackling  the  same  decision  problem,  can  reach

different  least-loss outcomes, the most likely reason being that their chosen loss functions

differ.  Moreover,  since  L  is  a  function  of  the  random  variable  q
`
,  L  is  itself  a  random

variable,  so  that  the  criterion  of  minimisation  of  loss  is  not  meaningful.  Although  we

cannot minimise loss L, we can minimise the expected loss. The expected loss of q
`
 is also

known as the risk of q
`
, where the risk function is defined as

(9.1)Rq
` HqL = EALIq` , qME



where q
`
 is a random variable with density gIq`; qM. Because the expectation is with respect

to  the  density  of  q
`
,  risk  is  a  non-random  function  of  q.  Notice  that  because  the  loss L  is

non-negative,  risk must also be non-negative. Given a particular estimator chosen from D,

we solve (9.1) to obtain its risk. As its name would suggest,  the smaller the value of risk,

the better off we are! the decision criterion is to minimise risk.1

With the aid of risk,  we now return  to the  basic question of how to choose  amongst

the estimators  in the decision set. Consider two estimators of q0 , namely,  q
`
 and q

è
, both of

which are members of a decision set D. We say that q
`
 dominates q

è
 if the risk of the former

is  no  greater  than  the  risk  of  the  latter  throughout  the  entire  parameter  space,  with  the

added proviso that the risk of q
`
 be strictly smaller in some part of the parameter space; that

is, q
`
 dominates q

è
 if

Rq
` HqL § Rq

è HqL, for all q " Q

along with

Rq
` HqL < Rq

è HqL, for some q " Q* Õ Q

where  Q*  is  a  non-null  set.  Notice  that  dominance  is  a  binary  relationship  between

estimators  in D.  This  means that if  there are d  estimators  in D,  then there are dHd - 1L ê2

dominance relations that can be tested. Once an estimator is shown to be dominated, then

we  may  rule  it  out  of  our  decision  process,  for  we  can  always  do  better  by  using  the

estimator(s)  that  dominate  it;  a dominated estimator  is termed  inadmissible.  Finally,  if an

estimator  is  not  dominated  by  any  of  the  other  estimators  in  D,  then  it  is  deemed  to  be

admissible;  an  admissible  estimator  is  eligible  to  be  selected  to  estimate  q0 .  Figure  1

illustrates these concepts.

q

Risk

R1

R2

R3

A B

C

Fig. 1:  Risk comparison
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The  decision  set  here  is  D = 9q`1 , q
`

2 , q
`

3 =,  and  the  risk  of  each  estimator  is  plotted  as  a

function  of  q,  and  is  labelled  on  each  (continuous)  line;  the  diagram  is  plotted  over  the

entire  parameter  space  Q.  The  first  feature  to  observe  is  that  the  risk  of  estimator  q
`

1

(denoted  by R1 ) is everywhere  below the risk  of q
`

2  (denoted by R2 ).  Thus, q
`

1  dominates

q
`

2  (therefore q
`

2  is inadmissible).  The next feature concerns the risk functions of q
`

1  and q
`

3

(denoted  by R3 ); they cross  at B,  and therefore  neither  estimator  dominates  the other. To

the  left  of  B,  q
`

1  has  smaller  risk  and  is  preferred  to  q
`

3 ,  whereas  to  the  right  of  B  the

ranking is reversed. It follows that both q
`

1  and q
`

3  are admissible estimators.  Of course, if

we knew (for example)  that the true parameter  value q0  lay in the region to the left of B,

then  q
`

1  is  dominant  in  D  and  therefore  preferred.  However,  generally  this  type  of

knowledge  is  not  available.  The  following  example,  based  on  Silvey  (1975,

Example 11.2), illustrates some of these ideas.

�  Example 1:  The Risk of a Normally Distributed Estimator

Suppose  that  a  random variable  X ~ NHq, 1L,  where  q " !  is  an unknown  parameter.  The

random  variable  q
`

= X + k  is  proposed  as  an  estimator  of q,  where  constant  k " !.  Thus,

the  estimate  of  q  is formed  by  adding k  to a  single  realisation  of  the  random variable  X.

The decision set, in this case, consists of all possible choices for k. Thus, D = 8k : k " !< is
a  set  with  an  uncountably  infinite  number  of  elements.  By  the  linearity  property  of  the

Normal  distribution,  it  follows  that  estimator  q
`

 is  Normally  distributed;  that  is,

q
`

~ NHq + k, 1L with pdf f Iq`; qM:
f =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 %- 1ÅÅÅÅ2  Iq
`

- Hq + kLM2 ;
domain@fD = 9q

`
, -�, �= && 8-� < q < �, -� < k < �<;

Let c1 " !+  and c2 " !+  be two constants chosen by an individual, and suppose that

the loss structure specified for this problem is

(9.2)LIq` , qM =
looomnooo

c1 Iq` - qM if q
`

¥ q

c2 Iq - q
`M if q

`
< q.

In mathStatica, we enter this as:

L = IfAq
`

¥ q, c1  Iq
`

- qM, c2  Iq - q
`ME;

Figure 2 plots the loss function when c1 = 2, c2 = 1 and q = 0. The asymmetry  in the loss

function leads to differing magnitudes of loss depending on whether the estimate is larger

or smaller than q = 0. In Fig. 2, an over-estimate  of q causes a greater  loss than an under-

estimate  of the same size.  In this case, intuition suggests that we search for a k < 0, for if

we  are  to  err,  we  will  do  better  if  the  error  results  from  an  under-estimate.  In  a  similar

vein,  if  c1 < c2 ,  then over-estimates  are  preferred  to under-estimates,  so  we would expect

to  choose  a  k > 0;  and  when  the  loss  is  symmetric  c1 = c2 ,  no  correction  would  be
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necessary  and  we  would  choose  k = 0.  We  now  show  that  it  is  possible  to  identify  the

unique value of k that minimises risk. Naturally, it will depend on the values of c1  and c2 .

-2 -1 1 2
q
`

1

2

3

4

Loss

Fig. 2:  An asymmetric loss function (c1 = 2 and c2 = 1)

Risk is expected loss:

Risk = Expect@L, fD
!- k2ÅÅÅÅÅÅ2 Hc1 + c2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

+

1
ÅÅÅÅ
2
k
ikjjjikjjj1 + ErfA k

ÅÅÅÅÅÅÅÅÅè!!!2 Ey{zzz c1 +
ikjjj-1 + ErfA k

ÅÅÅÅÅÅÅÅÅè!!!2 Ey{zzz c2
y{zzz

from  which  we see  that  risk  is dependent  on factors  that  are under  our  control;  that  is,  it

does  not  depend  on  values  of  q.  For  given  values  of  c1  and  c2 ,  the  value  of  k  which

minimises  risk  can  be  found  in  the  usual  way.  Here  is  the  first  derivative  of  risk  with

respect to k:

d1 = D@Risk, kD êê Simplify

1
ÅÅÅÅ
2

ikjjjikjjj1 + ErfA k
ÅÅÅÅÅÅÅÅÅè!!!2 Ey{zzz c1 +

ikjjj-1 + ErfA k
ÅÅÅÅÅÅÅÅÅè!!!2 Ey{zzz c2y{zzz

and here is the second derivative:

d2 = D@Risk, 8k, 2<D êê Simplify

!- k2ÅÅÅÅÅÅ2 Hc1 + c2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

Notice that the second derivative d2 is positive for all k.
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Next, set the first derivative to zero and solve for k:

solk = Solve@d1 ã 0, kD
99k Ø

è!!!2 InverseErfA0, -c1 + c2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c1 + c2

E==
This value for k must globally minimise risk, because the second derivative d2 is positive

for all k. Let us calculate some optimal values for k for differing choices of c1  and c2 :

solk ê. 8c1 Ø 2, c2 Ø 1< êê N

88k Ø -0.430727<<
solk ê. 8c1 Ø 2, c2 Ø 3< êê N

88k Ø 0.253347<<
solk ê. 8c1 Ø 1, c2 Ø 1< êê N

88k Ø 0.<<
For example, the first output shows that the estimator that minimises risk when c1 = 2 and

c2 = 1 is 

q
`

= X - 0.430727 .

This  is  the  only  admissible  estimator  in  D  for  it  dominates  all  others  with  respect  to the

loss structure (9.2). In each of the three previous outputs, notice that the optimal value of k
depends on the asymmetry of the loss function as induced by the values of c1  and c2 , and

that its sign varies in accord with the intuition given earlier. !

Of  course,  all  decision  theory  outcomes  are  conditional  upon  the  assumed  loss

structure,  and  as  such  may  alter  if  a  different  loss  structure  is  specified.  Consider,  for

example, the minimax decision rule: the particular estimator q
`
 is preferred if

q
`

= arg min Hmaxq"Q  RQ
`  HqLL, for all Q

`
" D.

In other words,  q
`
 is preferred  over all other estimators  in the decision set if its  maximum

risk is no greater than the maximum risk of all other estimators. If two estimators have the

same maximum risk (which may not necessarily occur at the same points in the parameter

space),  then  we  would  be  indifferent  between  them  under  this  criterion.  The  minimax

criterion is conservative in the sense that it selects the estimator  with the least worst  risk.

To illustrate, consider Fig. 1 once again. We see that for the admissible estimators, q
`

1  and

q
`

3 , maximum risk occurs at the extremes of the parameter space. The value C corresponds

to the maximum risk of q
`

1 . Since the maximum risk of q
`

3  is greater than C, it follows that

q
`

1  is the minimax estimator.
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9.3 Mean Square Error as Risk
The Mean Square Error (MSE) of an estimator q

`
 is defined as

MSEHq`L = EAIq` - qM2 E.
Thus,  if  a  quadratic  loss  function  LIq`, qM = Iq` - qM2  is  specified,  MSEHq`L  is  equivalent  to

risk; that is, MSE is risk under quadratic  loss. MSE can be expressed in terms of the first

two moments of q
`
. To see this, let q

êê
= E@q`D for notational convenience, and write

(9.3)

MSEHq`L =   EAIIq` - q
êêM - Hq - q

êêLM2E
=   EAIq` - q

êêM2 E + EAHq - q
êêL2 E - 2 EAIq` - q

êêM Hq - q
êêLE

=   VarHq`L + IBiasHq`LM2 .

Bias  is  defined  as  E@q`D - q = q
êê

- q.  Thus,  the  first  term  in  the  second  line  defines  the

variance of q
`
; the second term is the squared bias of q

`
, and as it is non-stochastic, the outer

expectation is superfluous; the third term is zero because

EAIq` - q
êêM Hq - q

êêLE = Hq - q
êêL EAq` - q

êêE = Hq - q
êêL IE@q`D - q

êêM = 0.

As the last line of (9.3) shows, estimator choice under quadratic loss depends on both

variance and bias. If the decision set D consists only of unbiased estimators, then choosing

the  estimator  with  the  smallest  risk  coincides  with  choosing  the  estimator  with  least

variance.  But should the decision set also include biased estimators,  then choice based on

risk is no longer as straightforward,  as there is now potential to trade off variance against

bias. The following diagram illustrates.

q

pdf

q0

q
`

1

q
`

2

Fig. 3:  Estimator densities: q
`

1  has large variance (!), q
`

2  is biased (a a a)
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Figure  3  depicts  the  (scaled)  pdf  of  two estimators  of  q0 ,  labelled  q
`

1  and  q
`

2 .  Here,  q
`

1  is

unbiased for q0 , whereas q
`

2  has a slight bias. On the other hand, the variance, or spread, of

q
`

1  is  far greater  than it  is for  q
`

2 .  On computing  MSE for  each estimator,  it would not  be

surprising to find MSEHq`1 L > MSEHq`2 L, meaning that q
`

2  is preferred to q
`

1  under quadratic

loss.  The  trade-off  between  bias  and  variance  favours  the  biased  estimator  in  this  case.

However, if we envisage the pdf of q
`

2  (the dashed curve) shifting further and further to the

right,  the  cost  of  increasing  bias  would  soon  become  overwhelming,  until  eventually

MSEHq`2 L would exceed MSEHq`1 L.
�  Example 2:  Estimators for the Normal Variance

Consider  a random variable  X ~ NHm, qL,  and  let  HX1 , c, Xn L  denote a  random sample  of

size  n  drawn on X.  Asymptotic  arguments  may be used to justify estimating the variance

parameter q using the statistic T = i=1

n HXi - X
êêêL2 , because, for example, the estimator

q
`

= TÅÅÅÅÅÅn  ö
p

 q.

That  is,  q
`
 is a  consistent  estimator  of  q.  However,  the estimator  remains  consistent  if  the

denominator  n  is  replaced  by,  for  example,  n - 1.  Doing  so  yields  the  estimator

q
è

= T ê Hn - 1L, for which q
è

ö
p

q as the subtraction of 1 from n in the denominator becomes

insignificant  as n  becomes larger.  We therefore cannot  distinguish between q
`
 and q

è
 using

asymptotic theory. As we have seen in Example 1 of Chapter 7, estimator q
è
 is an unbiased

estimator  of q;  consequently,  given that q
`

< q
è
, it  follows that  q

`
 must  be biased downward

for  q  (i.e.  E@q`D < q).  On  the  other  hand,  the  variance  of  q
è

 is  larger  than  that  of  q
`
.  To

summarise  the  situation:  both  estimators  are  asymptotically  equivalent,  but  in  finite

samples  there  is  a  biasavariance  trade-off  between  them.  Proceeding  along  decision

theoretic lines, we impose a quadratic loss structure LHQ, qL = HQ - qL2
 on the estimators in

the decision set D = 9Q : Q = q
`

or q
è=.

From Example  27  of  Chapter  4,  we  know that  T ê q ~ Chi-squaredHn - 1L.  Therefore,

the pdf of T , say f HtL, is:

f =
t

n-1ÅÅÅÅÅÅÅÅ2 -1 %-têH2 qL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 qL n-1ÅÅÅÅÅÅÅÅ2  G@ n-1ÅÅÅÅÅÅÅ2 D ;

domain@fD = 8t, 0, �< && 8n > 0, q > 0<;
The MSE of each estimator can be derived by:

MSE
`

= ExpectAJ t
ÅÅÅÅ
n

- qN2, fE
5 This further assumes that:  8n > 1<H-1 + 2 nL q2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n2
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MSE
è

= ExpectAJ t
ÅÅÅÅÅÅÅÅÅÅÅÅ
n - 1

- qN2, fE
5 This further assumes that:  8n > 1<

2 q2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + n

Both MSEs depend upon q and sample size n. However, in this example, it is easy to rank

the two estimators, because MSE
`

 is strictly smaller than MSE
è

 for any value of q:

MSE
`

- MSE
è êê Simplify

H1 - 3 nL q2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n2

Therefore, q
`
 dominates q

è
 given quadratic loss, so q

è
 is inadmissible given quadratic loss.

In  this  problem,  it  is  possible  to  broaden  the decision  set  from two estimators  to an

uncountably  infinite  number  of estimators  (all  of which  retain  the asymptotic  property  of

consistency)  and  then  determine  the  (unique)  dominant  estimator;  that  is,  the  estimator

that  minimises  MSE.  To do so,  we need to suppose that  all estimators  in the decision set

have  general  form Q
`

= T ê Hn + kL,  for  some  real  value  of  k  that  is  independent  of  n.  The

estimators that we have already examined are special cases of Q
`

, corresponding to k = -1

(for q
è
) and 0 (for q

`
). For arbitrary k, the MSE is:

MSEk = ExpectAJ t
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
n + k

- qN2, fE
5 This further assumes that:  8n > 1<H-1 + k H2 + kL + 2 nL q2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk + nL2
The minimum MSE can be obtained in the usual way by solving the first-order condition:

Solve@D@MSEk, kD ã 0, kD
88k Ø 1<<

c because the sign of the second derivative when evaluated at the solution is positive:

D@MSEk, 8k, 2<D ê. k Ø 1 êê Simplify

2 H-1 + nL q2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + nL3

We conclude that q*  dominates all other estimators with respect to quadratic loss, where

                                             q* = TÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n + 1

= 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n + 1

 
i=1

n HXi - X
êêêL2 . !
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�  Example 3:  Sample Mean Versus Sample Median for Bernoulli Trials

Suppose  that  Y ~ BernoulliHqL;  that  is,  Y  is  a  Bernoulli  random  variable  such  that

PHY = 1L = q  and  PHY = 0L = 1 - q,  where  q  is  an  unknown  parameter  taking  real  values

within the unit interval, 0 < q < 1. Suppose that a random sample of size n is drawn on Y ,

denoted  by  HY1 , c, Yn L.  We  shall  consider  two  estimators,  namely,  the  sample  mean  q
`
,

and  the  sample  median  q
è
,  and  attempt  to  decide  between  them  on  the  basis  of  quadratic

loss. The decision set is D = 9q` , q
è=.

The sample mean

q
`

= 1ÅÅÅÅÅn  
i=1

n

Yi

is  clearly  a  function  of  the  sample  sum  S.  In  Example  21  of  Chapter  4,  we  established

S = i=1

n Yi ~ BinomialHn, qL,  the  Binomial  distribution  with  index  n  and  parameter  q.

Therefore,  q
`

 is  a  discrete  random  variable  that  may  take  values  in  the  sample  space

W
`

= 80, n-1 , 2 n-1 , c, 1<. Let f HsL denote the pmf of S:

f = Binomial@n, sD qs H1 - qLn - s;

domain@fD = 8s, 0, n< &&80 < q < 1, n > 0, n 1 Integers< && 8Discrete<;
The MSE of q

`
, the sample mean, is given by

MSE
`

= ExpectAJ s
ÅÅÅÅ
n

- qN2, fE
-
H-1 + qL q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n

The sample space of the sample median also depends upon the sample sum, but it is

also  important  to  identify  whether  the  sample  size  is  odd-  or  even-valued.  To  see  this,

consider  first when n is odd: q
è
, the sample median, will take values from W

è
odd = 80, 1<. If

the estimate  is zero,  then there have to be more zeroes than ones in the observed sample;

this occurs when S § Hn - 1L ê2. The reverse occurs if S ¥ Hn + 1L ê 2, for then there must be

more  ones  than  zeroes:  hence  the  sample  median  must  be  1.  The  next  case  is  when  n  is

even:  now  q
è

 can  take  values  from  W
è

even = 80,
1ÅÅÅÅ
2

, 1<.  The  outcome  of  
1ÅÅÅÅ
2

 exists  (by

convention)  in  even-sized  samples  because  the  number  of  zeroes  can  match  exactly  the

number of ones.

Let us assume the sample size n is even. Then

PHQè = q
èL : PHS § nÅÅÅÅ

2
- 1L PHS = nÅÅÅÅ

2
L PHS ¥ nÅÅÅÅ

2
+ 1L

q
è

: 0
1ÅÅÅÅ
2

1

Table 1:  The pmf of q
è
 when n is even
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Let gHqèL denote the pmf of q
è
. We enter this using List Form:

g = 9ProbA n
ÅÅÅÅ
2

- 1, fE, f ê. s Ø
n
ÅÅÅÅ
2
, 1 - ProbA n

ÅÅÅÅ
2
, fE=;

domain@gD =9q
è
, 90, 1

ÅÅÅÅ
2
, 1== && 9n > 0,

n
ÅÅÅÅ
2

1 Integers= && 8Discrete<;
Then, the MSE of q

è
, the sample median, is:

MSE
è

= ExpectAHq
è

- qL2, gE
q2 + J-

1
ÅÅÅÅ
2

+ qN2 H-H-1 + qL qLnê2 BinomialAn, n
ÅÅÅÅ
2
E -

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@2 + nÅÅÅ2 D G@ nÅÅÅ2 D  ikjjH-1 + qL1+n q I q

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 - q

Mnê2 G@1 + nD
Hypergeometric2F1A1, 1 -

n
ÅÅÅÅ
2
, 2 +

n
ÅÅÅÅ
2
,

q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + q

Ey{zz -

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@1 + nÅÅÅ2 D2  IH1 - qL-nê2 H-1 + qLn q

4+nÅÅÅÅÅÅÅÅ2 G@1 + nD
Hypergeometric2F1A1, -

n
ÅÅÅÅ
2
, 1 +

n
ÅÅÅÅ
2
,

q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + q

EM
The  complicated  nature  of  this  expression  rules  out  the  possibility  of  a  simple  analytical

procedure  to compare  MSEs for  arbitrary  n.  However,  by selecting  a specific  value of n,

say n = 4, we can compare the estimators by plotting their MSEs, as illustrated in Fig. 4.

0.2 0.4 0.6 0.8 1

q

0.025

0.05

0.075

0.1

0.125

0.15

MSE HRiskL

Fig. 4:  MSE
`

 (!) and MSE
è

 (a a a) when n = 4

Evidently,  the risk  of the sample mean (MSE
`

) is nearly everywhere  below the risk of the

sample  median  (MSE
è

).  Nevertheless,  the  plot  shows  that  there  exist  values  towards  the

edges  of  the  parameter  space  where  the  sample  median  has  lower  risk  than  the  sample
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mean; consequently,  when n = 4, both estimators  are admissible  with respect to quadratic

loss.  Thus,  to  make  a  decision,  we  need to know q0 ,  the  true  value  of  q.  Of  course,  it  is

precisely  because  q0  is  unknown  that  we  started  this  investigation.  So,  our  decision-

theoretic approach has left us in a situation of needing to know q0  in order to decide how

to  estimate  it!  Clearly,  further  information  is  required  in  order  to  reach  a  decision.  To

progress, we might do the following:

(i) Experiment  with  increasing  n:  that  is,  replace  f4g  with  larger  even  numbers  in  the

above analysis. On doing so, we find that the parameter  region for which the sample

mean  is  preferred  also  increases.  This  procedure  motivates  a  formal  asymptotic

analysis  of  each  MSE  for  n Ø �,  returning  us  to  the  type  of  analysis  developed  in

Chapter 8.

(ii) Alter the decision criterion: for example, suppose the decision criterion was to select

the minimax estimator! the  estimator  that  has  the smaller  maximum risk.  From the

diagram, we see that the maximum risk of q
`
 (occurring at q = 1ÅÅÅÅ

2
) is smaller than the

maximum risk of q
è
 (also occurring at q = 1ÅÅÅÅ

2
). Hence, the sample mean is the minimax

estimator.

(iii) Finally,  comparing  the  number  of  points  in  W
è

odd  or  W
è

even  (the  sample  space  of  the

sample  median),  relative  to  the  number  of  points  in  W
`

 (the  sample  space  of  the

sample mean) is probably sufficient argument to motivate selecting the sample mean

over the sample median for Bernoulli  trials, because the parameter space is the H0, 1L
interval of the real line. !

9.4 Order Statistics

9.4 A  Definition and OrderStat

Let  X  denote  a  continuous  random  variable  with  pdf  f HxL  and  cdf  FHxL,  and  letHX1 , X2 , c, Xn L denote a random sample of size n drawn on X. Suppose that we place the

variables  in  the  random  sample  in  ascending  order.  The  re-ordered  variables,  which  we

shall  label  HXH1L , XH2L , c, XHnL L,  are  known  as  order  statistics.  By  construction,  the  order

statistics  are  such  that  XH1L < XH2L < � < XHnL ;  for  example,  XH1L = minHX1 , c, Xn L  is  the

smallest  order  statistic  and  corresponds  to  the  sample  minimum,  and  XHnL  is  the  largest

order  statistic  and  corresponds  to  the  sample  maximum.  Each  order  statistic  is  a

continuous  random  variable  (this  is  inherited  from  X),  and  each  has  domain  of  support

equivalent to that of X. For example, the pdf of XHrL , the r th  order statistic (r " 81, c, n<),
is given by2

(9.4)
n !ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHr - 1L! Hn - rL! FHxLr-1 I1 - FHxLMn-r

f HxL
where x  represents values assigned to XHrL . Finally,  because X  is continuous,  any ties (i.e.
two identical  outcomes) between the order statistics can be disregarded as ties occur with
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probability  zero. For further discussion of order statistics, see David (1981), Balakrishnan

and Rao (1998a, 1998b) and Hogg and Craig (1995).

mathStaticags  OrderStat  function  automates  the construction  of  the  pdf  of  order

statistics  for  a  size  n  random  sample  drawn  on  a  random  variable  X  with  pdf  f .  In

particular,  OrderStat[r, f]  finds  the  pdf  of  the  r th  order  statistic,  while

OrderStat[8r, s, c, t<, f] finds the joint pdf of the order statistics indicated in the list.

An optional third argument, OrderStat[r, f , m], sets the sample size to m.

�  Example 4:  Order Statistics for the Uniform Distribution

Let X ~ UniformH0, 1L with pdf f HxL:
f = 1 ; domain@fD = 8x, 0, 1<;

Let  HX1 , c, Xn L  denote  a  random  sample  of  size  n  drawn  on  X,  and  let  HXH1L , c, XHnL L
denote  the corresponding order  statistics.  Then, the pdf  of the smallest order  statistic XH1L
is given by:

OrderStat@1, fD
n H1 - xL-1+n

The pdf of the largest order statistic XHnL  is given by:

OrderStat@n, fD
n x-1+n

and the pdf of the r th  order statistic is given by:

OrderStat@r, fD
H1 - xLn-r x-1+r n!

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn - rL! H-1 + rL!

Note  that OrderStat  assumes an arbitrary sample size n.  If a specific  value for sample

size is required, or if you wish to use your own notation for fng, then this may be conveyed

using  a  third  argument  to  OrderStat.  For  example,  if  n = 5,  the  pdf  of  the  r th  order

statistic is:

OrderStat@r, f, 5D
120 H1 - xL5-r x-1+r
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH5 - rL! H-1 + rL!

In each case, the domain of support of XHrL = x " H0, 1L. !
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�  Example 5:  Operating on Order Statistics

Let X ~ ExponentialHlL with pdf f HxL:
f =

1
ÅÅÅÅ
l

%- xêl ; domain@fD = 8x, 0, �< && 8l > 0<;
Let  HX1 , c, Xn L  denote  a  random  sample  of  size  n  drawn  on  X,  and  let  HXH1L , c, XHnL L
denote the corresponding order statistics. Here is gHxL, the pdf of the r th  order statistic:

g = OrderStat@r, fD
!- H1+n-rL xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅl H1 - !- xÅÅÅÅl L-1+r

n!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l Hn - rL! H-1 + rL!

The  domain  statement  to  accompany  g  may  be  found  using  mathStaticags

OrderStatDomain function:

domain@gD = OrderStatDomain@r, fD
8x, 0, �< && 8n - Integers, r - Integers, l > 0, 1 § r § n<

Figure 5 plots the pdf of XHrL  as r increases.

1 2 3 4 5

x

1

2

3

4

g

r=1

r=2

r=3

r=4

Fig. 5:  The pdf of the r th  order statistic, as r increases (with n = 4, l = 1)

§9.4 A STATISTICAL  DECISION  THEORY 313



We can now operate  on XHrL  using mathStatica  functions.  For  example, here  is the mean

of XHrL  as a function of n, r and l:

Expect@x, gD
l HHarmonicNumber@nD - HarmonicNumber@n - rDL

and here is the variance:

Var@x, gD
l2 H-PolyGamma@1, 1 + nD + PolyGamma@1, 1 + n - rDL

�  Example 6:  Joint Distributions of Order Statistics

Once again, let X ~ ExponentialHlL with pdf:

f =
1
ÅÅÅÅ
l

%- xêl ; domain@fD = 8x, 0, �< && 8l > 0<;
For a size n random sample drawn on X, the joint pdf of the order statistics HXH1L , XH2L L is:

g = OrderStat@81, 2<, fD
!- x1 +H-1+nL x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅl G@1 + nD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l2 G@-1 + nD
domain@gD = OrderStatDomain@81, 2<, fD

5 The domain is:  80 < x1 < x2 < �< , which we enter into mathStatica as :88x1, 0, x2<, 8x2, x1, �<< && 8n - Integers, l > 0, 2 § n<
where  x1  denotes  values  assigned  to XH1L ,  and  x2  denotes  values  assigned  to XH2L .  In  this

bivariate case, the domain of support  of HXH1L , XH2L L is given by the non-rectangular  region

W = 8Hx1 , x2 L : 0 < x1 < x2 < �<.  At  present,  mathStatica  does  not  support  non-

rectangular regions (see §6.1 B). However, mathStatica functions such as Expect, Var,

Cov  and  Corr  do  know  how  to  operate  on  triangular  regions  which  have  general  form

a < x < y < z < � < b,  where  a  and  b  are  constants.  Here,  for example,  is the  correlation

coefficient between XH1L  and XH2L :
Corr@8x1, x2<, gD

-1 + n
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 - 2 n + 2 n2

The  non-zero  correlation  coefficient  and  (especially)  the  non-rectangular  domain  of

support  of  HXH1L , XH2L L  illustrate  a  general  property  of  order  statistics! they  are  mutually

dependent. !
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�  Example 7:  Order Statistics for the Laplace Distribution

The OrderStat function also supports pdfgs which take a piecewise form. For example,

let random variable X ~ LaplaceHm, sL with piecewise pdf:

f = IfAx < m,
%

x - mÅÅÅÅÅÅÅÅÅÅs

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 s

,
%- x - mÅÅÅÅÅÅÅÅÅÅs

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s

E;
domain@fD = 8x, -�, �< && 8m 1 Reals, s > 0<;

The pdf of the r th  order statistic, XHrL , is given by:3

OrderStat@r, fD
IfAx < m,

2-r !
r Hx-mLÅÅÅÅÅÅÅÅÅÅÅÅÅÅs H1 - 1ÅÅÅÅ2 !

x-mÅÅÅÅÅÅÅs Ln-r
n!

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s Hn - rL! H-1 + rL!

,
2-1-n+r !

H1+n-rL H-x+mLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs H1 - 1ÅÅÅÅ2 !
-x+mÅÅÅÅÅÅÅÅÅs L-1+r

n!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s Hn - rL! H-1 + rL!
E

Notice that mathStaticags output is in piecewise form too.

As a special case, let XH1L  denote the smallest order statistic from a random sample of

size  n  drawn on the  standardised  Laplace distribution  (i.e.  the LaplaceH0, 1L  distribution).

The pdf of XH1L  is given by:

g1 = OrderStat@1, f ê. 8m Ø 0, s Ø 1<D
IfAx < 0,

1
ÅÅÅÅ
2

!x J1 -
!x
ÅÅÅÅÅÅÅ
2

N-1+n

n, 2-n !-n x nE
domain@g1D = OrderStatDomain@1, f ê. 8m Ø 0, s Ø 1<D
8x, -�, �< && 8n - Integers, 1 § n<

Figure 6 shows how the pdf of XH1L  varies as n increases.  It is evident that the bulk of the

mass of the pdf of XH1L  shifts to the left, as n increases.

-6 -4 -2 2 4

x

0.1

0.2

0.3

0.4

0.5

g1

Fig. 6:  pdf of XH1L : n = 2 ("), n = 5 (!), n = 20 (a a a)
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As a final  illustration,  consider the  joint pdf  of the two smallest  order  statistics,  XH1L
and XH2L , when the sample size is n = 5:

g12 = OrderStat@81, 2<, f ê. 8m Ø 0, s Ø 1<, 5D
20 IfAx1 < 0, !x1

ÅÅÅÅÅÅÅÅÅ
2

, !-x1
ÅÅÅÅÅÅÅÅÅÅÅ
2

E IfAx2 < 0, -
1

ÅÅÅÅÅÅÅ
16

!x2 H-2 + !x2 L3, 1
ÅÅÅÅÅÅÅ
16

!-4 x2 E
The joint pdf is illustrated from differing perspectives in Fig. 7 and Fig. 8.
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Fig. 7:  pdf of g12  (ffrontg view)
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Fig. 8:  pdf of g12  (frearg view)
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In  Fig. 7,  ridges  are  evident  along  the  lines  x1 = 0  and  x2 = 0;  this  is  consistent  with  the

piecewise  nature  of  g12 .  In  Fig. 8,  the  face  of  the  plane  x1 = x2  is  prominent;  this  neatly

illustrates  the  domain  of  support  of  XH1L  and  XH2L  (viz.  the  triangular  region8Hx1 , x2 L : -� < x1 < x2 < �<). The domain of support can also be illustrated as the shaded

region in Fig. 9.

x1

x2

A

B C

0

x1 = x2

Fig. 9:  Domain of support of XH1L  and XH2L  (shaded)

mathStatica  cannot  operate  on  the  pdf,  because  the  pdf  has  a  multiple  If  structure.

However, we may proceed by separating the domain of support into three distinct regions,

labelled A, B and C in Fig. 9. In the triangular region A, the pdf of XH1L  and XH2L  is given by:

Ag12 = Simplify@g12, 8x1 < 0, x2 < 0<D
-
5
ÅÅÅÅ
8

!x1+x2 H-2 + !x2 L3
c while in the rectangular region B, the pdf is given by:

Bg12 = Simplify@g12, 8x1 < 0, x2 > 0<D
5
ÅÅÅÅ
8

!x1 -4 x2

c and finally, in region C, the pdf is:

Cg12 = Simplify@g12, 8x1 > 0, x2 > 0<D
5
ÅÅÅÅ
8

!-x1-4 x2

In this way, we can verify that the pdf integrates to unity over its domain of support: 

2
-�

0 2
-�

x2

Ag12  5x1  5x2 + 2
0

�2
-�

0

Bg12  5x1  5x2 + 2
0

�2
0

x2

Cg12  5x1  5x2

1
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9.4 B  Applications

Estimators  such  as  the  sample  median  (used  to  estimate  location)  and  the  sample

interquartile  range  (to  estimate  scale)  may  be  constructed  from  the  order  statistics  of  a

random  sample.  In  Example  8,  we  derive  the  MSE  of  the  sample  median,  while  in

Example 9 we derive the MSE of the sample range (a function of two order statistics).

�  Example 8:  Sample Median versus Sample Mean

Two estimators  of location are the sample  median and the sample mean. In this example,

we  compare  the  MSE performance  of  each  estimator  when  X ~ LogisticHqL,  the  location-

shifted Logistic distribution with pdf f HxL:
f =

%-Hx-qL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + %-Hx-qLL2 ; domain@fD = 8x, -�, �< && 8q 1 Reals<;

where  q " !  is  the location  parameter  (the mean of  X).  For  simplicity,  we assume  that a

random  sample  of  size  n  drawn  on  X  is  odd-sized  (i.e.  n  is  odd),  and  so  we  shall  write

n = 2 r + 1,  for  r " 81, 2, c<.  Therefore,  the  sample  median,  which  we  denote  by  M ,

corresponds to the middle order statistic XHr+1L . Thus, the pdf of M  is given by:

g = OrderStat@r + 1, f, 2 r + 1D ê. x Ø m

!H1+rL Hm+qL H!m + !qL-2 H1+rL H1 + 2 rL!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r!2

Here is the domain of support of M :

domain@gD = 8m, -�, �< && 8q 1 Reals, r > 0<;
The  MSE  of  the  sample  median  is  given  by  E@HM - qL2 D.  Unfortunately,  if  we

evaluate  Expect@Hm - qL2, gD,  an  unsolved  integral  is  returned.  There  are  two

possible reasons for this: (i) either Mathematica does not know how to solve this integral,

or  (ii)  Mathematica  can  solve  the  integral,  but  needs  a  bit  of  help!4  In  this  case,  we  can

help  out  by  expressing  the  integrand  in  a  simpler  form.  Since  we  want  E@HM - qL2 D =
E@U2 D,  consider transforming  M  to the new variable U = M - q.  The pdf of U,  say gu ,  is

obtained using mathStaticags  Transform function:

gu = Transform@u ã m - q, gD
!H1+rL u H1 + !uL-2 H1+rL H1 + 2 rL!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r!2

domain@guD = TransformExtremum@u ã m - q, gD
8u, -�, �< && 8r > 0<
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Since the functional form of the pdf of U  does not depend upon q, it follows that the MSE

cannot  depend  on  the  value  of  q.  To  make  things  even  simpler,  we  make  the  further

transformation V = :U . Then, the pdf of V, denoted gv , is:

gv = Transform@v ã %u, guD
vr H1 + vL-2 H1+rL H1 + 2 rL!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r!2

domain@gvD = TransformExtremum@v ã %u, guD8v, 0, �< && 8r > 0<
Since V = expHUL, it  follows that E@U2 D = E@Hlog VL2 D.  Therefore,  the MSE of the sample

median is:

MSEmed = Expect@Log@vD2, gvD
2 PolyGamma@1, 1 + rD

Our other  estimator  of  location  is  the  sample  mean  X
êêê

.  To  obtain  its  MSE,  we  must

evaluate  EAHXêêê
- qL2 E.  Because X

êêê
= s1 ên,  where s1 = i=1

n Xi  is  the sample sum, the MSE

is an expression involving power sums, and we can therefore use mathStaticags Moments

of  Moments  toolset  (see  §7.3)  to  solve  the  expectation.  The  MSE corresponds  to  the  1 st

raw moment of H 1ÅÅÅÅn  s1 - qL2 , and so we shall present the answer in terms of raw population

moments of X (hence ToRaw):

sol = RawMomentToRawA1, J s1
ÅÅÅÅÅÅÅ
n

- qN2E
-2 q m

£
1 +

H-1 + nL m
£
1

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

+
n q2 + m

£
2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n

We now find m
£

1
 and m

£
2
, and substitute these values into the solution:

MSEmean =

sol ê. TableAm
£
i Ø Expect@xi, fD, 8i, 2<E êê Simplify

p2
ÅÅÅÅÅÅÅÅ
3 n

where n = 2 r + 1.

Both MSEmed  and MSEmean  are independent of q, but vary with sample size. We can

compare  the  performance  of  each  estimator  by  plotting  their  respective  MSE for  various

values of r, see Fig. 10.
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Fig. 10:  MSE of sample mean (a a a) and sample median (!)

We see that the MSE of the sample mean (the dashed line) is everywhere below the MSE

of the sample median (the unbroken line), and that this persists for all r. Hence, the sample

mean dominates the sample median in mean square error (risk under quadratic loss) when

estimating  q.  We  conclude  that  the  sample  median  is  inadmissible  in  this  situation.

However,  this  does  not  imply  that  the  sample  mean  is  admissible,  for  there  may  exist

another estimator that dominates the sample mean under quadratic loss. !

�  Example 9:  Sample Range versus Largest Order Statistic

Let X ~ UniformH0, qL, where q " !+  is an unknown parameter, with pdf:

f =
1
ÅÅÅÅ
q
; domain@fD = 8x, 0, q< && 8q > 0<;

The  sample  range  R  is  defined  as  the  distance  between  the  smallest  and  largest  order

statistics;  that  is,  R = XHnL - XH1L .  It  may  be  used  to  estimate  q.  Another  estimator  is  the

sample  maximum,  corresponding  to  the  largest  order  statistic  XHnL .  In  this  example,  we

compare the performance of both estimators on the basis of their respective MSE.

To derive the distribution of R, we first obtain the joint pdf of XH1L  and XHnL :
g = OrderStat@81, n<, fD êê FunctionExpand

H-1 + nL n H -x1 +xnÅÅÅÅÅÅÅÅÅÅÅÅÅq Ln
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-x1 + xnL2

with non-rectangular domain of support:

domain@gD = OrderStatDomain@81, n<, fD
5 The domain is:  80 < x1 < xn < q< , which we enter into mathStatica as :88x1, 0, xn<, 8xn, x1, q<< && 8n - Integers, q > 0, 1 < n<
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We  use  mathStaticags  Transform  function  to  perform  the  transformation  fromHXH1L , XHnL L to HR, SL, where S = XH1L . Here is the joint pdf of HR, SL:
grs = Transform@8r ã xn - x1, s ã x1<, gD
H-1 + nL n H rÅÅÅq Ln
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2

with non-rectangular  support  8Hr, sL : 0 < r < q, 0 < s < q - r<. Integrating  out S  yields the

pdf of R:

gr = 2
0

q-r

grs  5s

H-1 + nL n H rÅÅÅq Ln H-r + qL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2

domain@grD = 8r, 0, q< && 8q > 0, n > 1, n 1 Integers<;
The MSE for the sample range is:

MSErange = Expect@Hr - qL2, grD
6 q2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 + 3 n + n2

Our other estimator of q is the sample maximum XHnL . The pdf of XHnL  is:

gn = OrderStat@n, fD
n H xÅÅÅq Ln
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x

domain@gnD = OrderStatDomain@n, fD
8x, 0, q< && 8n - Integers, q > 0, 1 § n<

The MSE of XHnL  is:

MSEmax = Expect@Hx - qL2, gnD
2 q2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 + 3 n + n2

so  MSErange = 3 MSEmax  for  all  permissible  values  of  q  and  n.  Therefore,  the  sample

range is inadmissible.
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Inadmissibility  of  the  sample  range  does  not  imply  that  the  sample  maximum  is

admissible. Indeed, consider the following estimator that scales the sample maximum:

XHnL* = n+1ÅÅÅÅÅÅÅÅÅÅÅÅ
n

 XHnL .
The MSE of the scaled estimator is:

MSEscaled = ExpectAJ n + 1
ÅÅÅÅÅÅÅÅÅÅÅÅ
n

 x - qN2, gnE
q2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n H2 + nL

Dividing by the MSE of XHnL  finds:

MSEscaled
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
MSEmax

êê Simplify

1 + n
ÅÅÅÅÅÅÅÅÅÅÅÅ
2 n

which  is  strictly  less  than  unity  for  all  n > 1,  implying  that  the  sample  maximum  XHnL  is

inadmissible too! !

9.5 Exercises
1. Let q

`
 denote an estimator of an unknown parameter q, and let a > 0 and b > 0 (a � b)

denote constants. Consider the asymmetric quadratic loss function

LIq`, qM =
loomnoo aIq` - qM2 if q

`
> q

bIq` - qM2 if q
`

§ q.

Plot the loss function against values of Iq` - qM, when a = 1 and b = 2.

2. Varian (1975) introduced the linex (linearaexponential) loss function

LIq`, qM = :cIq`-qM - cIq` - qM - 1 

where q
`
 denotes an estimator of an unknown parameter q, and constant c � 0.

(i) Investigate the loss function by plotting L against Iq` - qM for various values of c.

(ii) Using  linearaexponential  loss  in the context  of Example  1  (i.e.  X ~ NHq, 1L  and

q
`

= X + k), determine the value of k which minimises risk.

3. Suppose that X ~ ExponentialHqL, where q > 0 is an unknown parameter.  The random

variable  q
`

= X ê k  is  proposed  as  an  estimator  of  q,  where  constant  k > 0.  Obtain  the

risk, and the value of k which minimises risk, when the loss function is:

(i) symmetric quadratic L1 Iq` , qM = Iq` - qM2 .

(ii) linearaexponential L2 Iq` , qM = :q
`

-q - Iq` - qM - 1.
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4. Let random variable T  have the same pdf f HtL as used in Example 2. For estimators of

q  of  general  form  Q
`

= T ê Hn + kL,  where  real  k > -n,  consider  the  asymmetric

quadratic loss function

LIQ` , qM =
loomnoo

IQ` - qM2 if Q
`

> q

bIQ` - qM2 if Q
`

§ q.

(i) After transforming from T  to Q
`

, derive the risk of Q
`

 as a function of q, n, k and b
(the solution takes about 140 seconds to compute on our reference machine).

(ii) Explain why the minimum risk estimator does not depend on q.

(iii) Setting n = 10, use numerical  methods to determine the value of k  which yields

the minimum risk estimator when (a) b = 1ÅÅÅÅ
2

 and (b) b = 2. Do your results make

sense?

5. Let  XHnL  denote  the  largest  order  statistic  of  a  random  sample  of  size  n  from

X ~ BetaHa, bL.
(i) Derive the pdf of XHnL .
(ii) Use  PlotDensity  to  plot  (on  a  single  diagram)  the  pdf  of  XHnL  when  a = 2,

b = 3 and n = 2, 4 and 6.

6. Let  XH1L ,  XH2L  and  XH3L  denote  the  order  statistics  of  a  random  sample  of  size  n = 3

from X ~ NH0, 1L.
(i) Derive the pdf and cdf of each order statistic.

(ii) Use PlotDensity  to plot (on a single diagram) the pdf of each order statistic

(use the interval H-3, 3L).
(iii) Determine E@XHrL D for r = 1, 2, 3.

(iv) The pdf of XH1L  and the pdf of XH3L  appear to be similar!perhaps they differ by

a simple mean shift? Test this assertion by plotting (on a single diagram) the pdf

of XH3L  and Y , where the random variable Y = XH1L + 3 ëè!!!!
p .

7. Apply  the  loss  function  Lk IQ` , qM = 5 Q
`

- q 5k  in  the  context  of  Example  9  (note:

symmetric  quadratic  loss corresponds  to the special  case k = 2). Find the values of k
for which the sample maximum dominates the sample range.
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Chapter 10
Unbiased Parameter Estimation

10.1 Introduction

10.1 A Overview
For any given statistical model, there are any number of estimators that can be constructed
in  order  to  estimate  unknown  population  parameters.  In  the  previous  chapter,  we
attempted to distinguish between estimators by specifying a loss structure, from which we
hoped  to  identify  the  least  risk  estimator.  Unfortunately,  this  process  rarely  presents  a
suitable  overall  winner.  However,  two  important  factors  emerged  from  that  discussion
(especially  for  risk  computed  under  quadratic  loss),  namely,  the  extent  of  bias,  and  the
extent  of  variance  inflation.  Accounting  for  these  factors  yields  a  search  for  a  preferred
estimator from amongst  classes of estimators, where the class members are forced to have
a  specific  statistical  property.  This  is  precisely  the  approach  taken  in  this  chapter.
Attention  is  restricted  to  the  class  of  unbiased  estimators,  from which  we  wish  to  select
the  estimator  that  has  least  variance. We  have already encountered  the same type of idea
in Chapter 7,  where concern lay with unbiased estimation  of population  moments.  In this
chapter, on the other hand, we focus on unbiased estimation of the parameters of statistical
models.

The  chapter  begins  by  measuring  the  statistical  information  that  is  present  on  a
parameter  in a given statistical  model.  This is done  using Fisher  Information  and Sample
Information  (§10.2).  This then leads to the so-called  CramerMRao Lower  Bound (a lower
bound on the variance of any unbiased estimator), and to Best Unbiased Estimators, which
are  the  rare  breed  of  estimator  whose  variance  achieves  the  lower  bound  (§10.3).  The
remaining  two  sections  (§10.4  and  §10.5)  provide  for  the  theoretical  development  of
Minimum  Variance  Unbiased  Estimators  (MVUE).  Vital  to  this  is  the  notion  of  a
sufficient  statistic,  its  completeness,  and  its  relation  to  the MVUE  via  a  famous  theorem
due to Rao and Blackwell.

The  statistical  literature  on  MVUE  estimation  is  extensive.  The  reference  list  that
follows  offers  a  sample  of  a  range  of  treatments.  In  rough  order  of  decreasing  technical
difficulty  are  Lehmann  (1983),  Silvey  (1975),  Cox  and  Hinkley  (1974),  Stuart  and  Ord
(1991), Gourieroux and Monfort (1995), Mittelhammer (1996) and Hogg and Craig (1995).



10.1 B SuperD

In  this  chapter,  it  is  necessary  to  activate  the  mathStatica  function  SuperD.  This  tool
enhances  Mathematica\s  differentiator  D  (or,  equivalently,  �),  allowing  differentiation
with  respect  to  powers  of  variables.  To  illustrate,  consider  the  derivative  of  s3ê2  with
respect to s2 :

D@s3ê2, s2D
' General::ivar :  s2 is not a valid variable.

�s2 s3ê2
Mathematica  does not allow this operation because s2  is not a Symbol variable; in fact,
it  is  stored  as  Power  (i.e.  Head@s2D = Power).  However,  by  turning  On  the
mathStatica function SuperD:

SuperD@OnD
' SuperD is now On.

derivatives, such as the former, can now be performed:

D@s3ê2, s2D
3

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
4
è!!!!

s

At any stage, this enhancement to D may be removed by entering SuperD@OffD.

10.2 Fisher Information

10.2 A Fisher Information
Let a random variable X have density f Hx; qL, where q is an unknown parameter which, for
the  moment,  we  assume  is  a  scalar.  The  amount  of  statistical  information  about  q  that  is
contributed per observation on X is defined to be

(10.1)iq = E
ÄÇÅÅÅÅÅÅÅÅJ � log f HX; qLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

�q
N2 ÉÖÑÑÑÑÑÑÑÑ

and is termed Fisher8s Information on q, after R. A. Fisher who first formulated it.

�  Example 1:  Fisher\s Information on the Lindley Parameter

Let  X ~ LindleyHdL,  the  Lindley  distribution  with  parameter  d ' !+ ,  with  pdf  f Hx; dL.
Then, from mathStatica\s Continuous palette, the pdf of X is:
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f =
d2

ÅÅÅÅÅÅÅÅÅÅÅÅ
d + 1

Hx + 1L &-d x;

domain@fD = 8x, 0, �< && 8d > 0<;
Then id , the Fisher Information on d, is given by (10.1) as:

Expect@D@Log@fD, dD2, fD
2

ÅÅÅÅÅÅÅ
d2

-
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + dL2
�  Example 2:  An Imprecise Survey: Censoring a Poisson Variable

Over  a  1-week  period,  assume  that  the  number  of  over-the-counter  banking  transactions
by individuals is described by a discrete random variable X ~ PoissonHlL, where l ' !+  is
an unknown parameter. Suppose, when collecting data from individuals, a market research
company  adopts  the  following  survey  policy:  four  or  fewer  transactions  are  recorded
correctly,  whereas  five  or  more  are  recorded  simply  as  five.  Study  the  loss  of  statistical
information on l that is incurred by this data recording method.

Solution: Let f Hx; lL denote the pmf of X:

                f =
&-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

;

domain@fD = 8x, 0, �< && 8l > 0< && 8Discrete<;
Now define a discrete random variable Y , related to X as follows:

Y =
lomno X if X § 4

5 if X ¥ 5.

Notice  that  the  survey  method  samples  Y ,  not  X.  Random variable  X  is  said to  be right-
censored at 5. The pmf of Y  is given by

PHY = yL =
lomno PHX = yL if y § 4

PHX ¥ 5L if y = 5.

Let gHy; lL denote the pmf of Y  in List Form, as shown in Table 1.

PHY = yL : f H0; lL f H1; lL f H2; lL f H3; lL f H4; lL PHX ¥ 5L
y : 0 1 2 3 4 5

Table 1:  List Form pmf of Y

We enter this into Mathematica as follows:
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g = Append@Table@f, 8x, 0, 4<D, 1 - Prob@4, fDD;
domain@gD = 8y, 80, 1, 2, 3, 4, 5<< && 8l > 0< && 8Discrete<;

where  PHY = 5L = PHX ¥ 5L = 1 - PHX § 4L  is  used.  If  an  observation  on  X  is  recorded
correctly, the Fisher Information on l per observation, denoted by il,X , is equal to:

il,X = Expect@D@Log@fD, lD2, fD
1
ÅÅÅÅ
l

On  the  other  hand,  the  Fisher  Information  on  l  per  observation  collected  in  the  actual
survey, denoted by il,Y , is:

il,Y = Expect@D@Log@gD, lD2, gD
-H)-l H-144 - 288 l - 288 l2 - 192 l3 - 66 l4 - 12 l5 -

l6 + 6 )l H24 + 24 l + 12 l2 + 4 l3 - 4 l4 + l5LLL êH6 l H24 - 24 )l + 24 l + 12 l2 + 4 l3 + l4LL
Figure 1 plots relative information il,Y ê il,X  against values of l.

2 4 6 8
l

0.2

0.4

0.6

0.8

1

Fig. 1:  Relative Fisher Information on l

The figure shows that as l  increases,  relative information declines.  When, say,  l = 5, the
relative information is:

il,Y
ÅÅÅÅÅÅÅÅÅÅÅ
il,X

ê. l Ø 5 êê N

0.715636

which  means that  about 28.5% of relative information on l  per observation  has  been lost
by  using  this  survey  methodology.  This  would  mean  that  to  obtain  the  same  amount  of
statistical  information  on  l  as  would  be  observed  in  a  correctly  recorded  sample  of  say
100 individuals,  the  market  research company would need to record data from about 140
( = 100 ê0.716) individuals. !
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10.2 B Alternate Form
Subject to some regularity conditions (e.g. Silvey (1975, p.37) or Gourieroux and Monfort
(1995,  pp. 81M82)),  an  alternative  expression  for  Fisher\s  Information  to  that  given  in
(10.1) is

(10.2)iq = - EA �2 log f HX; qLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q2 E.

For  a  proof  of  (10.2),  see  Silvey  (1975,  p.40).  When  it  is  valid,  this  form  of  Fisher\s
Information  can often be more convenient  to compute, especially  if the second derivative
is not stochastic.

�  Example 3:  First Derivative Form versus Second Derivative Form

Suppose  the  discrete  random  variable  X ~ RiemannZetaHrL.  Then,  from  mathStatica\s
Discrete palette, the pmf f Hx; rL of X is given by:

f =
x-Hr+1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Zeta@1 + rD ;

domain@fD = 8x, 1, �< && 8r > 0< && 8Discrete<;
Following (10.1), J � log f Hx; rLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

� r
N2

 is given by:

d = D@Log@fD, rD2 êê Simplify

HLog@xD Zeta@1 + rD + Zeta
£@1 + rDL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Zeta@1 + rD2

This  is  a  stochastic  expression  for  it  depends  on  x,  the  values  of  X.  Applying  Expect
yields the Fisher Information on r:

Expect@d, fD
-Zeta£@1 + rD2 + Zeta@1 + rD Zeta

££@1 + rD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Zeta@1 + rD2
Alternately, following (10.2), we find:

-D@Log@fD, 8r, 2<D êê Simplify

-Zeta£@1 + rD2 + Zeta@1 + rD Zeta
££@1 + rD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Zeta@1 + rD2

This output is non-stochastic,  and is clearly equivalent to the previous output. In this case,
(10.2) yields Fisher\s Information on r, without the need to even apply Expect. !
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�  Example 4:  Regularity Conditions

Suppose X ~ UniformHqL, where parameter q ' !+ . The pdf of X is:

f =
1
ÅÅÅÅ
q
; domain@fD = 8x, 0, q< && 8q > 0<;

According to the definition (10.1), the Fisher Information on q is:

Expect@D@Log@fD, qD2, fD
1

ÅÅÅÅÅÅÅ
q2

Next, consider the following output calculated according to (10.2):

-Expect@D@Log@fD, 8q, 2<D, fD
-

1
ÅÅÅÅÅÅÅ
q2

Clearly, this expression cannot be correct,  because Fisher Information cannot be negative.
The  reason  why  our  second  computation  is  incorrect  is  because  a  regularity  condition  is
violated! the  condition  that  permits  interchangeability  between  the  differential  and
integral  operators.  In  general,  it  can  be  shown  (see  Silvey  (1975,  p.40))  that  (10.2)  is
equivalent to (10.1) if 

(10.3)�2
ÅÅÅÅÅÅÅÅÅÅÅÅ
�q2  2

0

q

 f  / x = 2
0

q

 �
2 fÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q2  / x

where  f = 1 ê q  is  the  pdf  of  X.  In  this  case,  (10.3)  is  not  true  as  the  value  of  the  pdf  at
x = q  is  strictly  positive.  Indeed,  as  a  general  rule,  the  regularity  conditions  permitting
computation  of Fisher  Information  according to (10.2)  are  violated  whenever  the domain
of  support  of  a  random  variable  depends  on  unknown  parameters,  when  the  density  at
those points is strictly positive. !

10.2 C Automating Computation: FisherInformation

In  light  of  (10.1) and  (10.2),  mathStatica\s  FisherInformation  function  automates
the  computation  of  Fisher  Information.  In  an  obvious  notation,  the  function\s  syntax  is
FisherInformation[q, f],  with  options  Method Ø 1  (default)  for  computation
according to (10.1), or Method Ø 2 for computation according to (10.2).

�  Example 5:  FisherInformation

Suppose that X ~ NHm, 1L. Then, its pdf is given by:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

&- 1ÅÅÅÅ2  Hx-mL2 ; domain@fD = 8x, -�, �< && 8m 1 Reals<;
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The Fisher Information on m may be derived using the one-line command:

FisherInformation@m, fD
1

It  is  well  worth  contrasting  the  computational  efficiency  of  the  two  methods  of
calculation, (10.1) and (10.2):

FisherInformation@m, f, Method Ø 1D êê Timing

80.72 Second, 1<
FisherInformation@m, f, Method Ø 2D êê Timing

80.11 Second, 1<
Generally, the second method is more efficient; however, the second method is only valid
under regularity conditions. In this example, the regularity conditions are satisfied. !

10.2 D Multiple Parameters
The  discussion  so  far  has  been  concerned  with  statistical  information  on  a  single
parameter.  Of course, many statistical  models have  multiple parameters.  Accordingly,  we
now  broaden  the  definition  of  Fisher  Information  (10.1)  to  the  case  when  q  is  a  Hk ä1L
vector  of  unknown  parameters.  Fisher\s  Information  on  q  is  now  a  square,  symmetric
matrix of dimension Hk ä kL. The Hi, jL th  element of the Fisher Information matrix iq  is

(10.4)EBJ � log f HX; qLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�qi

N J � log f HX; qLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q j

NF
for i, j ' 81, e, k<. Notice that when i = j, (10.4) becomes (10.1), and is equivalent to the
Fisher Information on qi . The multi-parameter analogue of (10.2) is given by

(10.5)- EA �2 log f HX; qLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�qi �q j

E
which  corresponds  to  the  Hi, jL th  element  of  iq ,  provided  the  regularity  conditions  hold.
mathStatica\s FisherInformation function extends to the multi-parameter setting.

�  Example 6:  Fisher Information Matrix for Gamma Parameters

Suppose that  X ~ GammaHa, bL,  where q = I a
b M  is a H2ä 1L  vector  of unknown parameters.

Let f Hx; qL denote the pdf of X:

f =
xa-1  &-xêb
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@aD ba ; domain@fD = 8x, 0, �< && 8a > 0, b > 0<;
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The elements of Fisher\s Information on q, a H2ä 2L matrix, are:

FisherInformation@8a, b<, fD
ikjjjj PolyGamma@1, aD 1ÅÅÅ

b

1ÅÅÅ
b

aÅÅÅÅÅ
b
2

y{zzzz
where  the placement  of the  elements  in  the matrix  is important;  for  example,  the  top-left
element corresponds to Fisher\s Information on a. !

10.2 E Sample Information
As  estimation  of  parameters  is  typically  based  on  a  sample  of  data  drawn  from  a
population, it is important to contemplate the amount of information that is contained by a
sample  about  any  parameters.  Once  again,  Fisher\s  formulation  may  be  used  to  measure
statistical  information.  However,  this  time  we  focus  upon  the  joint  distribution  of  the
random sample, as opposed to the distribution of the population from which the sample is
drawn.  We use the symbol  Iq  to denote  the statistical  information contained by a sample,
terming this Sample Information, as distinct from iq  for Fisher Information.1

Let X
9÷÷

= HX1 , e, Xn L  denote  a  random sample  of size n  drawn on a  random variable
X. Denote the joint density of X

9÷÷
 by f Hx9; qL, where scalar q  is an unknown parameter.  The

Sample Information on q is defined as

(10.6)Iq = E
Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅikjjjj � log f IX9÷÷ ; qM

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q

y{zzzz
2 É
Ö
ÑÑÑÑÑÑÑÑÑÑÑ .

If  X
9÷÷

 is  a  collection  of  n  independent  and  identically  distributed  (iid)  random  variables,
each  with  density  f Hxi ; qL  Hi = 1, e, nL,  equivalent  in  functional  form,  then  the  joint
density  of  the  collection  X

9÷÷
 is  given  by  f Hx9; qL = ¤i=1

n f Hxi ; qL.  Furthermore,  if  the
regularity condition EAI � log f HX; qLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

�q
ME = 0 is satisfied, then

(10.7)

Iq =  E
Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅikjjjj �ÅÅÅÅÅÅÅÅÅ

�q
 log¤

i=1

n
f HXi ; qLy{zzzz

2 É
Ö
ÑÑÑÑÑÑÑÑÑÑÑ

=  
i=1

n
E
ÄÇÅÅÅÅÅÅÅÅJ � log f HXi ; qLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

�q
N2ÉÖÑÑÑÑÑÑÑÑ

=   n iq .

If it is valid to do so, it is well worth exploiting (10.7), as the derivation of Iq  through the
multivariate  expectation (10.6) can be difficult.  For example,  for n  observations collected
on  X ~ LindleyHdL,  the  Sample  Information  is  simply  n id ,  where  id  was  derived  in
Example  1.  On  the  other  hand,  for  models  that  generate  observations  according  to
underlying regimes  (e.g. the censoring model  discussed  in Example  2  is of this type),  the
relationship  between  Fisher  Information  and  Sample  Information  is  generally  more
complicated  than  that  described  by  (10.7),  even  if  the  random  sample  consists  of  a
collection of iid random variables.
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10.3 Best Unbiased Estimators

10.3 A The CramérJRao Lower Bound
Let  q  denote  the  parameter  of  a  statistical  model,  and  let  gHqL  be  some  differentiable
function of q that we are interested in estimating. The CramérJRao Lower Bound (CRLB)
establishes  a  lower  bound  below  which  the  variance  of  an  unbiased  estimator  of  gHqL
cannot  go.  Often  the  CRLB  is  written  in  the  form  of  an  inequality! the  CramérJRao
Inequality.  Let g̀  denote an unbiased estimator  of gHqL  constructed from a random sample
of n observations. Then, subject to some regularity conditions, the CramérMRao Inequality
is given by

(10.8)VarHg̀L ¥ J �gHqLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q

N2 ì Iq

where Iq  denotes Sample Information  (§10.2 E). If we are interested in estimating q,  then
set gHqL = q, in which case (10.8) simplifies to

(10.9)VarHq`L ¥ 1 ê Iq

where q
`
 is an unbiased estimator of q. When estimating gHqL, the CRLB is the quantity on

the right-hand side of (10.8); similarly, when estimating q, the CRLB is the right-hand side
of (10.9). The inverse relationship between the CRLB and Sample Information is intuitive.
After all, the more statistical information that a sample contains on q, the better should an
(unbiased)  estimator  of  q  (or  gHqL)  perform.  In  our  present  context,  hbetter\  refers  to
smaller variance.

If  q,  or  gHqL,  represent  vectors  of  parameters,  say  q  is  Hk ä1L  and  gHqL  is  Hmä 1L  with
m § k,  then  the  CRLB  expresses  a  lower  bound  on  the  variance-covariance  matrix  of
unbiased estimators. In this instance, (10.8) becomes

(10.10)VarcovHg̀L r G ä Iq
-1 ä GT

where the HmäkL matrix of derivatives

G = �gHqLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ�qT .

Equation (10.9) becomes

(10.11)VarcovHq`L r Iq
-1

where  the  notation  A r B  indicates  that  A - B  is  a  positive  semi-definite  matrix,  and  Iq
-1

denotes  the  inverse  of  the  Sample  Information  matrix.  For  proofs  of  the  CramérMRao
Inequality  for  both  scalar  and  vector  cases,  plus  discussion  on  the  regularity  conditions,
see Silvey (1975), Mittelhammer (1996), or Gourieroux and Monfort (1995).
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�  Example 7:  The CRLB for the Poisson Parameter

Suppose that X ~ PoissonHlL. Derive the CRLB for all unbiased estimators of l.

Solution: Let f Hx; lL denote the pmf of X:

f =
&-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

;

domain@fD = 8x, 0, �< && 8l > 0< && 8Discrete<;
The  right-hand  side  of  (10.9)  gives  the  general  formula  for  the  CRLB  for  unbiased
estimators.  Thus,  for  random  samples  of  size  n  drawn  on  X,  the  CRLB  for  the  Poisson
parameter l is:

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n FisherInformation@l, fD
l
ÅÅÅÅ
n

where  we  have  exploited  the  relationship  between  Sample  Information  and  Fisher
Information given in (10.7). !

�  Example 8:  The CRLB for the Inverse Gaussian Mean and Variance

Let X ~ InverseGaussianHm, lL, and let q = I m
l M. Derive the CRLB for unbiased estimators

of gHqL, where

gHqL = gHm, lL =
ikjjj m

m3 êl
y{zzz .

Solution: Enter the pdf of X:

f = $%%%%%%%%%%%%%%%%l
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p x3

ExpA-l
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2  x

E;
domain@fD = 8x, 0, �< && 8m > 0, l > 0<;

The CRLB for q is equal to the H2ä 2L matrix:

CRLB = Inverse@n FisherInformation@8m, l<, fDD
ikjjjjj

m3

ÅÅÅÅÅÅ
n l 0

0
2 l2

ÅÅÅÅÅÅÅÅ
n

y{zzzzz
To find the CRLB for gHm, lL = Hm, m3 êlLT , a H2ä1L vector, the right-hand side of (10.10)
must  be  evaluated.  First,  we derive  the H2ä 2L  matrix  of derivatives  G = �gHqL ê�qT  using
the mathStatica function Grad:
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G = GradA9m,
m3

ÅÅÅÅÅÅÅ
l

=, 8m, l<E
ikjjj 1 0

3 m2

ÅÅÅÅÅÅÅÅl - m3

ÅÅÅÅÅl2

y{zzz
Then, the CRLB is given by the H2ä2L matrix:

G.CRLB.Transpose@GD êê Simplify

ikjjjjj
m3

ÅÅÅÅÅÅ
n l

3 m5

ÅÅÅÅÅÅÅÅ
n l2

3 m5

ÅÅÅÅÅÅÅÅ
n l2

m6 H2 l+9 mLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n l3

y{zzzzz
10.3 B Best Unbiased Estimators
Suppose that g̀  is an unbiased estimator of gHqL that satisfies all regularity conditions,  and
that  VarHg̀L  attains  the  CRLB.  In  this  event,  we  can  do  no  better  (in  terms  of  variance
minimisation) by adopting another unbiased estimator of gHqL; consequently, g̀ is preferred
over all other unbiased estimators. Because VarHg̀L is equivalent to the CRLB, g̀ is referred
to as the Best Unbiased Estimator (BUE) of gHqL.
�  Example 9:  The BUE of the Poisson Parameter

Suppose that X ~ PoissonHlL, with pmf:

f =
&-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

; domain@fD = 8x, 0, �< && 8l > 0< && 8Discrete<;
Let HX1 , e, Xn L denote a random sample of size n drawn on X. We have already seen that
the CRLB for unbiased estimators of l is given by l ên (see Example 7). Consider then the
estimator l

`
= 1ÅÅÅÅn  i=1

n Xi = X
êêê

, the sample mean. Whatever the value of index i, Xi  is a copy
of X, so the mean of l

`
 is given by:

1
ÅÅÅÅ
n

 0
i=1

n

Expect@x, fD
l

In addition, because Xi  is independent of Xj  for all i � j, the variance of l
`
 is given by:

1
ÅÅÅÅÅÅÅ
n2

 0
i=1

n

Var@x, fD
l
ÅÅÅÅ
n

From  these  results,  we  see  that  l
`

 is  an  unbiased  estimator  of  l,  and  its  variance
corresponds to the CRLB. Thus, l

`
 is the BUE of l. !
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�  Example 10:  Estimation of the Extreme Value Scale Parameter

Let the continuous random variable X have the following pdf:

f =
1
ÅÅÅÅ
s

 ExpA-
x
ÅÅÅÅ
s

- &- xês E;
domain@fD = 8x, -�, �< && 8s > 0<;

Thus, X ~ ExtremeValue, with unknown scale parameter s ' !+ . The CRLB for unbiased
estimators of s is given by:

CRLB =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n FisherInformation@s, fD

6 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n H6 H-1 + EulerGammaL2 + p2L

where n denotes the size of the random sample drawn on X. In numeric terms:

CRLB êê N

0.548342 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

Now consider the expectation EA C X C E:
Expect@If@x < 0, -x, xD, fD
s HEulerGamma - 2 ExpIntegralEi@-1DL

Let  g  denote  EulerGamma,  and  let  EiH-1L  denote  ExpIntegralEi[-1].  Knowing
EA C X C E, it is easy to construct an unbiased estimator of the scale parameter s, namely

s̀ =  1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn Hg - 2 EiH-1LL  
i=1

n C Xi C
=  0.984268ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn  

i=1

n C Xi C
where  g  and  EiH-1L  have  been  assigned  their  respective  numeric  value.  Following  the
method of Example 9, the variance of s̀ is:

i=1
n Var@If@x < 0, -x, xD, fD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn HEulerGamma - 2 ExpIntegralEi@-1DLL2 êê N

0.916362 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

Clearly, VarHs̀L > CRLB, in which case s̀ is not the BUE of s. !
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10.4 Sufficient Statistics

10.4 A Introduction

Unfortunately,  there are many  statistical  models  for which  the BUE of a given parameter
does not exist.2 In this case,  even if it is straightforward  to construct unbiased estimators,
how  can  we  be  sure  that  the  particular  estimator  we  select  has  least  variance?  After  all,
unless  we inspect  the variance of every unbiased estimator!keep  in mind that this class
of estimator  may well  have  an infinite  number  of members! the  least variance  unbiased
estimator  may simply not  happen to be amongst  those  we examined.  Nevertheless,  if  our
proposed  estimator  has  used  all  available  statistical  information  on  the  parameter  of
interest, then intuition suggests that our selection may have least variance. A statistic that
retains all information about a parameter is said to be sufficient for that parameter.

Let  X  denote  the  population  of  interest,  dependent  on  some  unknown  parameter  q
(which may be a vector). Then, the hinformation\ referred to above is that which is derived
from  a  size  n  random  sample  drawn  on  X,  the  latter  denoted  by  X

9÷÷
= HX1 , e, Xn L.  A

sufficient  statistic S  is a function of the random sample; that is, S = SHX9÷÷ L. Obviously SHX9÷÷ L
is  a random variable,  but  for  a  particular  set of  observed  data, x9 = Hx1 , e, xn L,  SHx9L  must
be numeric.

A statistic S, whose values we shall denote by s, is sufficient  for a parameter q if the
conditional  distribution  of  X

9÷÷
 given  S = s  does  not  depend  on  q.  Immediately,  then,  the

identity  statistic  S = X
9÷÷
 must  be sufficient;  however,  it  is  of no use  as it  has dimension  n.

This  is  because  the  key  idea  behind  sufficiency  is  to  reduce  the  dimensionality  of  X
9÷÷
,

without  losing  information.  Finally,  if  another  statistic  T = THX9÷÷ L  is  such  that  it  loses  all
information  about  a  parameter,  then  it  is  termed  ancillary  for  that  parameter.  It  is  also
possible that a statistic U = UHX9÷÷ L can be neither sufficient nor ancillary for a parameter.

�  Example 11:  Sufficiency in Bernoulli Trials

Let  X ~ BernoulliHpL,  where  p = PHX = 1L  denotes  the  success  probability.  Given  a
random sample X

9÷÷
, we would expect the number of successes S = i=1

n Xi ~ BinomialHn, pL
to  be influential  when estimating  the success probability p.  In fact,  for  values xi ' 80, 1<,
and  value  s ' 80, 1, e, n<  such  that  s = i=1

n xi ,  the  conditional  distribution  of  X
9÷÷

 given
S = s is

PIX9÷÷ C S = sM = PHX1 = x1 , e, Xn = xn LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPHS = sL = pn H1-pLn-s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJnsN pn H1-pLn-s

= 1ÅÅÅÅÅÅÅÅÅÅJnsN .

As  the  conditional  distribution  does  not  depend  on  p,  the  one-dimensional  statistic
S = i=1

n Xi  is  sufficient  for  p.  On  the  other  hand,  the  statistic  T,  defined  here  as  the
chronological  order in which observations occur, contributes nothing to our knowledge of
the  success  probability:  T  is  ancillary  for  p.  A  third  statistic,  the  sample  median  M ,  is
neither sufficient for p, nor is it ancillary for p.
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It  is  interesting  to  examine  the  loss  in  Sample  Information  incurred  as  a  result  of
using M  to estimate p. For simplicity, set n = 4. Then, the sample sum S ~ BinomialH4, pL,
with pmf f Hs; pL:

f = Binomial@4, sD ps H1 - pL4-s;

domain@fD = 8s, 0, 4< && 80 < p < 1< && 8Discrete<;
From  Example  3  of  Chapter  9,  when  n = 4,  the  sample  median  M  has  pmf  gHm, pL,  as
given in Table 2.

PHM = mL : PHS § 1L PHS = 2L PHS ¥ 3L
m : 0 1ÅÅÅÅ2 1

Table 2:  The pmf of M  when n = 4

We enter the pmf of M in List Form:

g = 8Prob@1, fD, f ê. s Ø 2, 1 - Prob@2, fD<
8-H-1 + pL3 H1 + 3 pL, 6 H1 - pL2 p2, 4 p

3 - 3 p
4<

with domain of support:

domain@gD = 9m, 90, 1
ÅÅÅÅ
2
, 1== && 8Discrete<;

To compute the Sample Information on p, we use the fact that it is equivalent to the Fisher
Information on p per observation on the sufficient statistic S:

FisherInformation@p, fD
4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p - p

2

Similarly,  the  amount  of  Sample  Information  on  p  that  is  captured  by  statistic  M  is
equivalent to the Fisher Information on p per observation on M :

FisherInformation@p, gD
-

24 H4 - p + p
2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-4 + 3 pL H1 + 3 pL
Figure 2 plots the amount of Sample Information captured by each statistic against values
of  p.  Evidently,  the  farther  the  true  value  of  p  lies  from  1ÅÅÅÅ2 ,  the  greater  is  the  loss  of
information about p incurred by the sample median M .
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Fig. 2:  Information on p due to statistics S (!) and M  (M M M) when n = 4

10.4 B The Factorisation Criterion
The Factorisation Criterion  provides a way to identify sufficient statistics. Once again, let
X  denote  the  population  of  interest,  dependent  on some  unknown parameter  q,  and  let  X

9÷÷
denote  a  size  n  random  sample  drawn  on  X  with  joint  density  f*Hx9; qL.  A  necessary  and
sufficient condition for a statistic S = SHX9÷÷ L to be sufficient for q is that the density of X

9÷÷
 can

be factored into the product,

(10.12)f*Hx9; qL = g* Hs; qL h*Hx9L
where g* Hs; qL denotes the density of S, and h*Hx9L is a non-negative function that does not
involve q; for discussion of the proof of this result, see Stuart and Ord (1991, Chapter 17).
The factorisation  (10.12) requires  knowledge  of the density  of S  which can,  on occasion,
add unnecessary difficulties. Fortunately, (10.12) can be weakened to

(10.13)f*Hx9; qL = gHs; qL hHx9L
where gHs; qL is a non-negative function (not necessarily a density  function), and hHx9L is a
non-negative  function  that  does  not  involve  q.  From  now  on,  we  shall  adopt  (10.13)  to
identify sufficient statistics.3

The mathStatica  function  Sufficient[ f]  constructs  the joint  density  f*Hx9; qL  of
a  size  n  random  sample  X

9÷÷
= HX1 , e, Xn L  drawn  on  a  random  variable  X,  and  then

simplifies  it.  The  output  from  Sufficient  can  be  useful  when  attempting  to  identify
sufficient statistics for a parameter.

Finally,  sufficient  statistics  are  not  unique;  indeed,  if  a  statistic  S  is  sufficient  for  a
parameter  q,  then so too  is a one-to-one function  of S.  To illustrate,  suppose  that statistic
S = Hi=1

n Xi , i=1
n  Xi

2 L is sufficient for a parameter q. Then, T = IXêêê
, 1ÅÅÅÅÅÅÅÅÅÅn-1  i=1

n  HXi - X
êêêL2 M is

also sufficient for q, as T and S are related by a one-to-one transformation.
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�  Example 12:  A Sufficient Statistic for the Poisson Parameter

Let X ~ PoissonHlL with pmf f Hx; lL:
f =

&-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

; domain@fD = 8x, 0, �< && 8l > 0< && 8Discrete<;
The  joint  density  of  X

9÷÷
,  a  random  sample  of  size  n  drawn  on  X,  is  given  by  f*Hx9; lL =¤i=1

n f Hxi ; lL. This is derived by Sufficient as follows:

Sufficient@fD
)-n l l

i=1
n

xi 0
i=1

n

1
ÅÅÅÅÅÅÅÅÅÅ
xi !

If  we  define  S = i=1
n Xi ,  and  let  gHs; lL = 7-n l ls  and  hHx9L = ¤i=1

n 1ÅÅÅÅÅÅÅÅxi !
,  then,  in  view  of

(10.13), it follows that S is sufficient for l. !

�  Example 13:  Sufficient Statistics for the Normal Parameters

Let X ~ NHm, s2 L with pdf f Hx; m, s2 L:
f =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 ExpA-
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E;
domain@fD = 8x, -�, �< && 8m 1 Reals, s > 0<;

Let  X
9÷÷

 denote  a  random  sample  of  size n  drawn  on  X.  Identify  sufficient  statistics  when:
(i)  m  is unknown  and s2  is  known, (ii)  m  is known and  s2  unknown, (iii)  both m  and s2

are unknown, and (iv) m = s = q is unknown.

Solution: In each case we must inspect the joint density of X
9÷÷
 produced by:

Sufficient@fD
)-

n m2 -2 m 
i=1
n

x
i

+
i=1
n

x
i

2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2 H2 pL-nê2 s-n

(i) Define S1 = i=1
n Xi . Because the value of s2  is known, let

gHs1 ; mL =  expJ- n m2 - 2 m s1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2 N
hHx9L =  exp

ikjjjj- 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2  

i=1

n
xi

2 y{zzzz H2 pL-nê2  s-n .

Then, by (10.13), it follows that S1  is sufficient for m.
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(ii) Define S2 = n m2 - 2 m i=1
n Xi + i=1

n  Xi
2 = i=1

n  HXi - mL2 . As m is known, let

gHs2 ; s2 L =  expI- s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2 M s-n

hHx9L =  H2 pL-nê2 .

Since  gHs2 ; s2 L hHx9L  is  equivalent  to  the  joint  density  of  X
9÷÷
,  it  follows  that  S2  is

sufficient for s2 .

(iii) Define S3 = HS31 , S32 L = Hi=1
n Xi , i=1

n Xi
2 L. Setting

gHs3 ; m, s2 L =  expJ- n m2 - 2 m s31 + s32ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2 N s-n

hHx9L =  H2 pL-nê2
it follows that the two-dimensional statistic S3  is sufficient for Hm, s2 L.

(iv) For m = s = q, and S3  as defined in part (iii), set

gHs3 ; qL =   expikjj 2 q s31 - s32ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 q2
y{zz q-n

hHx9L =  7-nê2 H2 pL-nê2 .

Then,  the  two-dimensional  statistic  S3  is  sufficient  for  the  scalar  parameter  q.  This
last  example  serves  to  illustrate  a  more  general  point:  the  number  of  sufficient
statistics need not match the number of unknown parameters. !

10.5 Minimum Variance Unbiased Estimation

10.5 A Introduction
So far,  we have  armed ourselves  with  a  sufficient  statistic  that  captures  all  the statistical
information  that  exists  about  a  parameter.  The  next  question  is  then  how  to  use  that
statistic  to  construct  an  unbiased  estimator  of  the  unknown  parameter.  Intuition  suggests
that  such  an  estimator  should  distinguish  itself  by  having  least  variance.  In  other  words,
the  estimator  should  be  a  minimum  variance  unbiased  estimator  (MVUE).  This  section
focuses  on  the  search  for  the  MVUE  of  a  parameter.  Important  to  this  development  are
theorems  due  to  Rao  and  Blackwell  (§10.5  B)  and  Lehmann  and  Scheffé  (§10.5  D),  and
the notion of a complete sufficient statistic (§10.5 C).
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10.5 B The RaoJBlackwell Theorem

The following theorem, due to Rao and Blackwell, is critical in the search for a MVUE:

Theorem (RaoJBlackwell):  Let S = SHX9÷÷ L  be a sufficient  statistic for a parameter  q,  and let
another statistic T = THX9÷÷ L be an unbiased estimator of gHqL with finite variance. Define the
function g̀HsL = E@T C S = sD. Then:

(i) E@g̀HSLD = gHqL; that is, g̀HSL is an unbiased estimator of gHqL.
(ii) VarHg̀HSLL § VarHTL.
Proof:  See,  for  example,  Silvey  (1975,  pp. 28M29).  For  discussion,  see  Hogg  and  Craig
(1995, p.326).

�  Example 14:  A Conditional Expectation

Let  X ~ NHm, 1L,  and  let  X
êêê

 denote  the  sample  mean  from  a  random  sample  of  size
n = 2 r + 1  drawn  on  X  (for  integer  r ¥ 1).  Derive  E@T C X

êêê
= xêêD,  where  T = THX9÷÷ L  denotes

the sample median.

Solution (partial):  We know from Example 13(i) that S = i=1
n Xi  is sufficient for m. Thus,

X
êêê

 will  also  be  sufficient  for  m  as  it  is  a  one-to-one  function  of  S.  It  follows  that
E@T C X

êêê
= xêêD  can  only  be  some  function  of  xêê,  say  g̀HxêêL;  that  is,  E@T C X

êêê
= xêêD = g̀HxêêL.  The

next step is to try and narrow down the possibilities for g̀HxêêL. This is where part (i) of the
RaoMBlackwell  Theorem  is  used,  for  after  deriving  E@TD = gHmL,  we  may  then  be  able  to
deduce those functions g̀HxêêL satisfying E@g̀HXêêêLD = gHmL, as we know X

êêê
~ NHm, 1ÅÅÅÅn L.

Our strategy requires that we determine E@TD. Enter f , the pdf of X:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 ExpA-
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
E;

domain@fD = 8x, -�, �< && 8m 1 Reals<;
In  a  sample  of  size  n = 2 r + 1,  the  sample  median  T  corresponds  to  the  Hr + 1L th  order
statistic. We can use OrderStat to determine the pdf of T:

g = OrderStat@r + 1, f, 2 r + 1D
2

- 1ÅÅÅÅ
2

-2 r )- 1ÅÅÅÅ
2

Hx-mL2 I1 - ErfA x-mÅÅÅÅÅÅÅè!!!!
2

E2Mr H1 + 2 rL!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!

p r!2

domain@gD = 8x, -�, �< && 8m 1 Reals<;
Transforming T Ø Q, such that Q = T - m, yields the pdf of Q:
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h = Transform@q ã x - m, gD
2

- 1ÅÅÅÅ
2

-2 r )- q
2

ÅÅÅÅÅÅ
2 I1 - ErfA qÅÅÅÅÅÅÅè!!!!

2

E2Mr H1 + 2 rL!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!

p r!2

domain@hD = 8q, -�, �<;
From this, we find E@QD:

Expect@q, hD
0

Thus,  E@QD = E@T - mD = 0;  that  is,  E@TD = gHmL = m.  Substituting  into  part  (i)  of
RaoMBlackwell\s Theorem finds E@g̀ HXêêêLD = m.

Now it is also true that E@XêêêD = m, as X
êêê

~ NHm, 1ÅÅÅÅn L. Therefore, one solution for g̀HxêêL is
the identity function g̀HxêêL = xêê; that is,

E@T C X
êêê

= xêêD = xêê.

However,  we  cannot  at  this  stage  eliminate  the  possibility  of  other  solutions  to  the
conditional  expectation  (at  least  not  under  the  RaoMBlackwell  Theorem).  In  fact,  for  our
solution to be unique,  the concept of a complete sufficient statistic  is required.  We turn to
this next. !

10.5 C Completeness and MVUE
Suppose that a statistic S is sufficient for a parameter q. Let hHSL denote any function of S
such that E@hHSLD = 0; note that the expectation is taken with respect to distributions of S.
If  this  expectation  only  holds  in  the  degenerate  case  when  hHSL = 0,  for  all  q,  then  the
family of  distributions of  S is complete.4 A slightly different nomenclature  is to refer to S
as  a  complete  sufficient  statistic.  We  will  not  concern  ourselves  with  establishing  the
completeness  of  a  sufficient  statistic;  in fact,  with the  exception  of the  sufficient  statistic
derived  in Example  13(iv),  every  other  sufficient  statistic  we  have  encountered  has  been
complete.

Completeness  is important  because  of the uniqueness  it confers  on expectations of a
sufficient statistic. In particular, if S is a complete sufficient statistic such that E@SD = gHqL,
then  there  can  be  no  other  function  of  S  that  is  unbiased  for  gHqL.  In  other  words,
completeness  ensures that S  is the unique unbiased estimator  of gHqL. We may now finish
Example 14. Since the sufficient statistic S = i=1

n Xi  is complete, our tentative solution is,
in fact, the only solution. Thus, E@T C X

êêê
= xêêD = xêê.

The presence  of a complete  sufficient  statistic in the RaoMBlackwell  Theorem yields
a  MVUE.  To  see  this,  let  S  be  a  complete  sufficient  statistic  for  q.  Now,  for  any  other
statistic T  that is unbiased for gHqL, the RaoMBlackwell Theorem yields, without exception,
the function g̀HSL, which is unbiased for gHqL; that is, E@g̀HSLD = gHqL. By completeness, g̀HSL
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is  the  unique  unbiased  estimator  of  gHqL  amongst  all  functions  of  S.  Furthermore,  by  the
RaoMBlackwell  Theorem,  g̀HSL  has  variance  no  larger  than  that  of  any  other  unbiased
estimator of gHqL. In combination, these facts ensure that g̀HSL is the MVUE of gHqL.
�  Example 15:  Estimation of Probabilities

Let random variable X ~ ExponentialHlL, with pdf f Hx; lL:
f =

1
ÅÅÅÅ
l

&- xêl ; domain@fD = 8x, 0, �< && 8l > 0<;
and  let  X

9÷÷
= HX1 , e, Xn L  denote  a  random sample  of size n  drawn  on X.  In this  example,

we shall derive the MVUE of the survival function gHlL = PHX > kL, namely:

g = 1 - Prob@k, fD
)- kÅÅÅÅl

where k  is a known positive constant.  Estimation of probabilistic quantities,  such as gHlL,
play  a  prominent  role  in  many  continuous  time  statistical  models,  especially  duration
models (e.g. see Lancaster (1992)).

The first  thing we must  do is  to identify  a  complete  sufficient  statistic  for  l.  This is
quite straightforward after we apply Sufficient:

Sufficient@fD
)-


i=1
n

x
iÅÅÅÅÅÅÅÅÅÅÅÅÅÅl l-n

Here, S = i=1
n Xi  fills our requirements (we state completeness of S without proof). Next,

consider  statistics  T = THX9÷÷ L  that  are  unbiased for  gHlL.  One  such  statistic  is the  Bernoulli
random variable defined as5

T =
lomno 0 if Xn § k

1 if Xn > k.

Then, let

(10.14)g̀HsL = E@T C S = sD = PHT = 1 C S = sL = PHXn > k C S = sL.
By  the  RaoMBlackwell  Theorem,  g̀HSL  is  the  MVUE  of  gHlL.  The  next  step  is  therefore
clear. We must find PHXn > k C S = sL.

To derive the distribution of Xn C HS = sL,  we first  require the bivariate distribution  ofHS, Xn L.  Now  this  bivariate  distribution  is  found  from  the  joint  density  of  the  n  random
variables  in  the  random  sample  X

9÷÷
.  Superficially  the  problem  appears  complicated:  we

must  transform  X
9÷÷

 to  HS, X2 , e, Xn L,  followed  by  n - 2  integrations  to  remove  the
unwanted  variables  HX2 , e, Xn-1 L.  However,  if  we define  SHnL = i=1

n-1 Xi  (the  sum  of  the
first  n - 1  components  of  X

9÷÷
),  with  density  fHnL HsHnL ; lL,  then,  by  independence,  the  joint
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density of HSHnL , Xn L is equal to the product fHnL HsHnL ; lL f Hxn ; lL. The joint density of HS, Xn L
is then found by a simple transformation, because S = SHnL + Xn . Determining fHnL HsHnL ; lL is
the  key;  fortunately,  §4.5  contains  a  number  of  useful  results  concerning  the  density  of
sums  of  random  variables.  For  our  particular  case,  from  Example  22  of  Chapter  4,  we
know that SHnL ~ GammaHn - 1, lL. Thus, the joint density of HSHnL , Xn L is given by:

h1 =
ikjjjj sna-1  &-snêb

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@aD ba ê. 8a Ø n - 1, b Ø l<y{zzzz * Hf ê. x Ø xnL;

domain@h1D =88sn, 0, �<, 8xn, 0, �<< && 8l > 0, n > 1, n 1 Integers<;
Transforming HSHnL , Xn L to HS, Xn L, where S = SHnL + Xn , gives the pdf of HS, Xn L:

h2 = Transform@8s ã sn + xn, y ã xn<, h1D ê. y Ø xn

)- sÅÅÅÅl l-n Hs - xnL-2+n

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@-1 + nD

The domain of support for HS, Xn L is all points in !+
2  such that 0 < xn < s < �. Thus:

domain@h2D =88s, xn, �<, 8xn, 0, s<< && 8l > 0, n > 1, n 1 Integers<;
The conditional distribution Xn C HS = sL is given by:

h3 = Conditional@xn, h2D
domain@h3D = 8xn, 0, s< && 8n > 1, n 1 Integers<;

' Here is the conditional pdf  h2 H xn  À s L:
s
1-n G@nD Hs - xnL-2+n

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@-1 + nD

We  now  have  all  the  ingredients  in  place  ready  to  evaluate  g̀HsL = PHXn > k C S = sL
and so determine the functional form of the MVUE:

Simplify@1 - Prob@k, h3D, s > 0D
J1 -

k
ÅÅÅÅ
s

N-1+n

We conclude that g̀HSL, the MVUE of gHlL = 7-kêl , is given by

g̀ =

loooooooom
n
oooooooo

0 if 
i=1

n

Xi § k

ikjjj1 - kÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅi=1
n Xi

y{zzzn-1
if 

i=1

n

Xi > k.

Notice that g̀ is a function of the complete sufficient statistic S = i=1
n Xi . !
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10.5 D Conclusion
In  the  previous  example,  the  fact  that  the  sufficient  statistic  was  complete  enabled  us  to
construct  the  MVUE  of  gHlL  by  direct  use  of  the  RaoMBlackwell  Theorem.  Now,  if  in  a
given problem there exists a complete sufficient statistic, the key feature to notice from the
RaoMBlackwell  Theorem  is  that  the  MVUE  will  be  a  function  of  the  complete  sufficient
statistic. We can, therefore, confine ourselves to examining the expectation of functions of
complete  sufficient  statistics  in  order  to  derive  minimum  variance  unbiased  estimators.
The following theorem summarises:

Theorem (LehmannJScheffé):  Let S  be a complete  sufficient  statistic for  a parameter  q.  If
there is a function of S that has expectation gHqL, then this function is the MVUE of gHqL.
Proof: See, for example, Silvey (1995, p.33). Also, Hogg and Craig (1995, p.332).

�  Example 16:  MVUE of the Normal Parameters

Let X ~ NHm, s2 L and define (see Example 13(iii)),

S =
i
kjjjjjjj
i=1

n
Xii=1

n
Xi

2

y
{zzzzzzz

which is a complete sufficient statistic for Hm, s2 L. Let

T =
ikjjjj X

êêê

s̀2
y{zzzz

where X
êêê

= 1ÅÅÅÅn  i=1
n Xi  denotes the sample mean, and s̀2 = 1ÅÅÅÅÅÅÅÅÅÅn-1  i=1

n HXi - X
êêêL2  is the sample

variance. T  is related one-to-one with S, and therefore it too is complete and sufficient forHm, s2 L. Now we know that

E@TD =
ikjjjj E@XêêêD
E@s̀2 Dy{zzzz =

ikjjj m

s2
y{zzz.

Therefore,  by  the  RaoMBlackwell  and  LehmannMScheffé  theorems,  X
êêê

 is  the  MVUE of  m,
and s̀2  is the MVUE of s2 . !

MVUE  estimation  relies  on  the  existence  of  a  complete  sufficient  statistic  (whose
variance  exists).  Without  such  a  statistic,  the  rather  elegant  theory  encapsulated  in  the
RaoMBlackwell  and  LehmannMScheffé  theorems  cannot  be  applied.  If  it  so  happens  that
MVUE estimation is ruled out, how then do we proceed to estimate unknown parameters?
We can return to considerations based on asymptotically  desirable properties (Chapter 8),
or  choice  based  on decision  loss criteria  (Chapter  9),  or  choice  based  on  maximising  the
content  of  statistical  information  (§10.2).  Fortunately,  there  is  another  estimation
technique!maximum  likelihood  estimation!which  combines  together  features  of  each
of these methods; the last two chapters of this book address aspects of this topic.
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10.6 Exercises
1. Let  the  random  variable  X ~ RayleighHsL,  where  parameter  s > 0.  Derive  Fisher\s

Information on s.

2. Let the random variable X ~ LaplaceHm, sL. Obtain the CRLB for Hm, s2 L.
3. Let the random variable X ~ LindleyHdL. The sample mean X

êêê
 is the BUE of

 gHdL = 2 + dÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d + d2 .

Using Mathematica\s SolveAlways function, show that

 hHdL = H3 d+2L H2 d+1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 dHd+1L
is a linear function of gHdL. Hence, obtain the BUE of hHdL.

4. Let the random variable X ~ LaplaceH0, sL, and HX1 , e, Xn L denote a random sample
of size n collected on X. Show that s̀ = 1ÅÅÅÅn  i=1

n » Xi » is the BUE of s.

5. Referring to Example 10,  show that the estimator sè = 1ÅÅÅÅÅÅÅÅn g  i=1
n Xi  is unbiased for s.

Give reasons as to why s̀, given in Example 10, is preferred to sè  as an estimator of s.

6. Let  X ~ RiemannZetaHrL,  and  let  HX1 , e, Xn L  denote  a  random  sample  of  size  n
drawn on X. Use the Factorisation Criterion to identify a sufficient statistic for r.

7. Let  the  pair  HX, Y L  be  bivariate  Normal  with  E@XD = E@Y D = 0,  VarHXL = VarHY L = 1
and  correlation  coefficient  r.  Use  the  Factorisation  Criterion  to  identify  a  sufficient
statistic for r.

8. Let X ~ GammaHa, bL,  and  let  HX1 , e, Xn L  denote  a  random sample  of size n  drawn
on X. Use the Factorisation Criterion to identify a sufficient statistic for Ha, bL.

9. Using  the  technique  of  Example  15,  obtain  the  MVUE  of  PHX = 0L = 7-l ,  where
X ~ PoissonHlL.
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Chapter 11
Principles of Maximum Likelihood Estimation

11.1 Introduction

11.1 A Review
The  previous  chapter  concentrated  on  obtaining  unbiased  estimators  for  parameters.  The
existence  of  unbiased  estimators  with  minimum  variance! the  so-called  MVUE class  of
estimators! required  the  sufficient  statistics  of  the  statistical  model  to  be  complete.
Unfortunately,  in  practice,  statistical  models  often  falter  in  this  respect.  Therefore,
parameter estimators must be found from other sources. The suitability of estimators based
on  large  sample  considerations  such  as  consistency  and  limiting  Normal  distribution  has
already  been  addressed,  as  has  the  selection  of  estimators  based  on  small  sample
properties dependent upon assumed loss structures. However, in both cases, the estimators
that  arose  did  so  in an ad-hoc  fashion.  Fortunately,  in the  absence  of  complete  sufficient
statistics,  there  are  other  possibilities  available.  Of  particular  interest,  here  and  in  the
following chapter, is the method of Maximum Likelihood (ML). ML techniques provide a
way  to  generate  parameter  estimators  that  share  some  of  the  optimality  properties,
principally asymptotic ones.

§11.2  introduces  the  likelihood  function.  §11.3  defines  the  Maximum  Likelihood
Estimator  (MLE)  and  shows  how  Mathematica  can  be  used  to  determine  its  functional
form.  §11.4  discusses  the  statistical  properties  of  the  estimator.  From  the  viewpoint  of
small  sample  sizes,  the  properties  of  the  MLE  depend  very  much  on  the  particular
statistical  model  in question. However,  from a large sample perspective,  the properties of
the  MLE  are  widely  applicable  and  desirable:  consistency,  limiting  Normal  distribution
and  asymptotic  efficiency.  Desirable  asymptotic  properties  and functional  invariance  (the
Invariance  Property)  help  to  explain  the  popularity  of  ML  in  practice.  §11.5  examines
further the asymptotic properties of the MLE, using regularity conditions to establish these.

The  statistical  literature  on  ML  methods  is  extensive  with  many  texts  devoting  at
least  a chapter  to the topic. The list  of references  that follow offers at least  a sample of a
range of treatments. In rough order of decreasing technical difficulty are Lehmann (1983),
Amemiya  (1985),  Dhrymes  (1970),  Silvey  (1975),  Cox  and  Hinkley  (1974),  Stuart  and
Ord  (1991),  Gourieroux  and  Monfort  (1995),  Cramer  (1986),  McCabe  and  Tremayne
(1993),  Nerlove  (2002),  Mittelhammer  (1996) and  Hogg and  Craig (1995).  Currie  (1995)
gives  numerical  examples  of  computation  of  ML  estimates  using  Version  2  of
Mathematica, while Rose and Smith (2000) discuss computation under Version 4.



11.1 B SuperLog

Before  embarking,  we  need  to  activate  the  mathStatica  function  SuperLog.  This  tool
enhances  Mathematica_s  ability  to  simplify  Log@Product@DD  expressions.  For
instance, consider the following expression:

f = !
i=1

n H1 - qL1 - xi  qxi ; Log@fD
LogA$

i=1

n H1 - qL1-xi qxi E
Mathematica has not simplified Log[f] at all. However, if we turn SuperLog on:

SuperLog@OnD
1 SuperLog is now On.

and try again:

Log@fD
n Log@1 - qD + H-Log@1 - qD + Log@qDL (

i=1

n

xi

we obtain a significant improvement on Mathematica_s previous effort. SuperLog is part
of  the  mathStatica  suite.  It  modifies  Mathematica_s  Log  function  so  that
Log@Product@DD  `objects_  or  `terms_  get  converted  into  sums  of  logarithms.  At  any
stage, this enhancement may be removed by entering SuperLog@OffD. 

11.2 The Likelihood Function
In this section, we define the likelihood function and illustrate its construction in a variety
of  settings.  To  establish  notation,  let  X  denote  the  variable(s)  of  interest  that  has  (or  is
assumed  to have) a pdf f Hx; qL dependent  upon a Hk ä 1L parameter  q # Q Õ !k  whose true
value  q0  is  unknown;  we  assume  that  the  functional  form  of  f  is  known.  Next,  we  letHX1 , c, Xn L  denote  a random sample  of size n  drawn on X.  It  is assumed that the  pdf  of
the random sample f1, c, n Hx1 , c, xn ; qL can be derived from the knowledge we have about
f ,  and  hence  that  the  joint  density  depends  on  the  unknown  parameter  q.  A key  point  is
that  the  likelihood  function  is  mathematically  equivalent  to  the  joint  distribution  of  the
sample.  Instead  of  regarding  it  as  a  function  of  the  Xi ,  the  likelihood  is  interpreted  as  a
function  of  q  defined  over  the  parameter  space  Q  for  fixed  values  of  each  Xi = xi .  The
likelihood for q is thus

(11.1)LHq # x1 , c, xn L ª f1, c, n Hx1 , c, xn ; qL.
Often, we will shorten the notation for the likelihood to just LHqL. Construction of the joint
pdf  may at  first  sight  seem a daunting task.  However,  if  the variables  in HX1 , c, Xn L are
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mutually independent, then the joint pdf is given by the product of the marginals,

(11.2)f1, c, n Hx1 , c, xn ; qL = ¤
i=1

n

f Hxi ; qL
which usually makes it easy to construct the joint pdf and hence the likelihood for q.

We often  need to distinguish  between two forms of the likelihood for  q, namely,  the
likelihood  function, and the observed likelihood.  The likelihood function  is defined as the
likelihood  for  q  given  the  random  sample  prior  to  observation;  it  is  given  by
LHq # X1 , c, Xn L, and is a random variable. Where there is no possibility of confusion,  we
use `likelihood_ and `likelihood function_ interchangeably.  The second form, the observed

likelihood, is defined as the likelihood for q evaluated for a given sample of observed data,
and it is not random. The following examples illustrate the construction of the likelihood,
and its observed counterpart.

�  Example 1:  The Likelihood and Observed Likelihood for an Exponential Model

Let random variable X ~ ExponentialHqL, with pdf:

f =
1
ÅÅÅÅ
q

&-xêq; domain@fD = 8x, 0, �< && 8q > 0<;
Let HX1 , c, Xn L denote a random sample of size n collected on X. Then, the likelihood for
q  is  equivalent  to  the  joint  pdf  of  the  random  sample  (11.1),  and  as  HX1 , c, Xn L  are
mutually independent, then it can be constructed as per (11.2):

Lq = !
i=1

n Hf ê. x Ø xiL
$
i=1

n
%- xiÅÅÅÅÅÅq

ÅÅÅÅÅÅÅÅÅÅÅÅ
q

Given a random sample of size n = 4 on X, let us suppose that the observed data are:

data = 81, 2, 1, 4<;
There are two main methods to construct the observed likelihood for q:

Method 1:  Substitute the data into the likelihood:

Lq ê. 8n Ø Length@dataD, xi_ ß dataPiT<
%-8êq

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
q4

Note  the  use of delayed  replacement  ß  (which  is entered as :>).  By contrast,  immediate

replacement Ø (which is entered as ->) would fail.
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Method 2:  Substitute the data into the density:

Times üü Hf ê. x Ø dataL
%-8êq

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
q4

Here,  the  immediate  replacement  f ê. x Ø data  yields  a  list  of  empirical  densities8 f H1; qL, f H2; qL, f H1; qL, f H4; qL<. The observed likelihood for q is obtained by multiplying
the  elements  of  the  list  together  using  Times  (the  üü  is  `shorthand_  for  the  Apply
function). !

� Example 2:  The Likelihood and Observed Likelihood for a Bernoulli Model

Now suppose that X is discrete, and, in particular, that X ~ BernoulliHqL:
f = qx  H1 - qL1-x;

domain@fD = 8x, 0, 1< && 80 < q < 1< && 8Discrete<;
where  0 < q < 1. For HX1 , c, Xn L,  a random sample  of size n  drawn on X,  the  likelihood
for  q  is  equivalent  to  the  joint  pmf  of  the  random sample  (11.1),  and  as  HX1 , c, Xn L  are
mutually independent, it can be constructed as per (11.2):

Lq = !
i=1

n Hf ê. x Ø xiL
$
i=1

n H1 - qL1-xi qxi

Suppose that observations were recorded as follows:

data = 81, 1, 0, 1, 0, 0, 1, 1, 0<;
We again construct the observed likelihood using our two methods:

Method 1:  Substitute the data into the likelihood:

!
i=1

n Hf ê. x Ø xiL ê. 8n Ø Length@dataD, xi_ ß dataPiT<
H1 - qL4 q5

Method 2:  Substitute the data into the pmf:

Times üü Hf ê. x Ø dataL
H1 - qL4 q5
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�  Example 3:  The Likelihood and Observed Likelihood for a Latent Variable Model

There  are many  instances  where care  is needed  in deriving the likelihood.  One important
situation is when the variable of interest is latent (meaning that it cannot be observed), but
a variable that is functionally related to it can be observed. To construct the likelihood for
the parameters in a statistical model for a latent variable, we need to know the function (or
the sampling scheme) that relates the observable variable to the latent variable.

Let  X  be  the  examination  mark  of  a  student  in  percent;  thus  X = x # @0, 100D.
Suppose that the mark is only revealed to us if the exam is passed;  that is, X  is disclosed
provided X ¥ 50. On the other hand, if the student fails the exam, then we receive a datum
of  0  (say)  and  know  only  that  X < 50.  Thus,  X  is  only  partially  observed  by  us  and
therefore it is latent. Let Y  denote the observed variable, which is related to X by

(11.3)Y =
lomno X if X # @50, 100D

0 if X # @0, 50L.
We propose to model X  with the (scaled)  Beta distribution, X ~ 100 ä BetaHa, bL. Let

f Hx; qL denote the statistical model for X:

f =
H xÅÅÅÅÅÅÅ100 La-1

 H1 - xÅÅÅÅÅÅÅ100 Lb-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
100 Beta@a, bD ;

domain@fD = 8x, 0, 100< && 8a > 0, b > 0<;
Although  we  cannot  fully  observe  X,  it  is  still  possible  to  elicit  information  about  the
parameter  q = Ha, bL,  as  the  relationship  linking  X  to  Y  is  known.  Thus,  given  the
distribution of X, we can derive the distribution of Y . The density of Y  is non-standard in
the sense that it has both discrete and continuous components. The discrete component of
the  density  is  a  mass  measured  at  the  origin,  while  the  continuous  component  of  the
density  is equivalent  to the pdf  of X  for values of 50 or more. By (11.3), the value of the
mass at the origin is PHY = 0L = PHX < 50L, which equals:

P0 = Prob@50, fD
G@aD Hypergeometric2F1Regularized@a, a + b, 1 + a, -1D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Beta@a, bD
Let HY1 , c, Yn L  denote  a  random sample of  size n  collected  on Y  (remember  it  is Y

that is observed, not X). The likelihood for q is, by (11.1), equivalent to the joint density of
the  random  sample.  Because  of  the  component  structure  of  the  distribution  of  Y ,  it  is
convenient to introduce a quantity, n0 , defined to be the number of zeroes observed in the
random  sample!clearly  0 § n0 § n.  Now,  for  a  particular  random  sample  Hy1 , c, yn L,
the likelihood is made up of contributions from both types of observations. For the n0  zero
observations it is ¤

0
PHYi = 0L = HPHY = 0LLn0
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where the product is taken over the n0  zero observations. The contribution of the non-zero
observations to the likelihood is ¤

+
f Hyi ; qL

where the product is taken over the Hn - n0 L observations  in the sample which are at least
equal to 50, and f  denotes the scaled Beta pdf. The likelihood is therefore

(11.4)LHqL = HPHY = 0LLn0 ¤
+

f Hyi ; qL.
To illustrate  construction of the observed likelihood,  we load the CensoredMarks

data set into Mathematica:

data = ReadList@"CensoredMarks.dat"D;
There are a total of n = 264 observations in this data set:

n = Length@dataD
264

Next,  we  select  the  marks  of  only  those  students  that  passed,  storing  them  in  the
PassMark list:

PassMark = Select@data, H# ¥ 50L &D;
n0 = n - Length@PassMarkD
40

Calculation reveals that 40 of the 264 students must have received marks below 50, which
implies a censoring (failure) rate of around 15%. As per (11.4), the observed likelihood for
q, given this data, is:

P0
n0 * Times üü Hf ê. x Ø PassMarkL

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Beta@a, bD264  H2-40-202 a-206 b 3-186+100 a+86 b 5304-376 a-376 b 7-65+31 a+34 b

11-40+20 a+20 b 13-25+14 a+11 b 17-23+10 a+13 b

19-31+17 a+14 b 23-13+6 a+7 b 29-20+13 a+7 b 31-18+13 a+5 b

37-15+4 a+11 b 47-8+8 b 53-8+8 a 59-9+9 a 71-7+7 a

79-1+a 1763-10+a+9 b 4087-6+6 a 6059-3+3 a G@aD40
Hypergeometric2F1Regularized@a, a + b, 1 + a, -1D40L

ClearAll@data, n, PassMarkD; Unset@n0D; Unset@P0D;
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�  Example 4:  The Likelihood and Observed Likelihood for a Time Series Model

In  the  previous  examples,  the  likelihood  function  was  easily  constructed,  since  due  to
mutual  independence,  the joint distribution of the random sample was simply the product
of the marginal  distributions.  In  some situations,  however,  mutual  independence  amongst
the  sampling  variables  does  not  occur,  and  so  the  derivation  of  the  likelihood  function
requires  more  effort.  Examples  include  time  series  models,  pertaining  to  variables
collected through time that depend on their past.

Consider a random walk with drift model

Xt = m + Xt-1 + Ut

with  initial  condition  X0 = 0.  The  drift  is  given  by  the  constant  m # !,  while  the
disturbances Ut  are assumed to be independently Normally distributed with zero mean and
common  variance  s2 # !+ ;  that  is,  Ut ~ NH0, s2 L,  for  all  t = 1, c, T ,  and  E@Ut  Us D = 0
for all t � s.

We wish to construct the likelihood for parameter q = Hm, s2 L. One approach is to use
conditioning  arguments.  We  begin  by  considering  the  joint  distribution  of  the  sampleHX1 , c, XT L.  This  cannot  be  written  as  the  product  of  the  marginals  (cf.  (11.2))  as  Xt

depends  on  Xt-1 , c, X0 ,  for  all  t = 1, c, T .  However,  in  light  of  this  dependence,
suppose  instead  that  we  decompose  the  joint  distribution  of  the  entire  sample  into  the
distribution of XT  conditional on all previous variables, multiplied by the joint distribution
of all the conditioning variables:

(11.5)
f1, c, T  Hx1 , c, xT ; qL = fT # 1, c, T -1  HxT # x1 , c, xT -1 ; qL

ä f1, c, T -1  Hx1 , c, xT-1 ; qL
where fT # 1, c, T -1  denotes  the distribution of XT  conditional  on X1 = x1 , c, XT -1 = xT -1 ,
and f1, c, T -1  denotes the joint distribution of HX1 , c, XT -1 L. From the form of the random
walk model, it is clear that when fixing any Xt , all previous Xs  Hs < tL must also be fixed.
This  enables  us to simplify the  notation,  for  the conditional  pdf on the right-hand side of
(11.5) may be written as

(11.6)fT » 1, c, T-1  HxT # x1 , c, xT -1 ; qL = fT # T -1 HxT # xT-1 ; qL.
From the assumptions on the disturbances, it follows that

(11.7)XT # HXT -1 = xT -1 L ~ NHm + xT-1 , s2 L
which  makes  it  is  easy  to  write  down  the  conditional  density  given  in  (11.6).  Consider
now the  joint distribution  of HX1 , c, XT -1 L  on  the right-hand  side  of (11.5).  Here,  again,
the  same  idea  is  used  to  decompose  the  joint  distribution  of  the  remaining  variables:  the
appropriate equations are (11.5) and (11.6) but with T  replaced by T - 1. By recursion,

f1, c, T  Hx1 , c, xT ; qL =   fT # T-1 HxT # xT -1 ; qL ä fT-1 # T -2 HxT-1 # xT-2 ; qL ä�

ä f2 # 1 Hx2 # x1 ; qL ä f1 # 0 Hx1 # HX0 = 0L; qL
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(11.8)=   ¤
t=1

T

ft # t-1 Hxt # xt-1 ; qL
where  each  of  the  conditional  densities  in  (11.8)  is  equivalent  to  (11.6)  for  t = 2, c, T ,
and f1 # 0  is the pdf of a NHm, s2 L distribution because of the assumption X0 = 0. By (11.1),
(11.8) is equivalent to the likelihood for q.

To  enter  this  likelihood  into  Mathematica,  we  begin  by  entering  the  time  t
conditional pdf given in (11.7):

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 ExpA-
Hxt - m - xt-1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2
E;

Let us suppose we have data 8x1 , c, x6 < = 81, 2, 4, 2, -3, -2<:
xdata = 81, 2, 4, 2, -3, -2<;

To obtain the observed likelihood,  we use a modified form of Method 1  that accounts for
the initial condition x0 = 0:

xlis = Thread@xRange@Length@xdataDDD;
xrules = Join@8x0 Ø 0<, Thread@xlis Ø xdataDD8x0 Ø 0, x1 Ø 1, x2 Ø 2, x3 Ø 4, x4 Ø 2, x5 Ø -3, x6 Ø -2<

Then,  the  observed  likelihood  for  q = Hm, s2 L  is  obtained  by  substituting  in  the
observational rules:

obsLq = !
t=1

6

f ê. xrules êê Simplify

%- 18+2 m+3 m2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 p3 s6

Figure  1  plots  the  observed  likelihood  against  values  of  m  and  s2 .  Evidently,  obsLq  is
maximised in the neighbourhood of Hm, s2 L = H0, 6L.
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Fig. 1:  Observed likelihood for m and s2
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11.3 Maximum Likelihood Estimation
Maximum  likelihood  parameter  estimation  is  based  on  choosing  values  for  q  so  as  to
maximise  the likelihood function.  That is,  the MLE of q,  denoted q

`
,  is the solution to the

optimisation problem:

(11.9)q
`

= arg maxq # Q LHq # X1 = x1 , c, Xn = xn L.
Thus,  q

`
 is  the  value  of  the  argument  of  the  likelihood,  selected  from  anywhere  in  the

parameter  space, that  maximises  the value of the likelihood after we have been given the
sample. In other words, we seek the particular value of q, namely, q

`
, which makes it most

likely  to  have  observed  the  sample  that  we  actually  have.  We  may  view  the  solution  to
(11.9) in two ways depending on whether the objective function is the likelihood function

or  the  observed  likelihood  function.  If  the  objective  is  the  likelihood,  then  (11.9) defines
the ML estimator, q

`
= q

`HX1 , c, Xn L;  since  this is a function of the random sample,  q
`
 is a

random  variable.  If  the  objective  is  the  observed  likelihood,  then  (11.9)  defines  the  ML
estimate,  q

`
= q

`Hx1 , c, xn L,  where  Hx1 , c, xn L  denotes  observed  data;  in  this  case  q
`

 is  a
point estimate.

The solution to (11.9) is invariant  to any monotonic  increasing transformation  of the
objective. Since the natural logarithm is a monotonic transformation, it follows that

(11.10)q
`

= arg maxq # Q log LHqL
which we shall use, from now on, as the definition of the estimator (estimate). The natural
logarithm  of  the  likelihood,  log LHqL,  is  called  the  log-likelihood  function.  A  weaker
definition of the MLE, but one that, in practice, is often equivalent to (11.10) is

(11.11)q
`

= arg maxq
è

# Q
è log LHqèL

where Q
è

 denotes a finite, non-null set whose elements q
è
 satisfy the conditions

(11.12)�ÅÅÅÅÅÅÅÅÅ
�q

 log LHqèL = 0      and      �2
ÅÅÅÅÅÅÅÅÅÅÅÅ
�q2  log LHqèL < 0.

The  two  parts  of  (11.12)  express,  respectively,  the  first-  and  second-order  conditions

familiar  from  basic  calculus  for  determining  local  maxima  of  a  function.1  Generally
speaking,  we shall  determine  MLE  through (11.12),  although  Example  7  below relies  on
(11.10)  alone.  One further  piece  of  notation  is  the  so-called  score  (or  `efficient  score_  in
some texts), defined as the gradient of the log-likelihood,

SHqL = �ÅÅÅÅÅÅÅÅÅ
�q

 log  LHqL.
For example, the first-order condition is simply SHqèL = 0.

Clear@nD;
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�  Example 5:  The MLE for the Exponential Parameter

Let X ~ ExponentialHqL, where parameter q # !+ . Here is its pdf:

f =
1
ÅÅÅÅ
q

&- xêq ; domain@fD = 8x, 0, �< && 8q > 0<;
For a random sample of size n drawn on X, the log-likelihood function is:

logLq = LogA!
i=1

n Hf ê. x Ø xiLE
-
n q Log@qD + i=1

n xi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q

Of course, this will only work if SuperLog  has  been activated (see §11.1 B). The score
function is the gradient of the log-likelihood with respect to q:

score = Grad@logLq, qD
-n q + i=1

n xi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q2

where  we  have  applied  mathStatica_s  Grad  function.  Setting  the  score  to  zero  and
solving for q corresponds to the first-order condition given in (11.12). We find:

solq = Solve@score == 0, qD
99q Ø

i=1
n xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

==
The unique solution, solq, appears in the form of a replacement rule and corresponds to
the sample mean. The nature of the solution is not yet clear; that is, does the sample mean
correspond  to a local  minimum, local  maximum, or saddle point of the log-likelihood? A
check of the second-order condition, evaluated at solq:

Hessian@logLq, qD ê. Flatten@solqD
-

n3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi=1

n xiL2
c reveals  that  the  Hessian  is strictly  negative  at  the  sample  mean  and therefore  the  log-
likelihood is maximised at the sample mean. Hence, the MLE of q is

q
`

= 1ÅÅÅÅÅn  
i=1

n

Xi .

Note that Hessian@ f , xD is a mathStatica function. !
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�  Example 6:  The MLE for the Normal Parameters

Let X ~ NHm, s2 L, where m # ! and s2 # !+ , with pdf f Hx; m, s2 L:
f =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 ExpA-
Hx - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E; domain@fD = 8x, -�, �<;
For a random sample of size n drawn on X, the log-likelihood for parameter q = Hm, sL is:2

logLq = LogA!
i=1

n Hf ê. x Ø xiLE
-
n Hm2 + s2 Log@2 pD + 2 s2 Log@sDL - 2 m i=1

n xi + i=1
n xi2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2

The score vector SHqL = SHm, sL is given by:

score = Grad@logLq, 8m, s<D
9 -n m + i=1

n xi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s2 ,
n m2 - n s2 - 2 m i=1

n xi + i=1
n xi2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s3 =
Mathematica_s  Solve  command  is  quite  flexible  in  allowing  various  forms  of  the  first-
order  conditions  to  be  entered;  for  example,  8scoreP1T == 0, scoreP2T == 0<  or
score ==80,0<, or score == 0. Setting the score to zero and solving yields:

solq = Solve@score == 0, 8m, s<D
99s Ø -

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%- Hi=1
n xiL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn + i=1

n xi2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!n , m Ø
i=1
n xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

=,
9s Ø

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-
Hi=1

n xiL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn + i=1
n xi2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!n , m Ø
i=1
n xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

==
Clearly,  the  negative-valued  solution  for  s  lies  outside  the  parameter  space  and  is
therefore invalid; thus, the only permissible solution to the first-order conditions is:

solq = solqP2T
9s Ø

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-
Hi=1

n xiL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn + i=1
n xi2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!n , m Ø
i=1
n xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

=
Then  q

`
= Hm̀, s̀L  is  the  MLE  of  q,  where  m̀  and  s̀  are  the  formulae  given  in  solq  (we

check  second-order  conditions  below).  The  functional  form given  by  Mathematica  for  s̀
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may  appear  unfamiliar.  However,  if  we  utilise  the  following  identity  for  the  sum  of
squared deviations about the sample mean,


i=1

n HXi - X
êêêL2 = 

i=1

n

Xi
2 - n X

êêê2

where X
êêê

= 1ÅÅÅÅ
n

 i=1
n Xi , then

s̀ = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1ÅÅÅÅÅ
n

 i=1
n HXi - X

êêêL2 .

By the Invariance Property (see §11.4 E), the MLE of s2  is

Hs̀L2 = 1ÅÅÅÅÅ
n

 
i=1

n HXi - X
êêêL2

which is the 2 nd  sample central moment.

The  second-order  conditions  may,  for  example,  be  checked  by  examining  the
eigenvalues of the Hessian matrix evaluated at q

`
:

Eigenvalues@Hessian@logLq, 8m, s<D ê. solqD êê Simplify

9 n3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi=1

n xiL2 - n i=1
n xi2

, 2 n3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi=1

n xiL2 - n i=1
n xi2

=
Given  the  identity  for  the  sum  of  squared  deviations,  the  eigenvalues  of  the  Hessian  are
-n s̀-2  and -2 n s̀-2 , which clearly are negative. Thus, the Hessian is negative definite at
q
`
 and therefore the log-likelihood is maximised at q

`
. !

�  Example 7:  The MLE for the Pareto Parameters

Let X ~ ParetoHa, bL, where parameters a # !+  and b # !+ . The pdf of X is given by:

f = a ba x-Ha + 1L; domain@fD = 8x, b, �< && 8a > 0, b > 0<;
Since  X ¥ b,  there exists  dependence  between the  parameter  and  sample  spaces.  Given a
random sample of size n collected on X, the log-likelihood for q = Ha, bL is:

logLq = LogA!
i=1

n Hf ê. x Ø xiLE
n HLog@aD + a Log@bDL - H1 + aL (

i=1

n

Log@xiD
The score vector is given by:
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score = Grad@logLq, 8a, b<D
9n J 1

ÅÅÅÅ
a

+ Log@bDN - (
i=1

n

Log@xiD, n a
ÅÅÅÅÅÅÅÅ

b
=

If we attempt to solve the first-order conditions in the usual way:

Solve@score == 0, 8a, b<D
8<

c we see  that  Solve  cannot  find  a  solution  to  the  equations.  However,  if  we  focus  on
solving just the first of the first-order conditions, we find:3

sola = Solve@scoreP1T == 0, aD
99a Ø -

n
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n Log@bD - i=1

n Log@xiD ==
This  time a solution is provided,  albeit  in terms  of b;  that is, à = àHbL.  We now take this
solution and substitute it back into the log-likelihood:

logLq ê. Flatten@solaD êê Simplify

n ikjjj-1 + LogA n
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-n Log@bD + i=1

n Log@xiD Ey{zzz - (
i=1

n

Log@xiD
This  function  is  known  as  the  concentrated  log-likelihood.  It  corresponds  to
log LHàHbL, bL. Since it no longer  involves a, we can maximise it with respect to b. Let b

`

denote  the  solution  to  this  optimisation  problem.  This  solution  can  then  be  substituted
back  to  recover  à = à Hb

`L;  then  q
`

= Ià, b
`M  would  be  the  MLE  of  q.  In  general,  when  the

first-order  conditions  can  be  solved  uniquely  for  some  subset  of  parameters  in  q,  then
those  solutions  can  be  substituted  back  into  the  log-likelihood  to  yield  the  concentrated
log-likelihood.  The  concentrated  log-likelihood  is  then  maximised  with  respect  to  the
remaining parameters, usually using numerical techniques.

For our example, maximising the concentrated log-likelihood using standard calculus
will  not  work.  This  is  because  the  parameter  space  depends  on  the  sample  space.
However, by inspection, it is apparent that the concentrated log-likelihood is increasing in
b.  Therefore,  we  should  select  b  as  large  as  possible.  Now,  since  each  Xi ¥ b,  we  can
choose b no larger than the smallest observation. Hence, the MLE for b is

b
`

= min HX1 , X2 , c, Xn L
which is the smallest order statistic. Replacing b in àHbL with b

`
 yields the MLE for a,

                                         à = nì
i=1

n

logJ XiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅmin HX1 , X2 , c, Xn L N. !
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11.4 Properties of the ML Estimator

11.4 A Introduction
This  section  considers  the  small  and  large  sample  statistical  properties  of  the  MLE.
Typically,  small  sample  properties  of  a  MLE  are  determined  on  a  case-by-case  basis.
Finding the distribution of the estimator is the most important! its pdf and/or cdf, mgf or
cf! for  from  this  we  can  determine  the  moments  of  the  estimator  and  construct
confidence  intervals  about  point  estimates,  and  so  on.  Unlike,  say,  the  MVUE  class  of
estimator, whose properties are supported by a set of elegant theorems, the MLE has only
limited  small  sample  properties.  Generally  though,  the  MLE  has  the  `property_  of  being
biased. The MLE properties are listed in Table 1.

Sufficiency The MLE is a function of sufficient statistics.

Efficiency If an estimator is BUE, then it is equivalent to the MLE,
provided that the MLE is the unique solution to the
first-order condition that maximises the log-likelihood
function.

Asymptotic Under certain regularity conditions, the MLE is consistent;
it has a  limiting  Normal  distribution when suitably scaled;
and it is asymptotically  efficient.

Invariance If q
`

 is the MLE of q, then gHq`L is the MLE of  gHqL.
Table 1:  General properties of ML estimators

For proofs of these properties see, amongst others, Stuart and Ord (1991). The Invariance

property is particularly important for estimation and it will be extensively exploited in the
following  chapter.  Under  fairly general  conditions,  the Asymptotic  properties of the MLE
are  quite  desirable;  it  is  the  attractiveness  of  its  large  sample  properties  which  has
contributed  to  the  popularity  of  this  estimator  in  practice.  Even  if  the  functional  form of
the  MLE  is  not  known  (i.e.  the  solution  to  (11.12)  can  only  be  obtained  by  numerical
methods),  one  can assert  asymptotic properties by checking regularity conditions;  in such
situations, it is popular to use simulation techniques to determine small sample properties.

In §11.4 B, we  examine the  small  sample  properties  of the  MLE. Then,  in §11.4  C,
some  of  the  estimators  asymptotic  properties  are  derived.  In  §11.4  D,  further  asymptotic
properties of the MLE are revealed as a result of the model being shown to satisfy certain
regularity  conditions.  Finally,  in  §11.4 E, the invariance property  is illustrated.  We begin
with Example 8, which describes the model and derives the MLE.

�  Example 8:  The MLE of q

Let the continuous random variable X have pdf f Hx; qL:
f = q xq-1; domain@fD = 8x, 0, 1< && 8q > 0<;
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where  parameter  q # !+ .  The distribution  of X  can  be viewed  as  either  a  special  case  of
the  Beta  distribution  (i.e.  BetaHq, 1L),  or  as  a  special  case  of  the  Power  Function
distribution  (i.e.  PowerFunctionHq, 1L).  Assuming  SuperLog  has  been  activated  (see
§11.1 B), the log-likelihood for q is derived with:

logLq = LogA!
i=1

n Hf ê. x Ø xiLE
n Log@qD + H-1 + qL (

i=1

n

Log@xiD
In this example, the MLE of q is the unique solution to the first-order condition:

solq = Solve@Grad@logLq, qD ã 0, qD
99q Ø -

n
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅi=1

n Log@xiD ==
c because the log-likelihood is globally concave with respect to q; that is, the Hessian is
negative-valued at all points in the parameter space:

Hessian@logLq, qD
-

n
ÅÅÅÅÅÅÅ
q2

Thus, the MLE of q is

(11.13)q
`

= - nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅi=1
n logHXi L . !

11.4 B Small Sample Properties
The  sufficiency  and  efficiency  properties  listed  in  Table  1  pertain  to  the  small  sample
performance  of the MLE. The first  property  (sufficiency;  see §10.4), is desirable  because
sufficient  statistics  retain all statistical  information about parameters,  and therefore so too
must  the MLE. Despite this, the MLE does not always use this information in an optimal
fashion,  for  generally  the MLE is a biased estimator.4 Consequently,  the second  property
(efficiency; see §10.3), should be seen as a special situation in which the MLE is unbiased
and its variance attains the CramérkRao Lower Bound.

�  Example 9:  Sufficiency, Efficiency and q
`

Consider again the model given in Example 8, with pdf f Hx; qL:
f = q xq-1; domain@fD = 8x, 0, 1< && 8q > 0<;
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The  first  property  claims  that  there  should  exist  a  functional  relationship  between  a
sufficient statistic for q and the MLE q

`
, given in (11.13). This can be shown by identifying

a  sufficient  statistic  for  q.  Following  the  procedure  given  in  §10.4,  we  apply
mathStatica_s Sufficient function to find:

Sufficient@fD
qn $

i=1

n

xi
-1+q

Then,  by  the  Factorisation  Criterion,  the  statistic  S = ¤i=1
n Xi  is  sufficient  for  q.  We

therefore have

q
`

= - nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅlogHSL
and so the MLE is indeed a function of a sufficient statistic for q.

The  second  property  states  that  the  MLE  is  the  BUE provided  the  latter  exists,  and
provided the MLE is the unique solution to the first-order conditions. Unfortunately, even
though it was demonstrated in Example 8 that q

`
 uniquely solved the first-order conditions,

there  is  no  BUE  in  this  case.  Nevertheless,  the  MVUE  of  q  does  exist  (since  S  is  a
complete sufficient statistic for q) and it is given by

q
è

= - n-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅlogHSL .

It  is  easy  to  see  that  the  MLE  q
`

 and  the  MVUE  q
è

 are  related  by  a  simple  scaling
transformation,  q

è
= n-1ÅÅÅÅÅÅÅÅÅÅÅ

n
 q
`
.  In  light  of  this,  it  follows  immediately  that  the  MLE must  be

biased upwards. !

�  Example 10:  The Distribution of q
`

Consider again the model given in Example 8, with pdf f Hx; qL:
f = q xq-1; domain@fD = 8x, 0, 1< && 8q > 0<;

In this example, we derive the (small sample) distribution of the MLE

q
`

= - nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅi=1
n logHXi L

by applying the MGF Theorem (see §2.4 D). We begin by deriving the mgf of

logXêêêêêêê
= - 1ÅÅÅÅÅn  

i=1

n

logHXi L
and  then  matching  it  to  the  mgf  of  a  known  distribution.  In  this  way,  we  obtain  the
distribution of logXêêêêêêê. The final step involves transforming from logXêêêêêêê to q

`
.
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By the MGF Theorem, the mgf of logX
êêêêêêê

 is:

Expect@&t Log@xD, fDn ê. t Ø
-t
ÅÅÅÅÅÅÅ
n

1 This further assumes that:  8t + q > 0<ikjjj q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
- tÅÅÅn + q

y{zzzn
This  expression  matches  the  mgf  of  a  GammaHn, 1ÅÅÅÅÅÅÅÅ

n q L  distribution.5  Hence,  logXêêêêêêê
~

GammaHn, 1ÅÅÅÅÅÅÅÅ
n q L.  Then,  since  q

`
= 1 ê logXêêêêêêê,  it  follows  that  q

`
 has  an  Inverse  Gamma

distribution with parameters n and 1ÅÅÅÅÅÅÅÅn q . That is,

q
`

~ InverseGammaHn, 1ÅÅÅÅÅÅÅÅ
n q L.

The pdf of q
`
, say fq

` , can be entered from mathStatica_s Continuous palette:

fq
` =

q
`-Ha+1L

 &
- 1ÅÅÅÅÅÅÅ

b q
`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@aD ba

ê. 9a Ø n, b Ø
1

ÅÅÅÅÅÅÅÅ
n q

=;
domain@fq

`D = 9q
`
, 0, �= && 8n > 0, n 7 Integers, q > 0<;

We  now  determine  the  mean  (although  we  have  already  deduced  its  nature  through  the
relation between q

`
 and q

è
 given in Example 9) and the variance of the MLE:

ExpectAq
`
, fq

`E
1 This further assumes that:  8n > 1<

n q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + n

VarAq
`
, fq

`E êê FullSimplify

1 This further assumes that:  8n > 2<
n2 q2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL2
11.4 C Asymptotic Properties
Recall  that  estimators  may  possess  large  sample  properties  such  as  asymptotic
unbiasedness,  consistency,  asymptotic  efficiency,  be  limit  Normally  distributed  when
suitably  scaled,  and  so  on.  These  properties  are  also relevant  to  ML estimators.  Like  the
small sample properties, large sample properties can be examined on a case-by-case basis.
Analysis  might  proceed  by  applying  the  appropriate  Central  Limit  Theorem  and  Law of
Large Numbers.
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�  Example 11:  Asymptotic Unbiasedness and Consistency of q
`

Consider the model of Example 8, with pdf f Hx; qL:
f = q xq-1; domain@fD = 8x, 0, 1< && 8q > 0<;

Since  we  have  already  shown  E@q`D = n qÅÅÅÅÅÅÅÅÅÅÅ
n-1  in  Example  10,  it  is  particularly  easy  to

establish whether or not q
`
 is asymptotically unbiased for q:

LimitA n q
ÅÅÅÅÅÅÅÅÅÅÅÅ
n - 1

, n Ø �E
q

As the mean of q
`
 tends to q as n increases, we say that q

`
 is asymptotically  unbiased for q.

Here we have defined asymptotic unbiasedness such that lim n Ø� E@q`D = q. Note that there
are  other  definitions  of  asymptotic  unbiasedness  in  use  in the  literature.  For example,  an
estimator  may  be  termed  asymptotically  unbiased  if  the  mean  of  its  asymptotic
distribution  is  q.  In  most  cases,  such  as  the  present  one,  this  second  definition  will
coincide with the first so that there is no ambiguity.

We  can  also  establish  whether  or  not  q
`

 is  a  consistent  estimator  of  q  by  using
Khinchine_s  Weak  Law  of  Large  Numbers  (see  §8.5 C),  and  the  Continuous  Mapping
Theorem. Consider

logXêêêêêêê
= 1ÅÅÅÅÅn  

i=1

n H-logHXi LL
which is in the form of a sample mean. Each variable in the sum is mutually independent,
identically distributed, with mean

Expect@-Log@xD, fD
1
ÅÅÅÅ
q

Therefore,  by  Khinchine_s  Theorem,  logXêêêêêêê
ö

p
q-1 .  As  q

`
= 1 ê HlogXêêêêêêêL,  q

`
ö

p
q  by  the

Continuous Mapping Theorem.6 Therefore, the MLE q
`
 is a consistent estimator of q.

The  next  asymptotic  property  concerns  the  limiting  distribution  of  è!!!
n Iq` - qM.

Unfortunately,  in  this  case,  it  is  not  possible  to  derive  the  limiting  distribution  using  the
asymptotic  theory presented  so  far.  If  we apply  LindebergkLévy_s  version  of  the Central
Limit Theorem (see §8.4) to -i=1

n logHXi L, we can only get as far as stating,

i=1
n H-logHXi LL - n q-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q-1  è!!!

n
=
è!!!

n  J qÅÅÅÅÅ
q
` - 1N ö

d
Z ~ NH0, 1L.

To proceed any further, we must establish whether or not certain regularity conditions are
satisfied by the distribution of X.7 !
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11.4 D Regularity Conditions
To  derive  (some  of)  the  asymptotic  properties  of  q

`
,  we  used  the  fact  that  we  knew  the

estimator_s  functional  form, just  as we did  when determining  its small  sample properties.
Alas, the functional form of the MLE is often unknown; how then are we to determine the
asymptotic  properties  of  the  MLE?  Fortunately,  there  exist  sets  of  regularity  conditions
that,  if  satisfied,  permit  us  to  make  relatively  straightforward  statements  about  the
asymptotic  properties  of  the  MLE.  Those  stated  here  apply  if  the  random  sample  is  a
collection  of  mutually  independent,  identically  distributed  random  variables,  if  the
parameter  q  is  a  scalar,  and  if  there  is  a  unique  solution  to  the  first-order  condition  that
globally maximises the log-likelihood function. This ideal setting fits our particular case.

Let q0  denote the `true value_ of q, let i0  denote the Fisher Information on q evaluated
at q = q0 , and let n denote the sample size. Under the previously mentioned conditions, the
MLE has the following asymptotic properties,

consistency q
`

ö
p

q0

limit Normal distribution
è!!!

n  Iq` - q0 M ö
d

NH0, i0
-1 L

asymptotic efficiency relative to all other consistent uniformly
limiting Normal estimators

Table 2:  Asymptotic properties of the MLE, given regularity conditions

under the following regularity conditions:

1. The parameter space Q is an open interval of the real line within which q0  lies.

2. The probability distributions defined by any two different values of q are distinct.

3. For any finite n, the first three derivatives of the log-likelihood function with respect to
q exist in an open neighbourhood of q0 .

4. In an open neighbourhood of q0 , the information identity for Fisher Information holds:

i0 = EAJ �ÅÅÅÅÅÅÅÅÅ
�q

 log f HX; q0 LN2 E = -EA �2
ÅÅÅÅÅÅÅÅÅÅÅÅ
�q2 log f HX; q0 LE .

Moreover, i0  is finite and positive.

5. In an open neighbourhood of q0 :

(i) 1ÅÅÅÅÅÅÅÅÅÅÅè!!!!
n

 �ÅÅÅÅÅÅÅÅÅ
�q

 log LHq0 L ö
d

NH0, i0 L
(ii) - 1ÅÅÅÅÅn  �2

ÅÅÅÅÅÅÅÅÅÅÅÅ
�q2  log LHq0 L ö

p
i0

(iii) For some constant M < �, 1ÅÅÅÅÅn À �3
ÅÅÅÅÅÅÅÅÅÅÅÅ�q3  log LHq0 L À ö

p
M.

For discussion about the role of regularity conditions in determining asymptotic properties
of  estimators  such  as  the  MLE,  see,  for  example,  Cox  and  Hinkley  (1974),  Amemiya
(1985) and McCabe and Tremayne (1993).
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�  Example 12:  Satisfying Regularity Conditions

The model of Example 8, with pdf f Hx; q0 L, is given by:

f = q0 xq0 -1; domain@fD = 8x, 0, 1< && 8q0 > 0<;
Note that the parameter of the distribution is given at its true value q0 .

The first regularity condition is satisfied as the parameter space Q = 8q : q # !+ < is an
open  interval  of  the  real  line,  within  which  we  assume  q0  lies.  The  second  condition
pertains  to  parameter  identification  and  is  satisfied  in  our  single-parameter  case.  For  the
third condition, the first three derivatives of the log-likelihood function evaluated at q0  are:

TableADALogA!
i=1

n Hf ê. x Ø xiLE, 8q0, j<E, 8j, 3<E
9 n

ÅÅÅÅÅÅÅ
q0

+ (
i=1

n

Log@xiD, -
n

ÅÅÅÅÅÅÅ
q0
2 ,

2 n
ÅÅÅÅÅÅÅÅ
q0
3 =

and  each  exists  within  a  neighbourhood  about  q0  (wherever  that  might  be).  Next,  the
information identity is satisfied:

FisherInformation@q0, f, Method Ø 1D ==
FisherInformation@q0, f, Method Ø 2D

True

Moreover, the Fisher Information i0  is equal to:

FisherInformation@q0, fD
1

ÅÅÅÅÅÅÅ
q0
2

which  is  finite,  so  the  fourth  condition  is  satisfied.  From  the  derivatives  of  the  log-
likelihood function, we can establish that the fifth condition is satisfied. For 5(i),

1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!
n

 �ÅÅÅÅÅÅÅÅÅ
�q

log LHq0 L = 1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!
n

 
i=1

n Hlog Xi + q0
-1 L

which,  by  the  LindebergkLévy  version  of  the  Central  Limit  Theorem,  is  NH0, i0 L  in  the
limit, as each term in the summand has mean and variance:

ExpectALog@xD +
1

ÅÅÅÅÅÅÅ
q0

, fE
0
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VarALog@xD +
1

ÅÅÅÅÅÅÅ
q0

, fE
1

ÅÅÅÅÅÅÅ
q0
2

For 5(ii),

- 1ÅÅÅÅÅn  �2
ÅÅÅÅÅÅÅÅÅÅÅÅ
�q2  log LHq0 L = q0

-2 = i0

for every n, including in the limit. For 5(iii),

1ÅÅÅÅÅn À �3
ÅÅÅÅÅÅÅÅÅÅÅÅ
�q3  log LHq0 L À = 2 q0

-3

is  non-stochastic  and  finite  for  every  n,  including  in  the  limit.  In  conclusion,  each
regularity  condition  is  satisfied.  Thus,  q

`
 is  consistent  for  q0 ,  è!!!

n  q
`

 has  a  limit  Normal
distribution,  in  particular,  è!!!

n  Iq` - q0 M ö
d

NH0, q0
2 L,  and  q

`
 is  asymptotically  efficient.

These results  enable us,  for  example, to construct  the estimator_s asymptotic  distribution:
q
`

~a NHq0 , q0
2 ênL,  which  may  be  contrasted  against  the  estimator_s  exact  distribution

q
`

~ InverseGammaIn, 1ÅÅÅÅÅÅÅÅÅÅ
n q0

M found in §11.4 B. !

11.4 E Invariance Property
Throughout  this  section,  our  example  has  concentrated  on  estimation  of  q.  But  suppose
another  parameter  l,  related  functionally  to  q,  is  also  of  interest.  Given  what  we  already
know about q

`
,  it is usually  possible  to obtain  the MLE of l  and to establish its  statistical

properties by the Invariance Property (see Table 1), provided we know the functional form
that links l to q.

Consider  a  multi-parameter  setting  in  which  q  is  a  Hk ä 1L  vector  and  l  is  a  H j ä1L
vector,  where j § k.  The link from q  to l  is through a vector  function g;  that is, l = gHqL,
where  g  is  assumed  known.  The  parameters  are  such  that  q # Q  and  l # L,  with  the
particular  true  values  once  again  indicated  by  a  0  subscript.  The  parameter  spaces  are
Q Õ !k  and  L Õ ! j ,  so  that  g : Q Ø L.  Moreover,  we  assume  that  g  is  a  continuous
function of q, and that the H j äkL matrix of partial derivatives

GHqL = �gHqLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�qT

has finite elements and is of full row rank; that is, rankHGHqLL = j, for all q # Q.

Of  particular  use  is  the case  when j = k,  for  then the  dimensions  of  q  and  l  are  the
same  and  GHqL  becomes  a  square  matrix  having  full  rank  (which  means  that  the  inverse
function  g-1  must  exist).  In  this  case,  the  parameter  l  is  said  to  represent  a  re-

parameterisation  of q.  There  are a number of examples of re-parameterisation in the next
chapter,  the  idea  there  being  to  transform  a  constrained  optimisation  problem  in  q
(occurring when Q is a proper subset of !k ) into an unconstrained optimisation problem in
l (re-parameterisation achieves L = !k ).
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The  key  results  of  the  Invariance  Property  apply  to  the  MLE  of  gHqL  and  to  its
asymptotic properties. First, if q

`
 is the MLE of q, then gHq`L is the MLE of l = gHqL. This is

an extremely useful property for it means that if we already know q
`
, then we do not need

to  find  the  MLE  of  l0  by  maximising  the  log-likelihood  log LHlL.  Second,  if  q
`

 is
consistent,  and  has  a  limiting  Normal  distribution  when  suitably  scaled,  and  is
asymptotically efficient, then so too is l

`
= gHq`L. That is, if

(11.14)q
`

ö
p

q0

(11.15)è!!!
n  Iq` - q0 M ö

d
NI0;÷ , i0

-1 M
then

(11.16)gHq`L ö
p

gHq0 L
(11.17)è!!!

n  IgHq`L - gHq0 LM ö
d

NI0;÷ , GHq0 L ä i0
-1 ä GHq0 LT M.

The small sample properties of l
`
 generally cannot be deduced from those of q

`
, but must be

examined  on  a  case-by-case  basis.  To  see  this,  a  simple  example  suffices.  Let
l = gHqL = q2 ,  and  suppose  that  the  MLE  q

`
 is  unbiased.  By  the  Invariance  Property,  the

MLE  of  l  is  l
`

= q
`2 ;  however,  it  is  not  necessarily  true  that  l

`
 is  unbiased  for  l,  for  in

general E@q`2 D � IE@q`DM2 .

�  Example 13:  The Invariance Property

The model of Example 8, with pdf f Hx; qL, is given by:

f = q xq-1; domain@fD = 8x, 0, 1< && 8q > 0<;
Consider the parameter l = E@XD:

l = Expect@x, fD
q

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + q

Clearly,  parameter  l # L = H0, 1L  is  a  function  of  q;  l = gHqL = q ê H1 + qL,  with true  value
l0 = gHq0 L.  To estimate  l0 ,  one  possibility  is  to re-parameterise  the pdf  of  X  from q  to l
and  repeat  the  same  ML  estimation  procedures  from  the  very  beginning.  But  we  can  do
better  by  applying  the  Invariance  Property,  for  we  already  have  the  functional  form of  q

`

(see (11.13)) as well as its asymptotic properties. The MLE of l0  is given by

l
`

= q
`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + q

` = nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n - i=1

n logHXi L .
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Since  g  is  continuously  differentiable  with  respect  to  q,  it  follows  from  (11.17)  that  the
limiting distribution of l

`
 is

è!!!
n  Il` - l0 M ö

d
NJ0, I �ÅÅÅÅÅÅÅÅÅ

�q
 gHq0 LM2 í i0 N.

In  particular,  the  variance  of  the  limiting  distribution  of  è!!!
n  Il` - l0 M  in  terms  of  q0 ,  is

given by:

Grad@l, qD2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
FisherInformation@q, fD ê. q Ø q0

q0
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + q0L4
The asymptotic distribution of the MLE of l0  is therefore

                                                      l
`

~a N
ikjjl0 , q0

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
nH1 + q0 L4 y{zz. !

11.5 Asymptotic Properties: Extensions
The asymptotic properties of the MLE!consistency, a limiting Normal distribution when
suitably  scaled,  and  asymptotic  efficiency!generally  hold  in  a  variety  of  circumstances
far  weaker  than  those  considered  in  §11.4.  In  fact,  there  exists  a  range  of  regularity
conditions  designed  to  cater  for  a  variety  of  settings  involving  various  combinations  of
non-independent and/or non-identically distributed samples, parameter q a vector, multiple
local  optima,  and  so  on.  In  this  section,  we  consider  two  departures  from  the  setup  in
§11.4  D.  Texts  that  discuss  proofs  of  asymptotic  properties  of  the  MLE  and  regularity
conditions include Amemiya (1985), Cox and Hinkley (1974), Dhrymes (1970), Lehmann
(1983), McCabe and Tremayne (1993) and Mittelhammer (1996).

11.5 A More Than One Parameter
Suppose we now allow parameter q to be k-dimensional,  but otherwise keep the statisticial
setup  described  in  §11.4  unaltered;  namely,  the  random  sample  consists  of  mutually
independent and identically distributed random variables, and there is a unique solution to
the  first-order  condition!a  system  of  k  equations! that  maximises  the  log-likelihood
function. Then, it seems reasonable to expect that regularity conditions 1, 4 and 5 given in
§11.4 D need only be extended to account for the higher dimensionality of q:

1a. The  k-dimensional  parameter  space  Q  must  be  of  finite  dimension  as  sample  size  n
increases, it must be an open subset of !k , and it must contain the true value q0  within
its interior.
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4a. In  an  open  neighbourhood  of  q0 ,  the  information  identity  for  Fisher  Information  (aHk ä kL symmetric matrix) holds. That is:

i0 =   EAI �ÅÅÅÅÅÅÅÅÅ
�q

 log f HX; q0 LM I �ÅÅÅÅÅÅÅÅÅ
�q

 log f HX; q0 LMT E
=   -E A �2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q �qT log f HX; q0 LE .

Moreover, every element of i0  is finite, and i0  is positive definite.

5a. In an open neighbourhood of q0 :

(i) 1ÅÅÅÅÅÅÅÅÅÅÅè!!!!
n

 �ÅÅÅÅÅÅÅÅÅ
�q

 log LHq0 L ö
d

NI0;÷ , i0 M
(ii) - 1ÅÅÅÅÅn  �2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q �qT  log LHq0 L ö

p
i0

(iii) Let indexes u, v, w # 81, c, k< pick out elements of q. For constants Mu, v, w < �,
1ÅÅÅÅÅn À �3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ�qu �qv �qw
 log LHq0 L À ö

p
Mu, v, w .

If  these  conditions  hold,  as  well  as  conditions  2  and  3,  then  the  MLE  q
`

 is  a  consistent
estimator of q, è!!!

n  Iq` - q0 Mö
d

NI0;÷ , i0
-1 M, and q

`
 is asymptotically efficient (cf. Table 2).

�  Example 14:  The Asymptotic Distribution of q
`
: X ~ Normal

Let X ~ NHm0 , s0
2 L, with pdf f Hx; m0 , s0

2 L:
f =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s0  

è!!!!!!!
2 p

 ExpA-
Hx - m0L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s0
2

E;
domain@fD = 8x, -�, �< && 8m0 7 Reals, s0 > 0<;

In  this  case,  the  parameter  q = Hm, s2 L  is  two-dimensional  (k = 2),  with  true  value
q0 = Hm0 , s0

2 L. In Example 6, where HX1 , c, Xn L denoted a size n random sample drawn on
X, the MLE of q was derived as

q
`

=
ikjjjj m̀

s̀2
y{zzzz =

i
k
jjjjjjjjjjjjjjjj

1ÅÅÅÅÅn  
i=1

n

Xi

1ÅÅÅÅÅn  
i=1

n HXi - m̀L2

y
{
zzzzzzzzzzzzzzzz.

The regularity  conditions  1a,  2,  3, 4a,  5a hold  in this case.  The dimension k  is fixed at  2
for  all n, the parameter  space Q = 8q = Hm, s2 L : m # !, s2 # !+ <  is an open subset of !2

within which we assume q0  lies, and the information identity holds:

FisherInformation@8m0, s0
2<, f, Method Ø 1D ã

FisherInformation@8m0, s0
2<, f, Method Ø 2D

True
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The Fisher Information matrix i0  is equal to:

i0 = FisherInformation@8m0, s0
2<, fD

i
kjjjjjj

1ÅÅÅÅÅ
s0
2 0

0 1ÅÅÅÅÅÅÅÅ2 s0
4

y
{zzzzzz

and  it  has  finite  elements  and  is  positive  definite.  The  asymptotic  conditions  5a  are
satisfied  too. We demonstrate  5a(i), leaving verification of 5a(ii) and 5a(iii)  to the reader.
For  5a(i),  we  require  the  derivatives  of  the  log-likelihood  function  with  respect  to  the
elements of q. Here is the log-likelihood:

logLq = LogA!
i=1

n Hf ê. x Ø xiLE
-
n m0

2 + n HLog@2 pD + 2 Log@s0DL s0
2 - 2 m0 i=1

n xi + i=1
n xi2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s0
2

and here are the derivatives:

Grad@logLq, 8m0, s0
2<D

9 -n m0 + i=1
n xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s0
2 ,

n m0
2 - n s0

2 - 2 m0 i=1
n xi + i=1

n xi2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s0

4 =
For the first element, we have for 5a(i),

1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!
n

 �ÅÅÅÅÅÅÅÅÅÅ
�m

log LHq0 L = 1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!
n

 
i=1

n
Xi - m0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s0
2

which,  by the LindebergkLévy  version of the Central  Limit Theorem,  is NH0, s0
-2 L  in the

limit, as each term in the summand has mean and variance:

ExpectA x - m0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s0
2

, fE
0

VarA x - m0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s0
2

, fE
1

ÅÅÅÅÅÅÅ
s0
2

Similarly, for the derivative with respect to s2 ,

1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!
n

 �ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�s2 log LHq0 L = 1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!

n
 
i=1

n
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s0
2  JJ Xi - m0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s0
N2

- 1N
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which is NH0, 1ÅÅÅÅ2  s0
-4 L in the limit, as each term in the summand has mean and variance:

ExpectA 1
ÅÅÅÅÅÅÅÅÅÅÅ
2 s0

2
 
ikjjjikjj x - m0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s0

y{zz2 - 1
y{zzz , fE

0

VarA 1
ÅÅÅÅÅÅÅÅÅÅÅ
2 s0

2
 
ikjjjikjj x - m0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s0

y{zz2 - 1y{zzz , fE
1

ÅÅÅÅÅÅÅÅÅÅÅ
2 s0

4

Finally then, as i=1
n Xi  and i=1

n Xi
2  are independent (see Example 27 of Chapter 4):

1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!
n

 �ÅÅÅÅÅÅÅÅÅ
�q

 log LHq0 L ö
d

NI 0;÷ , i0 M.
As  all  regularity  conditions  hold,  è!!!

n  Iq` - q0 Mö
d

NI0;÷ , i0
-1 M,  with  the  variance-covariance

matrix of the limiting distribution given by:

Inverse@ i0 D
ikjjjj s0

2 0

0 2 s0
4

y{zzzz
From this result we can find, for example, the asymptotic distribution of the MLE

q
`

~a  N
ikjjjikjjj m0

s0
2
y{zzz, ikjjj s0

2 ên 0
0 2 s0

4 ên

y{zzzy{zzz.
This  can  be  contrasted  against  the  small  sample  distributions:  m̀ ~ NHm0 , s0

2 ênL
independent of n s̀2 ês0

2 ~ Chi-squaredHn - 1L. !

11.5 B Non-identically Distributed Samples
Suppose  that  the  statistical  setup  described  in  §11.5 A  is  further  extended  such  that  ML
estimation  is  based  on  a random sample  which  does  not  consist  of  identically  distributed
random  variables.  Despite  the  loss  of  identicality,  mutual  independence  between  the
variables HX1 , c, Xn L in the sample ensures that the log-likelihood remains a sum:

log LHqL = 
i=1

n

log fi Hxi ; qL
where  fi Hxi ; qL  is  the  pdf  of  Xi .  Accordingly,  for  the  MLE  to  have  the  usual  trio  of
asymptotic  properties  (see  Table  1),  the  regularity  conditions  will  need  to  be  weakened
even  further  in  order  that  certain  forms  of  the  Central  Limit  Theorem and  Law of  Large
Numbers  relevant  to  sums  of  non-identically  distributed  random  variables  remain  valid.
The conditions requiring weakening are 4a, 5a(i) and 5a(ii):
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4b. In  an  open  neighbourhood  of  q0 ,  the  information  identity  for  asymptotic  Fisher
Information (a Hk äkL symmetric matrix) holds. That is:

i0
H�L =   limnØ�  EA 1ÅÅÅÅÅn  

i=1

n I �ÅÅÅÅÅÅÅÅÅ�q  log f HXi ; q0 LM I �ÅÅÅÅÅÅÅÅÅ�q  log f HXi ; q0 LMT E
=   limnØ�  E A- 1ÅÅÅÅÅn  �2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ�q �qT log LHq0 LE .

Moreover, every element of i0
H�L  is finite, and i0

H�L  is positive definite.

5b. In an open neighbourhood of q0 :

(i) 1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!
n

 �ÅÅÅÅÅÅÅÅÅ
�q

 log LHq0 L ö
d

NI0;÷ , i0
H�L M

(ii) - 1ÅÅÅÅÅn  �2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q �qT  log LHq0 L ö

p
i0
H�L .

Should these conditions hold, as well as 1a, 2, 3 and 5a(iii), then the MLE q
`
 is a consistent

estimator of q, è!!!
n  Iq` - q0 M ö

d
 NI0;÷ , Hi0

H�L L-1 M, and q
`
 is asymptotically efficient.

�  Example 15:  The Asymptotic Distribution of q
`
: Exponential Regression

Suppose that a positive-valued random variable Y  depends on another random variable X,
both of which are observed in pairs HHY1 , X1 L, HY2 , X2 L, cL. For example, Y  may represent
sales of a firm, and X  may represent the firms advertising expenditure.  We may represent
this dependence by specifying a conditional statistical model for Y ; that is, by specifying a
pdf  for  Y ,  given  that  a  value  x # !  is  assigned  to  X.  One  such  model  is  the  Exponential

Regression, where  Y # HX = xL ~ ExponentialHexpHa0 + b0  xLL, with pdf f Hy # X = x; q0 L:
f =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Exp@a0 + b0  xD ExpA-

y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Exp@a0 + b0 xD E;

domain@fD = 8y, 0, �< && 8a0 7 Reals, b0 7 Reals, x 7 Reals<;
The  parameter  q = Ha, bL # !2 ,  and  its  true  value  q0 = Ha0 , b0 L  is  unknown.  The
regression function is given by the conditional mean E@Y # HX = xLD, and this is equal to:

Expect@y, fD
%a0 +x b0

Despite the fact that the functional form of the MLE q
`
 cannot be derived in this case,8

we can still  obtain  the asymptotic  properties of  the MLE by determining  if  the regularity
conditions 1a, 2, 3, 4b, 5b(i), 5b(ii) and 5a(iii) are satisfied. In this example, we shall focus
on  obtaining  the  asymptotic  Fisher  Information  matrix  i0

H�L  given  in  4b.  We  begin  by
deriving the Fisher Information:

FisherInformation@8a0, b0<, fD
J 1 x
x x2

N
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This  output  reflects  the  non-identicality  of  the  distribution  of  Y # HX = xL,  for  Fisher
Information  quite clearly  depends  on the value assigned  to X.  Let HHY1 , X1 L, c, HYn , Xn LL
denote  a  random  sample  of  size  n  on  the  pair  HY , XL.  Because  the  distribution  of
Yi # HXi = xi L need not be identical to the distribution of Yj # HXj = xj L (for xi  need not equal
xj ),  then  the  Sample  Information  matrix  is  no  longer  given  by  Fisher  Information
multiplied by sample size; rather, Sample Information is given by the sample sum:

I0 =
i
kjjjjjjj

n i=1
n

xii=1
n

xi i=1
n

xi
2

y
{zzzzzzz.

Under independence, the log-likelihood is made up of a sum of contributions, 

log LHqL = 
i=1

n

log f Iyi # HXi = xi L; qM
implying  that  1ÅÅÅÅ

n
 I0  is  exactly  the  expectation  given  in  regularity  condition  4b,  when

computed either way because

FisherInformation@8a0, b0<, f, Method Ø 1D ==
FisherInformation@8a0, b0<, f, Method Ø 2D

True

To  obtain  the  asymptotic  Fisher  Information  matrix,  we  must  examine  the  limiting
behaviour  of  the  elements  of  1ÅÅÅÅn  I0 .  This  will  require  further  assumptions  about  the
marginal distribution of X. If the random variable X  has finite mean m, finite variance s2 ,
with neither moment depending on n, then by Khinchine_s Weak Law of Large Numbers,

1ÅÅÅÅÅn  
i=1

n

Xi ö
p

m and 1ÅÅÅÅÅn  
i=1

n

Xi
2 ö

p
s2 + m2 .

Under these further assumptions, we obtain the asymptotic Fisher Information matrix as

i0
H�L =

ikjjj 1 m

m s2 + m2
y{zzz

which is positive definite. Establishing conditions 5b(i), 5b(ii)  and 5a(iii) involves similar
manipulations,  and  in  this  case  can  be  shown  to  hold  under  the  assumptions  concerning
the  behaviour  of  X.  In  conclusion,  the  asymptotic  distribution  of  the  MLE  q

`
 of

q0 = Ha0 , b0 L is, under the assumptions placed on X, given by

                                      q
`

 ~a N
ikjjjJ a0

b0
 N, 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n s2  
ikjjj s2 + m2 - m

- m 1
y{zzzy{zzz. !
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11.6 Exercises
1. Let  X ~ PoissonHlL,  where  parameter  l # !+ .  Let  HX1 , X2 , c, Xn L  denote  a  size  n

random sample drawn on X. (i) Derive l
`
, the ML estimator of l. (ii) Obtain the exact

distribution  of  l
`
.  (iii)  Obtain  the  asymptotic  distribution  of  l

`
 (check  regularity

conditions).

2. Let X ~ GeometricHpL, where parameter p is such that 0 < p < 1. Let HX1 , X2 , c, Xn L
denote  a  size  n  random  sample  drawn  on  X.  Derive  p̀,  the  ML  estimator  of  p,  and
obtain its asymptotic distribution.

3. Let  X ~ NHm, 1L,  where  parameter  m # !.  Let  HX1 , X2 , c, Xn L  denote  a  size  n
random sample drawn on X. (i) Derive m̀, the ML estimator of m. (ii) Obtain the exact
distribution  of  m̀.  (iii)  Obtain  the  asymptotic  distribution  of  m̀  (check  regularity
conditions).

4. Let  X ~ ExtremeValueHqL,  with  pdf  f Hx; qL = expH-Hx - qL - ;-Hx-qL L,  where  q # !  is
an unknown parameter. Let HX1 , X2 , c, Xn L denote a size n random sample drawn on
X.  (i)  Obtain  q

`
,  the  ML  estimator  of  q.  (ii)  Obtain  the  asymptotic  distribution  of  q

`

(check regularity conditions).

5. For  the  pdf  of  the  NH0, s2 L  distribution,  specify  a  replacement  rule  that  serves  to
replace s and its powers in the pdf. In particular, the rule you construct should act to
convert the pdf from an input of

1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!2 p

 ExpA- x2ÅÅÅÅÅÅÅÅ2 s2 E     to an output of     1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
q  

è!!!!!!!2 p
 ExpA- x2ÅÅÅÅÅÅ2 q E

6. Let  X ~ NH0, s2 L,  where  parameter  s2 # !+ .  Let  HX1 , X2 , c, Xn L  denote  a  size  n
random sample drawn on X.
(i) Derive s̀2 , the ML estimator of s2 .
(ii) Obtain the exact distribution of s̀2 .
(iii) Obtain the asymptotic distribution of s̀2  (check regularity conditions).
Hint: use your solution to Exercise 5.

7. Let X ~ RayleighHs2 L,  where parameter  s2 # !+ .  Let HX1 , X2 , c, Xn L denote  a size
n random sample drawn on X.
(i) Derive s̀2 , the ML estimator of s2 .
(ii) Obtain the exact distribution of s̀2 .
(iii) Obtain the asymptotic distribution of s̀2  (check regularity conditions).

8. Let  X ~ UniformH0, qL,  where  parameter  q # !+  is  unknown,  and,  of  course,  X < q.
Let  HX1 , X2 , c, Xn L  denote  a  size  n  random  sample  drawn  on  X.  Show  that  the
largest  order statistic q

`
= XHnL = maxHX1 , X2 , c, Xn L is the ML estimator of q.  Using

mathStatica_s  OrderStat  function,  obtain  the  exact  distribution  of  q
`
.  Transform

q
`

Ø Y  such  that  Y = nIq - q
`M.  Then  derive  the  limiting  distribution  of  nIq - q

`M.
Propose an asymptotic approximation to the exact distribution of q

`
.
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Chapter 12
Maximum Likelihood Estimation in Practice

12.1 Introduction
The  previous  chapter  focused  on  the  theory  of  maximum  likelihood  (ML)  estimation,
using  examples  for  which  analytic  closed  form  solutions  were  possible.  In  practice,
however,  ML  problems  rarely  yield  closed  form solutions.  Consequently,  ML  estimation
generally requires numerical methods that iterate progressively from one potential solution
to  the  next,  designed  to  terminate  (at  some  pre-specified  tolerance)  at  the  point  that
maximises the likelihood.

This  chapter  emphasises  the  numerical  aspects  of  ML estimation,  using  illustrations
that  have  appeared  in  statistical  practice.  In  §12.2,  ML  estimation  is  tackled  using
mathStaticaGs  FindMaximum  function;  this  function  is  the  mirror  image  of
MathematicaGs  built-in  minimiser  FindMinimum.  Following  this,  §12.3  examines  the
performance  of  FindMinimum  /  FindMaximum  as  both  a  constrained  and  an
unconstrained  optimiser.  We  come  away  from  this  with  the  firm  opinion  that
FindMinimum  /  FindMaximum  should  only  be  used  for  unconstrained  optimisation.
§12.4  discusses  statistical  inference  applied  to  an  estimated  statistical  model.  We
emphasise  asymptotic  methods,  mainly  because  the  asymptotic  distribution  of  the  ML
estimator,  being  Normal,  is  simple  to  use.  We  then  encounter  a  significant  weakness  in
FindMinimum  /  FindMaximum,  in  that  it  only  yields  ML  estimates.  Further  effort  is
required  to  estimate  the  (asymptotic)  variance-covariance  matrix  of  the  ML  estimator,
which  is  required  for  inference.  The  remaining  three  sections  focus  on  details  of
optimisation algorithms, especially the so-called gradient-method algorithms implemented
in  FindMinimum  /  FindMaximum.  §12.5  describes  how  these  algorithms  are  built,
while  §12.6  and  §12.7  give  code for  the  more  popular  algorithms  of this  family,  namely
the BFGS algorithm and the NewtonURaphson algorithm.

This chapter requires that we activate the mathStatica function SuperLog:

SuperLog@OnD
1 SuperLog is now On.

SuperLog  modifies  MathematicaGs  Log  function  so  that  Log@Product@DD  XobjectsG
or  XtermsG  get  converted  into  sums  of  logarithms;  see  §11.1 B  for  more  detail  on
SuperLog.



12.2 FindMaximum

Optimisation  plays  an  important  role  throughout  statistics,  just  as  it  does  across  a  broad
spectrum  of  sciences.  When  analytic  solutions  for  ML  estimators  are  not  possible,  as  is
typically  the  case  in  statistical  practice,  we  must  resort  to  numerical  methods.  There  are
numerous  optimisation algorithms,  a number of which are implemented in MathematicaGs
FindMinimum function. However, we want to maximise an observed log-likelihood, not
minimise  it,  so  mathStaticaGs  FindMaximum  function  is  designed  for  this  purpose.
FindMaximum is a simple mirror image of FindMinimum:

? FindMaximum

FindMaximum is identical to
the built-in function FindMinimum, except
that it finds a Max rather than a Min.

To  illustrate  usage  of  FindMaximum,  we  use  a  random  sample  of  biometric  data
attributed to Fatt and Katz by Cox and Lewis (1966):

xdata = ReadList@"nerve.dat", NumberD;
The data represents a random sample of size n = 799 observations on a continuous random
variable  X,  where  X  is  defined  as  the  time  interval  (measured  in  units  of  one  second)
between successive pulses along a nerve fibre. We term this the XNerve dataG. A frequency
polygon  of  the  data  is  drawn  in  Fig. 1  using  mathStaticaGs  FrequencyPlot  function.
The  statistical  model  for  X  that  generated  the  data  is  unknown;  however,  its  appearance
resembles an Exponential  distribution (Example 1), or a generalisation of it to the Gamma
distribution (Example 2).

FrequencyPlot@xdataD;
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Fig. 1:  The Nerve data
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�  Example 1:  FindMaximumd Part I

Assume X ~ ExponentialHlL, with pdf f Hx; lL, where l $ !+ :

f =
1
ÅÅÅÅ
l

$- xêl ; domain@fD = 8x, 0, �< && 8l > 0<;
For HX1 , e, Xn L, a size n random sample drawn on X, the log-likelihood is given by:

logLl = LogA'
i=1

n Hf ê. x Ø xiLE
-
n l Log@lD + i=1

n xi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l

For the Nerve data, the observed log-likelihood is given by:

obslogLl = logLl ê. 8n Ø Length@xdataD, xi_ ß xdataPiT<
-
174.64 + 799 l Log@lD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l

To obtain  the MLE of l,  we use FindMaximum  to numerically  maximise  obslogLl.1

For example:

soll = FindMaximum@obslogLl, 8l, 80.1, 1<<D
8415.987, 8l Ø 0.218573<<

The output  states that the ML estimate of l is 0.218573, and that the maximised value of
the  observed  log-likelihood  is 415.987. Here  is  a plot  of the  data  overlaid  with  the fitted
model:

FrequencyPlot@xdata, f ê. sollP2TD;
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Fig. 2:  Nerve data (!) and fitted Exponential model (U U U)
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The Exponential  model yields a close fit to the data, except in the neighbourhood of zero
where  the  fit  over-predicts.  In  the  next  example,  we  specify  a  more  general  model  in  an
attempt to overcome this weakness. !

�  Example 2:  FindMaximumd Part II

Assume that X ~ GammaHa, bL, with pdf f Hx; a, bL:
f =

xa-1  $-xêb

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@aD ba

; domain@fD = 8x, 0, �< && 8a > 0, b > 0<;
where  a $ !+  and  b $ !+ .  ML  estimation  of  the  parameter  q = Ha, bL  proceeds  in  two
steps.  First,  we  obtain  a  closed  form  solution  for  either  à  or  b

`
 in  terms  of  the  other

parameter  (i.e.  we  can  obtain  either  àHbL  or  b
`HaL).  We  then  estimate  the  remaining

parameter  using  the  appropriate  concentrated  log-likelihood  via  numerical  methods
(FindMaximum).

The log-likelihood log LHa, bL is:

logLq = LogA'
i=1

n Hf ê. x Ø xiLE
-
1
ÅÅÅÅ
b

 
ikjjjjjn b Ha Log@bD + Log@G@aDDL + Hb - a bL *

i=1

n

Log@xiD + *
i=1

n

xi
y{zzzzz

The score vector �ÅÅÅÅÅÅÅ
�q

 log LHqL is derived using mathStaticaGs Grad function:

score = Grad@logLq, 8a, b<D
9-n HLog@bD + PolyGamma@0, aDL + *

i=1

n

Log@xiD, -n a b + i=1
n xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b2

=
The ML estimator of a in terms of b is obtained as:

sola = Solve@scoreP2T ã 0, aD êê Flatten

9a Ø
i=1
n xiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n b

=
That is,

àHbL = 1ÅÅÅÅÅÅÅÅÅÅ
n b

 
i=1

n

 Xi .

Substituting  this  solution  into  the  log-likelihood  yields  the  concentrated  log-likelihood
log LHàHbL, bL, which we denote logLc:
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logLc = logLq ê. sola

-
1
ÅÅÅÅ
b

 
ikjjjjj*i=1

n

xi +
ikjjjjj*i=1

n

Log@xiDy{zzzzz ikjjjb -
i=1
n xi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

y{zzz +

n b
ikjjjLogAGA i=1

n xi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n b

EE +
Log@bD i=1

n xi
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n b
y{zzzy{zzzzz

Next, we substitute the data into the concentrated log-likelihood:

obslogLc = logLc ê. 8n Ø Length@xdataD, xi_ ß xdataPiT<;
Then, we estimate b using FindMaximum:

solb = FindMaximum@obslogLc, 8b, 80.1, 1<<DP2T
8b Ø 0.186206<

For  the  Nerve  data,  and  assuming  X ~ GammaHa, bL,  the  ML  estimate  of  b  is  b
`

=
0.186206. Therefore, the ML estimate of a, à Hb

`L, is:

sola ê.
Flatten@8solb, n Ø Length@xdataD, xi_ ß xdataPiT<D

8a Ø 1.17382<
Here is a plot of the data overlaid by the fitted model:

FrequencyPlot@xdata, f ê. 8a Ø 1.17382, b Ø 0.186206<D;
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Fig. 3:  Nerve data (!) and fitted Gamma model (U U U)

The  Gamma  model  (see  Fig. 3)  achieves  a  better  fit  than  the  Exponential  model  (see
Fig. 2), especially in the neighbourhood of zero. !
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12.3 A Journey with FindMaximum
In this section, we take a closer look at the performance of FindMaximum. This is done
in the context of a statistical model that has become popular amongst analysts of financial
time  series  data! the  so-called  autoregressive  conditional  heteroscedasticity  model
(ARCH  model).  Originally  proposed  by  Engle  (1982),  the  ARCH  model  is  designed  for
situations  in which  the  variance of  a random variable  seems to alternate  between periods
of  relative  stability  and  periods  of  pronounced  volatility.  We  will  consider  only  the
simplest member of the ARCH suite, known as the ARCH(1) model.

Load the following data: 

pdata = ReadList@"BML.dat"D;
The data lists  the daily closing price (in Australian dollars)  of Bank of Melbourne  shares
on  the  Australian  Stock  Exchange  from October  30,  1996,  until  October  10,  1997  (non-
trading days have been removed). Figure 4 illustrates the data.
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Fig. 4:  The Bank of Melbourne data

Evidently,  there  are  two  dramatic  increases  in  price:  +$0.65  on  day  105,  and  +$0.70  on
day  106.  These  movements  were caused  by  a  takeover  rumour  that  swept  the  market  on
those days, which was officially confirmed by the bank during day 106. Further important
dates  in  the  takeover  process  included:  day  185,  when  approval  was  granted  by  the
government  regulator;  day  226,  when  complete  details  of  the  financial  offer  were
announced to shareholders;  day 231, when shareholders voted to accept the offer; and day
240, the bankGs final trading day.

Our analysis begins by specifying a variant of the random walk with drift model (see
Example 4  in Chapter 11) which, as we shall see upon examining the estimated residuals,
leads us to specify an ARCH model later to improve fit. Let variable Pt  denote the closing
price on day t,  and let x#t  denote a vector  of regressors. Then, the random walk model we
consider is

384 CHAPTER  12 §12.3 



(12.1)DPt = x#t . b + Ut

where  DPt = Pt - Pt-1 ,  and  the  notation  x#t . b  indicates  the  dot  product  between  the
vectors  x#t  and  b.  We  assume  Ut ~ NH0, s2 L;  thus,  DPt ~ NHx#t . b, s2 L.  For  this  example,
we specify  a model  with five regressors  for  vector  x#t ,  all  of which  are dummy variables:
they  consist  of  a  constant  intercept  (the  drift  term),  and  day-specific  intercept  dummies
corresponding  to  the  takeover,  the  regulator,  the  disclosure  and  the  vote.  We  denote  the
regression function by

x#t . b = b1 + x2  b2 + x3  b3 + x4  b4 + x5  b5 .

For all n observations, we enter the price change:

Dp = Drop@pdata, 1D - Drop@pdata, -1D;
and  then  the  regressors:  x2  for  the  takeover,  x3  for  the  regulator,  x4  for  the  disclosure
and x5 for the vote:

x2 = x3 = x4 = x5 = Table@0, 8239<D;
x2P104T = x2P105T = x3P184T = x4P225T = x5P230T = 1;

Note  that the estimation period is from day 2 to day 240; hence, the reduction of 1 in the
day-specific  dummies.  The  statistical  model  (12.1)  is  in  the  form  of  a  Normal  linear
regression  model.  To  estimate  the  parameters  of  our  model,  we  apply  the  Regress
function  given  in  MathematicaGs  Statistics`LinearRegression`  package.  The
Regress  function  is  built  using  an  ordinary  least  squares  (OLS)  estimator.  The
differences between OLS and ML estimates of the parameters of our model are minimal.2

To use Regress, we must first load the Statistics add-on:

<< Statistics`

and then manipulate the data to the required format:

rdata = Transpose@8x2, x3, x4, x5, Dp<D;
The estimation results are collected in olsq:

olsq = Regress@rdata,8takeover, regulator, disclosure, vote<,8takeover, regulator, disclosure, vote<,
RegressionReport Ø 8ParameterTable,

EstimatedVariance, FitResiduals<D;
Table 1  lists  the  OLS  estimates  of  the  parameters  Hb1 , b2 , b3 , b4 , b5 L;  the  estimates
correspond to the coefficients  of drift (labelled  1) and the day-specific  dummies (labelled
takeover, regulator, disclosure and vote).
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Estimate SE TStat
1 -0.000171 0.0059496 -0.02873

takeover 0.675171 0.0646293 10.44680
regulator 0.140171 0.0912057 1.53687

disclosure 0.190171 0.0912057 2.08508
vote -0.049829 0.0912057 -0.54633

s2 0.008283

Table 1:  OLS estimates of the Random Walk with Drift model

Notice  that  the only  regressors  to have  t-statistics  that exceed  2  in absolute  value are the
takeover  and  disclosure  day-specific  dummies.  Figure  5  plots  the  time  series  of  fitted
residuals.
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Fig. 5:  Fitted OLS residuals

The residuals  exhibit  clusters of variability (approximately,  days 2U30, 60U100,  220U240)
interspersed  with  periods  of  stability  (day  150  providing  an  exception  to  this).  This
suggests  that an ARCH specification for the model disturbance Ut  may improve the fit of
(12.1);  for  details  on  formal  statistical  testing  procedures  for  ARCH  disturbances,  see
Engle (1982).

To specify an ARCH(1) model for the disturbances, we extend (12.1) to

(12.2)DPt = x#t . b + Ut

(12.3)Ut = Vt  "##########################a1 + a2  Ut-1
2

where  Vt ~ NH0, 1L.  We  now  deduce  conditional  moments  of  the  disturbance  Ut  holding
Ut-1  fixed  at  a  specific  value  ut-1 .  The  conditional  mean  and  variance  of  Ut  are
E@Ut ' Ut-1 = ut-1 D = 0  and  VarHUt ' Ut-1 = ut-1 L = a1 + a2  ut-1

2 ,  respectively.  These
results  imply  that  DPt ' HUt-1 = ut-1 L ~ NHx#t . b, a1 + a2  ut-1

2 L.  The  likelihood  function  is
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the product of the distribution of the initial condition and the conditional distributions; the
theory  behind  this  construction  is  similar  to  that  discussed  in  Example  4  of  Chapter  11.
Given the initial condition U0 = 0, the likelihood is

(12.4)

LHqL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!2 p a1
 exp

ikjjjjj - HDp1 - x#1 . bL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 a1

y{zzzzz
ä 1

t=2

n

 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"###################################2 p Ha1 + a2  ut-1
2 L  exp

i
kjjjjjj - HDpt - x#t . bL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Ha1 + a2  ut-1

2 L y{zzzzzz
where  Dpt  is  the  datum  observed  on  DPt  and  ut = Dpt - x#t . b,  for  t = 1, e, n.  We  now
enter the log-likelihood into Mathematica. It is convenient to express the log-likelihood in
terms of ut :

Clear@nD;
logLq =

FullSimplifyA LogA ExpA -u1 2ÅÅÅÅÅÅÅÅÅÅ2 a1 E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!

2 p a1
Â
t=2

n ExpA -ut 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 Ha1 + a2 ut-1

2 L E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#####################################2 p Ha1 + a2 ut-1

2 L E ,

8u1 3 Reals, a1 > 0<E êê Expand

-
1
ÅÅÅÅ
2
n Log@2 pD -

Log@a1D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
-

u1
2

ÅÅÅÅÅÅÅÅÅÅÅ
2 a1

-

1
ÅÅÅÅ
2

*
t=2

n

Log@a1 + a2 u-1+t
2 D -

1
ÅÅÅÅ
2

*
t=2

n
ut
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a1 + a2 u-1+t

2

To  obtain  the  observed  log-likelihood,  we  first  enter  in  the  value  of  n;  we  then  re-
define  the  regressors  in x#,  reducing  the  number  of  regressors  from  five  down to  just  the
two  significant  regressors  (takeover  and  disclosure)  from  the  random  walk  model  fitted
previously:

n = 239; xdata = Transpose@8x2, x4<D;
Next, we enter the disturbances ut  defined, via (12.2), as Ut = DPt - x#t . b:

uvec = Dp - xdata.8b2, b4<;
Finally, we create a set of replacement rules called urules:3

urules = Table@ui Ø uvecPiT, 8i, n<D; Short@urulesD
8u1 Ø 0., u2 Ø 0.13, á236à, u239 Ø -0.11<

Substituting urules into the log-likelihood yields the observed log-likelihood:

obslogLq = logLq ê. urules;
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Note that our Mathematica inputs use the parameter  notation Hb2, b4, a1, a2L rather
than  the  neater  subscript  form  Hb2 , b4 , a1 , a2 L;  this  is  because  FindMinimum  /
FindMaximum does not handle subscripts well.4

We  undertake  maximum  likelihood  estimation  of  the  parameters  Hb2 , b4 , a1 , a2 L
with FindMaximum. To begin, we apply it blindly, selecting as initial values for Hb2 , b4 L
the  estimates  from  the  random  walk  model,  and  choosing  arbitrary  initial  values  for  a1

and a2 :

sol = FindMaximum@obslogLq,8b2, .675171<, 8b4, .190171<, 8a1, 1<, 8a2, 1<D
1 FindMinimum::fmnum :  

Objective function 122.878 + 375.42 Â is not real at8b2, b4, a1, a2< = 80.675165, 0.190167, -á19à, 0.988813<.
1 FindMinimum::fmnum :  

Objective function 122.878 + 375.42 Â is not real at8b2, b4, a1, a2< = 80.675165, 0.190167, -á19à, 0.988813<.
1 FindMinimum::fmnum :  

Objective function 122.878 + 375.42 Â is not real at8b2, b4, a1, a2< = 80.675165, 0.190167, -á19à, 0.988813<.
1 General::stop :  Further output of FindMinimum::fmnum will

be suppressed during this calculation.

Why has it  crashed? Our first  clue  comes from the error  message,  which  tells us  that the
observed log-likelihood Xis not realG  for some set of values assigned to the parameters.  Of
course,  all log-likelihoods must  be real-valued at all points in the parameter space, so the
problem  must  be  that  FindMaximum  has  drifted  outside  the  parameter  space.  Indeed,
from the error message we see that a1  has become negative, which may in turn cause the
conditional variance, Var HDPt ' HUt-1 = ut-1 LL = a1 + a2  ut-1

2  to become negative, causing
Mathematica  to  report  a  complex  value  for  logHa1 + a2  ut-1

2 L.  It  is  easy  to  see  that  if
a2 = 0, the ARCH model, (12.2) and (12.3), reduces  to the random walk model (12.1) in
which  case  a1 = s2 ,  so  we  require  a1 > 0.  Similarly,  we  must  insist  on  a2 ¥ 0.  Finally,
Engle  (1982,  Theorem 1) derives an upper bound for  a2  which  must  hold if higher  order
even  moments  of  the  ARCH(1)  process  are  to  exist.  Imposing  a2 < 1  ensures  that  the
unconditional variance, VarHUt L, exists.

In order to obtain the ML estimates, we need to incorporate the parameter restrictions
a1 > 0 and 0 § a2 < 1 into Mathematica. There are two possibilities open to us:

(i) to use FindMaximum as a constrained optimiser, or

(ii) to re-parameterise the observed log-likelihood function so that the constraints are not
needed.

For  approach  (i),  we  implement  FindMaximum  with  the  constraints  entered  at  the
command line; for example, we might enter:

sol1 = FindMaximum@obslogLq, 8b2, .675171<, 8b4, .190171<,8a1, 1, 0.00001, 100<, 8a2, 0.5, 0, 1<, MaxIterations Ø 40D8243.226, 8b2 Ø 0.693842,
b4 Ø 0.191731, a1 Ø 0.00651728, a2 Ø 0.192958<<
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In  this  way,  FindMinimum  /  FindMaximum  is  being  used  as a  constrained  optimiser.
The  constraints  entered  above  correspond  to  0.00001 § a1 § 100  and  0 § a2 § 1.  Also,
note  that  we  had  to  increase  the  maximum  possible  number  of  iterations  to  40  (10 more
than  the  default)  to  enable  FindMinimum  /  FindMaximum  to  report  convergence.
Unfortunately,  FindMinimum  /  FindMaximum  often  encounters  difficulties  when
parameter constraints are entered at the command line.

Approach  (ii)  improves  on  the  previous  method  by  re-parameterising  the  observed
log-likelihood  in  such  a  way  that  the  constraints  are  eliminated.  In  doing  so,
FindMinimum  /  FindMaximum  is  implemented  as  an  unconstrained  optimiser,  which
is a task it can cope with. Firstly, the constraint a1 > 0 is satisfied for all real g1  provided
a1 = 6g1 .  Secondly,  the constraint 0 § a2 < 1 is (almost)  satisfied for all real g2  provided
a2 = H1 + expHg2LL-1 .  A  replacement  rule  is  all  that  is  needed  to  re-parameterise  the
observed log-likelihood:

obslogLl = obslogLq ê. 9a1 Ø $g1, a2 Ø
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + $g2 =;

We now attempt:

sol2 = FindMaximum@obslogLl,8b2, .675171<, 8b4, .190171<, 8g1, 0<, 8g2, 0<D
8243.534, 8b2 Ø 0.677367,

b4 Ø 0.305868, g1 Ø -5.07541, g2 Ø 1.02915<<
The  striking  feature  of  this  result  is  that  even  though  the  starting  points  of  this  and  our
earlier effort are effectively the same, the maximised value of the observed log-likelihood
yielded by the current solution sol2 is strictly superior to that of the former sol1:

sol2P1T > sol1P1T
True

It  would,  however,  be  unwise  to  state  unreservedly  that  sol2  represents  the  ML
estimates! In practice, it is advisable to experiment with different starting values. Suppose,
for example, that the algorithm is started from a different location in the parameter space:

sol3 = FindMaximum@obslogLl,8b2, .675171<, 8b4, .190171<, 8g1, -5<, 8g2, 0<D
8243.534, 8b2 Ø 0.677263,

b4 Ø 0.305021, g1 Ø -5.07498, g2 Ø 1.03053<<
This  solution  is  slightly  better  than the former  one,  the difference  being  detectable  at  the
5 th  decimal place:

NumberForm@sol2P1T, 9D
NumberForm@sol3P1T, 9D
243.53372

243.533752
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Nevertheless,  we  observe  that  the  parameter  estimates  output  from  both  runs  are  fairly
close,  so  it seems reasonable  enough  to expect that  sol3  is in the neighbourhood  of the
solution.5

There  are  still  two  features  of  the  proposed  solution  that  need  to  be  checked,  and
these concern the gradient:

g = Grad@obslogLl, 8b2, b4, g1, g2<D;
g ê. sol3P2T
80.0553552, 0.000195139, 0.0116302, -0.000123497<

and the Hessian:

h = Hessian@obslogLl, 8b2, b4, g1, g2<D;
Eigenvalues@h ê. sol3P2TD
8-359.682, -96.3175, -79.1461, -2.60905<

The gradient at the maximum (or minimum or saddle point) should disappear!but this is
far from true here. It would therefore be a mistake to claim that sol3 is the ML estimate!
On the other hand, all eigenvalues at sol3 are negative, so the observed log-likelihood is
concave  in  this  neighbourhood.  This  is  useful  information,  as  we  shall  see  later  on.  For
now, let us return to the puzzle of the non-zero gradient!

Why  does  FindMinimum  /  FindMaximum  fail  to  detect  a  non-zero  gradient  at
what  it  claims is the  optimum? The answer  lies with the algorithmGs  stopping rule.  Quite
clearly,  FindMinimum  /  FindMaximum  does  not check  the magnitude of the gradient,
for if it did, further iterations would be performed. So what criterion does FindMinimum
use  in  deciding  whether  to  stop  or  proceed  to  a  new  iteration?  After  searching  the
documentation  on  FindMinimum,  the  criterion  is  not  revealed.  So,  at  this  stage,  our
answer is incomplete;  we can only say for certain what criterion is not used. Perhaps,  like
many optimisers,  FindMinimum iterates until  the improvement in the objective function
is smaller than some critical number? Alternatively, perhaps FindMinimum iterates until
the  absolute  change  in  the  choice  variables  is  smaller  than  some  critical  value?  Further
discussion of stopping rule criteria appears in §12.5.

Our  final  optimisation  assault  utilises  the  fact  that,  at  sol3  (our  current  best
XsolutionG),  we  have  reached  a  neighbourhood  of  the  parameter  space  in  which  the
observed  log-likelihood  is  concave,  since  the  eigenvalues  of  the  Hessian  matrix  are
negative at sol3. In practice,  it is nearly always advisable to Xfinish offG an optimisation
with iterations  of  the NewtonURaphson algorithm,  provided it  is computationally  feasible
to do so. This algorithm can often be costly to perform, for it requires computation of the
Hessian matrix at each iteration, but this is exactly where Mathematica comes into its own
because  it is a wonderful  differentiator!  And for our  particular problem, provided that we
do  not  print  it  to  screen,  the  Hessian  matrix  takes  less  than  no  time  for  Mathematica  to
compute!as  we have  already witnessed  when it  was computed  for  the re-parameterised
observed  log-likelihood  and  stored  as  h.  The  NewtonURaphson  algorithm  can  be  run  by
supplying an option to FindMaximum. Starting our search at sol3, we find:
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sol4 = FindMaximum@obslogLl,8b2, 0.677263<, 8b4, 0.305021<,8g1, -5.07498<, 8g2, 1.03053<,
Method Ø NewtonD

8243.534, 8b2 Ø 0.677416,
b4 Ø 0.304999, g1 Ø -5.07483, g2 Ø 1.03084<<

Not  much  appears  to have  changed  in going from sol3  to sol4.  The  value of  the
observed log-likelihood increases slightly at the 6 th  decimal place:

NumberForm@sol3P1T, 10D
NumberForm@sol4P1T, 10D
243.5337516

243.5337567

which  necessarily  forces  us  to replace  sol3  with sol4,  the  latter  now being  a  possible
contender for the maximum. The parameter estimates alter slightly too:

sol3P2T
8b2 Ø 0.677263, b4 Ø 0.305021,

g1 Ø -5.07498, g2 Ø 1.03053<
sol4P2T
8b2 Ø 0.677416, b4 Ø 0.304999,

g1 Ø -5.07483, g2 Ø 1.03084<
But what about our concerns over the gradient and the Hessian?

g ê. sol4P2T
80.0000131549, -6.90917 µ 10-7,
4.09054 µ 10-6, 3.40381 µ 10-7<

Eigenvalues@h ê. sol4P2TD
8-359.569, -96.3068, -79.1165, -2.60887<

Wonderful!  All  elements  of  the  gradient  are  numerically  much  closer  to  zero,  and  the
eigenvalues  of  the  Hessian  matrix  are  all  negative,  indicating  that  it  is  negative  definite.
FindMinimum  /  FindMaximum  has,  with  some  effort  on  our  part,  successfully
navigated  its  way through the  numerical  optimisation  maze and  presented  to us the  point
estimates that maximise the re-parameterised observed log-likelihood. However, our work
is  not  yet  finished!  The  ML  estimates  of  the  parameters  of  the  original  ARCH(1)  model
must be determined:
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9b2, b4, $g1,
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + $g2

= ê. sol4P2T
80.677416, 0.304999, 0.00625216, 0.262921<

We conclude our XjourneyG by presenting the ML estimates in Table 2.

Estimate
takeover 0.677416

disclosure 0.304999
a1 0.006252
a2 0.262921

Table 2:  ML estimates of the ARCH(1) model

12.4 Asymptotic Inference
Inference  refers  to  topics  such  as  hypothesis  testing  and  diagnostic  checking  of  fitted
models,  confidence  interval  construction,  within-sample  prediction,  and  out-of-sample
forecasting.  For  statistical  models  fitted  using  ML  methods,  inference  is  often  based  on
large  sample  results,  as  ML  estimators  (suitably  standardised)  have  a  limiting  Normal
distribution.

12.4 A Hypothesis Testing
Asymptotic inference is operationalised  by replacing unknowns with consistent  estimates.
To  illustrate,  consider  the  GammaHa, bL  model,  with  mean  m = a b.  Suppose  we  want  to
test

H0 : m = m0 against H1 : m � m0

where m0 $ !+  is known. Letting m̀ denote the ML estimator of m, we find (see Example 4
for the derivation):

è!!!
n  Hm̀ - mL ö

d
 NH0, a b2 L.

Assuming H0  to be true, we can (to give just two possibilities) base our hypothesis test on
either of the following asymptotic distributions for m̀:

m̀ ~a  NJm0 , 1ÅÅÅÅÅn  à b
`2 N or m̀ ~a  NIm0 , 1ÅÅÅÅÅn  m0 b

`M.
Depending  on  which  distribution  is  used,  it  is  quite  possible  to  obtain  conflicting
outcomes to the tests. The potential for arbitrary outcomes in asymptotic inference has, on
occasion,  Xruffled  the  feathersG  of  those  advocating  that  inference  should  be  based  on
small sample performance!
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�  Example 3:  The Gamma or the Exponential?

In  this  example,  we  consider  whether  there  is  a  statistically  significant  improvement  in
using  the  GammaHa, bL  model  to  fit  the  Nerve  data  (Example  2)  when  compared  to  the
ExponentialHlL  model  (Example  1).  In  a  Gamma  distribution,  restricting  the  shape
parameter  a  to  unity  yields  an  Exponential  distribution;  that  is,  GammaH1, bL =
ExponentialHbL. Hence, we shall conduct a hypothesis test of

H0 : a = 1 against H1 : a � 1.

We use the asymptotic theory of ML estimators to perform the test of H0  against H1 .
Here is the pdf of X ~ GammaHa, bL:

f =
xa-1  $-xêb

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@aD ba

; domain@fD = 8x, 0, �< && 8a > 0, b > 0<;
Since  the  MLE  is  regular  (conditions  1a,  2,  3,  4a,  and  5a  are  satisfied;  see  §11.4  D  and
§11.5 A),

è!!!
n  Iq` - q0 M ö

d
NH0, i0

-1 L
where q

`
 denotes the MLE of q0 = Ha, bL. We can evaluate i0

-1 :

Inverse@FisherInformation@8a, b<, fDD êê Simplify

i
kjjjjjj

aÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-1+a PolyGamma@1,aD bÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-a PolyGamma@1,aD
bÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-a PolyGamma@1,aD b2 PolyGamma@1,aDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-1+a PolyGamma@1,aD

y
{zzzzzz

Let s2  denote the top left element of i0
-1 ; note that s2  depends only on a. From the (joint)

asymptotic distribution of q
`
, we find

à ~a  NIa, 1ÅÅÅÅÅn  s2 M.
We  may  base  our  test  statistic  on  this  asymptotic  distribution  for  à,  for  when  a = 1 (i.e.
H0  is true), it has mean 1, and standard deviation:

s = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1
ÅÅÅÅ
n

 
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-1 + a PolyGamma@1, aD ê. 8a Ø 1, n Ø 799< êê N

0.0440523

Because the alternative hypothesis H1  is uninformative  (two-sided), H0  will be rejected if
the  observed  value  of  à  (1.17382  was obtained  in  Example  2)  is  either  much  larger  than
unity,  or  much  smaller  than  unity.  The  p-value  (short  for  Xprobability  valueG;  see,  for
example, Mittelhammer (1996, pp. 535U538)) for the test is given by
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PI ' à - 1 ' > 1.17382 - 1M = 1 - PH0.82618 < à < 1.17382L
which equals:

g =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
è!!!!!!!
2 p

 ExpA-
Hà - 1L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E; domain@gD = 8à, -�, �<;
1 - HProb@1.17382, gD - Prob@0.82618, gDL
0.0000795469

As the p-value is very small, this is strong evidence against H0 . !

�  Example 4:  Constructing a Confidence Interval

In this example, we construct an approximate  confidence interval for  the mean m = a b of
the GammaHa, bL distribution using an asymptotic distribution for the MLE of the mean.

From the previous example, we know è!!!
n  Iq` - q0 M ö

d
NH0, i0

-1 L, where q
`
 is the MLE

of  q0 = Ha, bL.  As  m  is  a  function  of  the  elements  of  q0 ,  we  may  apply  the  Invariance
Property (see §11.4 E) to find

è!!!
n  Hm̀ - mL  ö

d
 NI0, �mÅÅÅÅÅÅÅÅÅÅÅÅÅ

�q0
T ä i0

-1 ä �mÅÅÅÅÅÅÅÅÅÅÅÅ
�q0

M.
mathStatica derives the variance of the limit distribution as:

f =
xa-1  $-xêb

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@aD ba

; domain@fD = 8x, 0, �< && 8a > 0, b > 0<;
Grad@a b, 8a, b<D.Inverse@FisherInformation@8a, b<, fDD.

Grad@a b, 8a, b<D êê Simplify

a b2

Consequently,  we  may  write  è!!!
n  Hm̀ - mL ~a  NH0, a b2 L.  Unfortunately,  a  confidence

interval  for m cannot be constructed from this asymptotic distribution, due to the presence
of  the  unknown  parameters  a  and  b.  However,  if  we  replace  a  and  b  with,  respectively,
the estimates à and b

`
, we find6

m̀ ~a  NJm, 1ÅÅÅÅÅn  à b
`2 N.

From this asymptotic distribution, an approximate 100 H1 - wL % confidence interval for m
can be constructed; it is given by

m̀ � z1-wê2  
"##############

à b
`2 ên
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where z1-wê2  is the inverse cdf of the NH0, 1L distribution evaluated at 1 - w ê2.

For the Nerve data of Example 2, with ML estimates of 1.17382 for a, and 0.186206
for b, an approximate 95% confidence interval for m is:7

à = 1.17382; b
`

= 0.186206; m̀ = à b
`
;

z =
è!!!!
2 InverseErfA0, -1 + 2 J1 -

0.05
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

NE;
9m̀ - z 

"#####################
à b

`2 ê 799 , m̀ + z 
"#####################

à b
`2 ê 799 =

80.204584, 0.232561<

12.4 B Standard Errors and t-statistics
When  reporting  estimation  results,  it  is  important  to  mention,  at  the  very  least,  the
estimates,  the standard  errors  of the estimators,  and the t-statistics  (e.g.  see  Table 1).  For
ML  estimation,  such  details  can  be  obtained  from  an  asymptotic  distribution  for  the
estimator.  It  is  insufficient  to  present  just  the  parameter  estimates.  This,  for  example,
occurred  for  the  ARCH  model  estimated  in  §12.3,  where  standard  errors  and  t-statistics
were not presented (see Table 2). This is because FindMinimum / FindMaximum only
returns  point  estimates  of  the  parameters,  and  the  optimised  value  of  the  observed  log-
likelihood. To report standard errors and t-statistics, further programming must be done.

For regular ML estimators such that

è!!!
n  Iq` - q0 M ö

d
NH0, i0

-1 L
with an asymptotic distribution:

q
`

~a  NIq0 , Hn i0 L-1 M
we  require  a  consistent  estimator  of  the  matrix  Hn i0 L-1  in  order  to  operationalise
asymptotic inference, and to report estimation results. Table 3 lists three such estimators.

Fisher In i
q
` M-1

Hessian J- �2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
�q �qT  log  LHq`LN-1

Outer-product
ikjjjji=1

n I �ÅÅÅÅÅÅÅÅÅ
�q

 log f IXi ; q
`MM I �ÅÅÅÅÅÅÅÅÅ

�q
 log f IXi ; q

`MMTy{zzzz
-1

Table 3:   Three asymptotically equivalent estimators of Hn i0 L-1
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Each estimator relies on the consistency of the MLE q
`
 for q0 . All three are asymptotically

equivalent  in  the  sense  that  n  times  each  estimator  converges  in  probability  to  i0
-1 .  The

first  estimator,  labelled  XFisherG,  was used  in Example  4.  The second,  XHessianG,  is based
on  regularity  condition  5a(ii)  (see  §11.5 A).  This  estimator  is  quite  popular  in  practice,
having  the  advantage  over  the  Fisher  estimator  that  it  does  not  require  solving  an
expectation.  The  XOuter-productG  estimator  is  based  on  the  definition  of  Fisher
Information  (see  §10.2 D,  and  condition  4a  in  §11.5 A).  While  it  would  appear  more
complicated than the others, it can come in handy if computation of the Hessian estimator
becomes costly, for it requires only one round of differentiation.

If the MLE in a non-identically distributed sample (see §11.5 B) is such that,

è!!!
n  Iq` - q0 M ö

d
NI0, Hi0

H�L L-1 M
then  to  operationalise  asymptotic  inference,  the  Hessian  and  Outer-product  estimators
given in Table  3 may be used to estimate  Hn i0

H�L L-1
;  however, the Fisher  estimator is now

I
q
-̀1 , where Iq  denotes the Sample Information on q (see §10.2 E).

�  Example 5:  Income and Education: An Exponential Regression Model

In Example 15 of Chapter 11, we considered the simple Exponential regression model:

(12.5)Y ' HX = xL ~ ExponentialHexpHa + b xLL
where regressor X = x $ !, and parameter q = Ha, bL $ !2 . Here is the pdf f Hy ' X = x; qL:

f =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Exp@a + b xD ExpA-

y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Exp@a + b xD E;

domain@fD = 8y, 0, �< && 8a 3 Reals, b 3 Reals, x 3 Reals<;
Greene  (2000,  Table  A4.1)  gives  hypothetical  data  on  the  pair  HYi , Xi L  for  n = 20

individuals,  where  Y  denotes  Income  ($000s  per  annum)  and  X  denotes  years  of
Education. Here is the Income data:

Income = 820.5, 31.5, 47.7, 26.2, 44.0, 8.28,
30.8, 17.2, 19.9, 9.96, 55.8, 25.2, 29.0,
85.5, 15.1, 28.5, 21.4, 17.7, 6.42, 84.9<;

e and here is the Education data:

Education = 812, 16, 18, 16, 12, 12, 16, 12,
10, 12, 16, 20, 12, 16, 10, 18, 16, 20, 12, 16<;

Figure 6 illustrates the data in the form of a scatter diagram.
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Fig. 6:  The IncomeUEducation data

Using ML methods, we fit the Exponential  regression model (12.5) to this data. We begin
by entering the observed log-likelihood:

obslogLq = LogA'
i=1

n Hf ê. 8y Ø yi, x Ø xi<LE ê.
8n Ø 20, yi_ ß IncomePiT, xi_ ß EducationPiT<

-42.9 2-a-20 b - 76.2 2-a-18 b - 336.1 2-a-16 b -
135.36 2-a-12 b - 35. 2-a-10 b - 20 a - 292 b

We obtain the ML estimates using FindMaximumGs NewtonURaphson algorithm:

solq = FindMaximum@obslogLq, 8a, 0.1<, 8b, 0.2<,
Method Ø NewtonD

8-88.1034, 8a Ø 1.88734, b Ø 0.103961<<
Thus,  the  observed  log-likelihood  is  maximised  at  a  value  of  -88.1034,  with  ML
estimates of a and b reported as 1.88734 and 0.103961, respectively.

Next, we compute the Fisher, Hessian and Outer-product estimators given in Table 3.
The  Fisher  estimator  corresponds  to the  inverse  of  the  H2ä2L  Sample  Information  matrix
derived in Example 15 of Chapter 11. It is given by:

Fisher = InverseAikjjjj n i=1
n xii=1

n xi i=1
n xi2

y{zzzz ê. 8n Ø 20, xi_ ß EducationPiT<E êê N

J 1.20346 -0.0790043
-0.0790043 0.00541126

N
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The Hessian estimator is easily computed using mathStaticaGs Hessian function:

hessian = Inverse@-Hessian@obslogLq, 8a, b<D ê. solqP2TD
J 1.54467 -0.102375

-0.102375 0.00701196
N

Calculating the Outer-product estimator is more involved, so we evaluate it in four stages.
First, we calculate the score �ÅÅÅÅÅÅÅ

�q
 log f Hxi ; qL using mathStaticaGs Grad function:

grad = Grad@Log@f ê. 8y Ø yi, x Ø xi<D, 8a, b<D
8-1 + 2-a-b xi yi, xi H-1 + 2-a-b xi yiL<

Next,  we form the  outer product  of  this  vector  with itself! the  distinctive  operation that
gives the estimator its name:

op = Outer@Times, grad, gradD
ikjjjjj H-1 + 2-a-b xi yiL2 xi H-1 + 2-a-b xi yiL2
xi H-1 + 2-a-b xi yiL2 xi

2 H-1 + 2-a-b xi yiL2 y{zzzzz
We then  Map  the  sample  summation  operator  across  each  element  of  this  matrix  (this  is
achieved by using the level specification {2}):

opS = MapA>
i=1

n

# &, op, 82<E
i
k
jjjjjjjjj *

i=1

n H-1 + 2-a-b xi yiL2 *
i=1

n
xi H-1 + 2-a-b xi yiL2*

i=1

n
xi H-1 + 2-a-b xi yiL2 *

i=1

n
xi
2 H-1 + 2-a-b xi yiL2

y
{
zzzzzzzzz

Finally,  we  substitute  the  ML  estimates  and  the  data  into  opS,  and  then  invert  the
resulting matrix:

outer = Inverse@opS ê. Flatten@8solqP2T,
n Ø 20, yi_ ß IncomePiT, xi_ ß EducationPiT<DD

J 5.34805 -0.342767
-0.342767 0.0225022

N
In  this  particular  case,  the  three  estimators  yield  different  estimates  of  the  asymptotic
variance-covariance  matrix  (this  generally  occurs).  The  estimation  results  for  the  trio  of
estimators are given in Table 4.
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Estimate
a 1.88734
b 0.10396

77777777777777777777
Fisher

SE TStat
1.09702 1.72042
0.07356 1.41326

77777777777777777777
Hessian

SE TStat
1.24285 1.51856
0.08374 1.24151

77777777777777777777
Outer

SE TStat
2.31259 0.81612
0.15001 0.69304

Table 4:  Estimation results for the IncomeUEducation data

The  ML  estimates  appear  in  the  first  column  (Estimate).  The  associated  estimated
asymptotic  standard  errors appear in the SE columns (these correspond to the square root
of  the  elements  of  the  leading  diagonal  of  the  estimated  asymptotic  variance-covariance
matrices).  The  t-statistics  are  in  the  TStat  columns  (these  correspond  to  the  estimates
divided  by  the  estimated  asymptotic  standard  errors;  these  are  statistics  for  the  tests  of
H0 : a = 0  and  H0 : b = 0).  These  results  suggest  that  Education  is  not  a  significant
explanator of Income, assuming model (12.5). !

12.5 Optimisation Algorithms

12.5 A Preliminaries
The  numerical  optimisation  of  a  function  (along  with  the  related  task  of  solving  for  the
roots of an equation) is a problem that has attracted considerable interest in many areas of
science  and  technology.  Mathematical  statistics  is  no  exception,  for  as  we  have  seen,
optimisation  is  fundamental  to  estimation,  whether  it  be  for  ML  estimation  or  for  other
estimation  methods  such  as  the  method  of  moments  or  the  method  of  least  squares.
Optimisation  algorithms abound,  as even a cursory  glance through PolakGs (1971)  classic
reference  work  will  reveal.  Some of  these have  been coded into FindMinimum,  but for
each  one  that  has  been  implemented  in  that  function,  there  are dozens  of  others  omitted.
Of course, the fact that there exist so many different types of algorithms is testament to the
fact that every problem is unique, and its solution cannot necessarily be found by applying
one  algorithm.  The  various  attempts  at  estimating  the  ARCH  model  in  §12.3  provide  a
good illustration of this.

We  want  to  solve  two  estimation  problems.  The  first  is  to  maximise  a  real,  single-
valued  observed  log-likelihood  function  with  respect  to  the  parameter  q.  The  point
estimate  of  q0  is  to  be  returned,  where  q0  denotes  (as  always)  the  true  parameter  value.
The  second  is  to  estimate  the  asymptotic  standard  errors  of  the  parameter  estimator  and
the  asymptotic  t-statistics.  This  can  be  achieved  by  returning,  for  example,  the  Hessian
evaluated at the point estimate of q0  (i.e. the Hessian estimator given in Table 3 in §12.4).
It is fair  to say that obtaining  ML estimates  is the more important  task; however,  the two
taken together permit inference using the asymptotic distribution.

The  algorithms  that  we  discuss  in  this  section  address  the  dual  needs  of  the
estimation  problem;  in  particular,  we  illustrate  the  NewtonIRaphson  (NR)  and  the
BroydonIFletcherIGoldfarbIShanno  (BFGS)  algorithms.  The  NR  and  BFGS  algorithms
are  options  in  FindMinimum  using  MethodØ Newton  and  MethodØ

QuasiNewton,  respectively.  However,  in  its  Version  4  incarnation,  FindMinimum
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returns only a point estimate of q0 ; other important pieces of information such as the final
Hessian  matrix  are  not  recoverable  from  its  output.  This  is  clearly  a  weakness  of
FindMinimum which will hopefully be rectified in a later version of Mathematica.

Both  the  NR  and  BFGS  algorithms,  and  every  other  algorithm  implemented  in
FindMinimum,  come  under  the  broad  category  of  gradient  methods.  Gradient  methods
form the backbone of the literature on optimisation and include a multitude of approaches
including  quadratic  hill-climbing,  conjugate  gradients,  and  quasi-Newton  methods.  Put
simply, gradient methods work by estimating the gradient and Hessian of the observed log-
likelihood  at  a  given  point,  and  then  jumping  to  a  superior  solution  which  estimates  the
optimum.  This  process  is  then  repeated  until  convergence.  Amongst  the  extensive
literature  on  optimisation  using gradient  methods,  we  refer  in  particular  to  Polak  (1971),
Luenberger  (1984),  Gill  et  al.  (1981)  and  Press  et  al.  (1992).  A  discussion  of  gradient
methods applied to optimisation in a statistical context appears in Judge et al. (1985).

Alternatives  to  optimisation  based  on  gradient  methods  include  direct  search
methods,  simulated  annealing  methods,  taboo  search  methods,  and  genetic  algorithms.
The  first!direct  search! involves  the  adoption  of  a  search  pattern  through  parameter
space  comparing  values  of  the  observed  log-likelihood  at  each  step.  Because  it  ignores
information  (such as  gradient  and  Hessian),  direct  search methods  are generally  regarded
as  inferior.  However,  the  others! simulated  annealing,  taboo  search,  and  genetic
algorithms! fare  better  and  have  much  to  recommend  them.  Motivation  for  alternative
methods  comes  primarily  from  the  fact  that  a  gradient  method  algorithm  is  unable  to
escape from regions in parameter  space corresponding to local optima, for once at a local
optimum a gradient algorithm will not widen its search to find the global optimum! this
is termed the problem of multiple local optima.8

The method of simulated  annealing  (Kirkpatrick et al.  (1983)) attempts  to overcome
this  by  allowing  the  algorithm  to  move  to  worse  locations  in  parameter  space,  thereby
skirting across local optima; the method performs a slow but thorough search.  An attempt
to  improve  upon  the  convergence  speed  of  the  annealing  algorithm  is  IngberGs  (1996)
simulated  quenching  algorithm.  Yet  another  approach  is  the  taboo  method  (Glover  et  al.
(1993)) which is a strategy that forces an algorithm (typically a gradient method) to move
through  regions  of  parameter  space  that  have  not  previously  been  visited.  Genetic
algorithms  (Davis  (1991))  offer  an  entirely  different  approach  again.  Based  on  the
evolutionary  notion  of  natural  selection,  combinations  of  the  best  intermediate  solutions
are paired together repeatedly until a single dominant optimum emerges.

When  applying  a  gradient  method  to  an  observed  log-likelihood  which  has,  or  may
have, multiple local optima, it is advisable to initiate the algorithm from different locations
in parameter space. This approach is adequate for the examples we present here, but it can
become untenable in higher-dimensional parameter spaces.

As outlined,  the estimation problem has two components:  estimating parameters  and
estimating the associated standard errors of the estimator.  Fortunately,  by focusing on the
solution  for  the  first  component,  we  will,  as  a  by-product,  achieve  the  solution  for  the
second.  We begin  by defining the penalty  function,which  is  the negative  of the observed
log-likelihood function:

(12.6)pHqL = -log LHqL.
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Minimising  the penalty  function for choices of q yields the equivalent  result  to maximum
likelihood. The reason for defining the penalty function is purely because the optimisation
literature  is  couched  in  terms  of  minimisation,  rather  than  maximisation.  Finally,  we
assume  the  parameter  q,  a Hk ä1L  vector,  is  of dimension  k ¥ 2 and  such  that q $ Q = !k .
Accordingly,  optimisation  corresponds  to  unconstrained  minimisation  over  choice
variables defined everywhere in two- or higher-dimensional real space.

Before  proceeding  further,  we  make  brief  points  about  the  k = 1  case.  The  case  of
numerical  optimisation  over  the  real  line  (i.e.  corresponding  to  just  one  parameter,  since
k = 1) is of lesser importance  in practice.  If univariate optimisation  is needed,  line search
algorithms such as Golden Search and methods due to Brent (1973) should be applied; see
Luenberger  (1984)  for  discussion  of  these  and  other  possibilities.  MathematicaGs
FindMinimum  function  utilises  versions  of  these  algorithms,  and  our  experience  of  its
performance has, on the whole, been good. Determining in advance whether the derivative
of  the  penalty  function  can  be  constructed  (equivalent  to  the  negative  of  the  score)  will
usually cut down the number of iterations, and can save time. If so, a single starting point
need  only  be supplied  (i.e.  it  is  unnecessary  to compute  the gradient  and supply  it  to the
function  through  the  Gradient  option).  Univariate  optimisation  can,  however,  play  an
important role in multivariate optimisation by determining step-length optimally.

Finally,  as  we  have  seen,  parametric  constraints  often  arise  in  statistical  models.  In
these  cases,  the  parameter  space  Q = 8q : q $ Q<  is  a  proper  subset  of  k-dimensional  real
space  or  may be  degenerate  upon  it  (i.e.  Q Õ !k ).  This  means  that  maximum  likelihood/
minimum  penalty  estimation  requires  constrained  optimisation  methods.  Our  opinion  on
FindMinimum  as  a  constrained  optimiser! in  its  Version  4  incarnation! is  that  we
cannot  recommend  its  use.  The  approach  that  we  advocate  is  to  transform  a  constrained
optimisation  into  an  unconstrained  optimisation,  and  use  FindMinimum  on  the  latter.
This can be achieved by re-defining parameter  q to a new parameter l = gHqL in a manner
such  that  l $ !q ,  where  q § k.  Of  course,  the  trick  is  to  determine  the  appropriate
functional  form for the transformation  g.  Once we have determined g  and optimised with
respect to l, recovery of estimation results (via the Invariance Property) pertinent to q can
be achieved by using replacement  rules,  as well as by exploiting MathematicaGs excellent
differentiator.

12.5 B Gradient Method Algorithms
An  algorithm  (gradient  method  or  otherwise)  generates  a  finite-length  sequence  such  as
the following one:

(12.7)q
`H0L , q

`H1L , e, q
` HrL

where  the bracketed  subscript  indicates  the iteration  number.  Each  q
` H jL $ !k ,  j = 0, e, r,

resides in the same space as the q, and each can be regarded as an estimate of q
`
:

q
`

= arg maxq $ !k log LHqL = arg minq $ !k pHqL.
The  sequence  (12.7)  generally  depends  on  three  factors:  (i)  the  point  at  which  the

algorithm starts  q
`H0L ,  (ii)  how the algorithm progresses  through the sequence;  that  is, how
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q
` H j+1L  is  obtained  from  q

`H jL ,  and  (iii)  when  the  process  stops.  Of  the  three  factors,  our
attention focuses mainly on the second! the iteration method.

È Initialisation

Starting values are important in all types of optimisation methods!more so, perhaps, for
gradient method algorithms because of the multiple  local optima problem. One remedy is
to start from different locations in the parameter  space in order to trace out the surface of
the  observed  log-likelihood,  but  this  may  not  appeal  to  the  purist.  Alternative  methods
have  already  been  discussed  in  §12.5 A,  with  simulated  annealing  methods  probably
worthy of first consideration.

È The Iteration Method

Typically, the link between iterations takes the following form,

(12.8)q
`H j+1L = q

`H jL + mH jL  dH jL
where the step-length mH jL $ !+  is a scalar, and the direction dH jL $ !k  is a vector lying in
the parameter space. In words, we update our estimate obtained at iteration j, namely q

`H jL ,
by moving in the direction dH jL  by a step of length mH jL .

The  fundamental  feature  of  algorithms  coming  under  the  umbrella  of  gradient
methods is that they are never worsening. That is,

pHq`H0L L ¥ pHq` H1L L ¥ � ¥ pHq` Hr-1L L ¥ pHq`HrL L.
Thus, each member in the sequence (12.7) traces out an increasingly better approximation
for  minimising  the  penalty  function.  Using  these  inequalities  and  the  relationship  (12.8),
for any j = 0, e, r, we must have

(12.9)pIq`H jL + mH jL  dH jL M - pHq`H jL L § 0.

The structure of a gradient method algorithm is determined by approximating the left-hand
side of (12.9) by truncating  its Taylor  series expansion.  To see this, replace  mH jL  in (12.9)
with m, and take a (truncated) Taylor series expansion of the first term about m = 0, to yield

m pg Hq`H jL L . dH jL
where  the  Hk ä 1L  vector  pg  denotes  the  gradient  of  the  penalty  function.  Of  course,  pg  is
equivalent  to  the  negative  of  the  score,  and  like  the  score,  it  too  disappears  at  q

`
;  that  is,

pg Hq`L = 0
#÷
. Replacing the left-hand side of (12.9) with the Taylor approximation, finds

(12.10)pg Hq`H jL L . dH jL § 0

for  m  is  a  positive  scalar.  Expression  (12.10)  enables  us  to  construct  a  range  of  differing
possibilities  for the direction vector.  For example, for a symmetric matrix WH jL ,  we might
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select direction according to

(12.11)dH jL = -WH jL . pg Hq`H jL L
because then the left-hand side of (12.10) is a weighted quadratic  form in the elements of
vector pg , the weights being the elements of matrix WH jL ; that is,

(12.12)pg Hq` H jL L . dH jL = - pg Hq`H jL L . WH jL . pg Hq` H jL L.
This  quadratic  form  will  be  non-positive  provided  that  the  matrix  of  weights  WH jL  is
positive  semi-definite  (in  practice,  WH jL  is  taken  positive  definite  to  ensure  strict
improvement).  Thus,  the  algorithm  improves  from  one  iteration  to  the  next  until  a  point
pg Hq` HrL L = 0

#÷
 is reached within numerical tolerance.

Selecting different weight matrices defines various iterating procedures. In particular,
four  choices  are  NR = NewtonURaphson,  Score = Method  of  Scoring,  DFP = DavidonU
FletcherUPowell and BFGS = BroydonUFletcherUGoldfarbUShanno:

(12.13)NR : WH jL = -HH jL-1

(12.14)Score : WH jL = IH jL-1

(12.15)DFP : WH j+1L = WH jL +
D q

`
ä ID q

`MT
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

D q
`

. Dpg

-
IWH jL . Dpg M ä IWH jL . Dpg MTÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Dpg . WH jL . Dpg

(12.16)

BFGS : WH j+1L = Has for DFPL + IDpg . WH jL . Dpg M
ä
ikjjjjj D q

`
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
D q

`
. Dpg

-
WH jL . DpgÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Dpg . WH jL . Dpg

y{zzzzz ä
ikjjjjj D q

`
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
D q

`
. Dpg

-
WH jL . DpgÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Dpg . WH jL . Dpg

y{zzzzz
T

The notation used here is the following:

HH jL is the Hessian of the observed log-likelihood function evaluated at q = q
`H jL

IH jL is the Sample Information matrix evaluated at q = q
` H jL

D q
`

= q
` H jL - q

`H j-1L is the change in the estimate from the previous iteration, and

Dpg = pg Hq`H jL L - pg Hq` H j-1L L is the change in the gradient.

The  DFP  and  BFGS  weighting  matrices  appear  complicated,  but  as  we  shall  see  in  the
following section, implementing them with Mathematica is reasonably straightforward. Of
the  algorithms  (12.13) U (12.16),  FindMinimum  includes  the  NR  algorithm
(Method Ø Newton) and the BFGS algorithm (Method Ø QuasiNewton).

To illustrate, we shall obtain the iterator for the Method of Scoring. Combine (12.8),
(12.11) and (12.14), to yield
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q
`H j+1L = q

`H jL - mH jL  IH jL-1 . pg Hq` H jL L
which,  to  be  complete,  requires  us  to  supply  a  step-length  mH jL .  We  might,  for  instance,
select  step-length  to  optimally  improve  the  penalty  function  when  moving  in  direction
dH jL = -IH jL-1 . pg Hq` H jL L from q

`H jL ; this is achieved by solving

mH jL = arg minm $ !+ pIq`H jL - m IH jL-1 . pg Hq` H jL LM.
Of course, this is a univariate optimisation problem that can be solved by numerical means
using FindMinimum. Unfortunately, experience suggests that determining step-length in
this manner can be computationally inefficient, and so a number of alternatives have been
proposed. In particular, one due to Armijo is implemented in the examples given below.

A final  point  worth  noting  concerns  estimating  the  asymptotic  standard  error  of  the
estimator.  As  mentioned  previously,  this  estimate  is  obtained  as  a  by-product  of  the
optimisation.  This  is because an estimate  of  the asymptotic  variance-covariance  matrix is
given  by  the  final  weighting  matrix  WHrL ,  since  the  estimates  of  the  asymptotic  standard
error  are  the  square  root  of  the  main  diagonal  of  this  matrix.  The  NR  weight  (12.13)
corresponds to the Hessian estimator, and the Score weight (12.14) to the Fisher estimator
(see Table 3); the DFP and BFGS weights are other (consistent) estimators.  However, the
default algorithm implemented in FindMinimum (the conjugate gradient algorithm) does
not yield, as a by-product, the estimate of the asymptotic variance-covariance matrix.

È Stopping Rules

Algorithms  converge  (asymptotically)  to  q
`
;  nevertheless,  from  a  practical  view,  the

sequence  (12.7)  must  be  terminated  in  finite  time,  and  the  estimate  q
` HrL  of  q

`
 must  be

reported.  This therefore  requires that we define  numerical  convergence.  How this is done
may vary. Possibilities include the following:

(i) convergence defined according to epsilon change in parameter estimates:

stop if ±q
`HrL - q

`Hr-1Lµ < e1

(ii) convergence defined according to epsilon change in the penalty function:

stop if ' pHq` HrL L - pHq`Hr-1L L ' < e2

(iii) convergence defined according to the gradient being close to zero:

stop if ±pg Hq`HrL Lµ < e3

(iv) convergence defined according to the gradient element with the largest absolute value
being close to zero:

stop if maxI ' pg Hq` HrL L 'M < e4
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where e1 , e2 , e3  and e4  are small positive numbers, ' ÿ '  denotes the absolute  value of the
argument,  and ± ÿ µ  denotes  the Euclidean  distance  of the argument vector from the origin
(the  square  root  of  the  dot  product  of  the  argument  vector  with  itself).  The  method  we
favour is (iv).

Of  course,  picking  just  one  rule  out  of  this  list  may  be  inappropriate  as  a  stopping
rule,  in  which  case  numerical  convergence  can  be  defined  according  to  combinations  of
(i), (ii),  (iii) or (iv) holding simultaneously.  Finally, (i) U (iv)  hold if q

`HrL  happens to locate
either a local maximum or a saddle point of the penalty function, so it is usually necessary
to check that the  Hessian of the penalty  function (equal  to the negative of the Hessian of
the observed log-likelihood) is positive definite at q

` HrL .

12.6 The BFGS Algorithm
In  this  section,  we  employ  the  BroydenUFletcherUGoldfarbUShanno  (BFGS)  algorithm  to
estimate a Poisson two-component-mix model proposed by Hasselblad (1969).

È Data, Statistical Model and Log-likelihood

Our  data! the  Death  Notice  data!appears  in  Table  5.  The  data  records  the  number  of
death notices for women aged 80 or over, each day, in the English newspaper, The Times,
during the three-year period, 1910U1912.

Death Notices per day HXL : 0 1 2 3 4 5 6 7 8 9

Frequency Hno. of daysL : 162 267 271 185 111 61 27 8 3 1

Table 5:  Death Notice data

The  data  is  interpreted  as  follows:  there  were  162  days  in  which  no  death  notices
appeared,  267 days in which one notice appeared,  e and finally, just 1 day on which the
newspaper listed nine death notices. We enter the data as follows:

count = 8162, 267, 271, 185, 111, 61, 27, 8, 3, 1<;
As  the  true  distribution  of  X = Xthe  number  of  death  notices  published  dailyG  is

unknown, we shall begin by specifying the PoissonHgL model for X,

PHX = xL = 6-g gx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x!
, x $ 80, 1, 2, e< and g $ !+

Then, the log-likelihood is:

Clear@GD; logLg = LogAÂ
x=0

G ikjj $-g  gx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

y{zz
nx E

-g *
x=0

G

nx + Log@gD *
x=0

G

x nx - *
x=0

G

Log@x!D nx
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where,  in  order  for  SuperLog  to  perform  its  magic,  we  have  introduced  the
Subscript  nx  to  index,  element  by  element,  the  data  in  list  count  (so  n0 = 162,
n1 = 267, e, n9 = 1).9 Define  G < �  to be the largest  number of death notices  observed
in  the  sample,  so  G = 9  for  our  data.10  ML  estimation  in  this  model  is  straightforward
because  the  log-likelihood  is  concave  with  respect  to  g.11  This  ensures  that  the  ML
estimator is given by the solution to the first-order condition:

solg = Solve@Grad@logLg, gD ã 0, gD êê Flatten

9g Ø
x=0
G x nx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx=0
G nx

=
For  our  data,  the  ML  estimate  is  obtained  by  inputting  the  data  into  the  ML  estimator,
solg, using a replacement rule:

solg = solg ê. 8G Ø 9, nx_ ß countPx + 1T< êê N

8g Ø 2.15693<
We leave estimation of the standard error of the estimator as an exercise for the reader.12

When  Hasselblad  (1969)  examined  the  Death  Notice  data,  he  suggested  that  the
sampled  population  was  in  fact  made  up  of  two  sub-populations  distinguished  according
to season,  since  death  rates  in winter  and  summer  months  might  differ.  As the  data  does
not  discriminate  between  seasons,  Hasselblad  proceeded  by  specifying  an  unknown
mixing  parameter  between  the  two  sub-populations.  We  denote  this  parameter  by  w  (for
details on component-mix models, see §3.4 A). He also specified Poisson distributions for
the  sub-populations.  We  denote  their  parameters  by  f  and  y.  HasselbladGs  Poisson  two-
component mix model is

PHX = xL = w 6-f fx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x!
+ H1 - wL 6-y yx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

, x $ 80, 1, 2, e<
where  the mixing  parameter  w  is such  that 0 < w < 1,  and the  Poisson parameters  satisfy
f > 0 and y > 0. For HasselbladGs model, the observed log-likelihood can be entered as:

obslogLl = LogAÂ
x=0

G ikjjjj w 
$-f fx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

+ H1 - wL $-y yx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

y{zzzz
nx E ê.

9G Ø 9, nx_ ß countPx + 1T, w Ø
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + $a

, f Ø $b, y Ø $c=;
Note  that  we  have  implemented  a  re-parameterisation  of  q = Hw, f, yL  to  l = gHqL =Ha, b, cL $ !3  by using a replacement rule (see the second line of input).

Due  to  the  non-linear  nature  of  the  first-order  conditions,  ML  estimation  of  the
unknown  parameters  requires  iterative  methods  for  which  we  choose  the  BFGS
algorithm.13 Using FindMaximum, initialised at Ha, b, cL = H0.0, 0.1, 0.2L, finds:14
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FindMaximum@obslogLl, 8a, 0.0<, 8b, 0.1<, 8c, 0.2<,
Method Ø QuasiNewtonD

8-1989.95, 8a Ø 0.575902, b Ø 0.227997, c Ø 0.9796<<
Using  the  estimates  0.575902,  0.227997  and 0.9796, for  a,  b  and c,  respectively,  we can
obtain  the ML  estimates  for  w,  f  and y.  Alas,  with FindMinimum / FindMaximum,  it
is not possible to inspect the results from each iteration in the optimisation procedure; nor,
more importantly,  can we recover estimates  of the asymptotic  variance-covariance  matrix
of the ML estimator of l. Without  the asymptotic variance-covariance  matrix, we cannot,
for  example,  undertake  the  inference  described  in  §12.4.  Thus,  FindMinimum /
FindMaximum does not do all that we might hope for.

È BFGS Algorithm

We  now  code  the  BFGS  algorithm,  and  then  apply  it  to  estimate  the  parameters  of
HasselbladGs model. We begin by converting the re-parameterised observed log-likelihood
into a penalty function:

p = -obslogLl;

Our task  requires the  unconstrained  minimisation  of  the penalty  p  with  respect to  l.  Our
BFGS  code  requires  that  we  define  the  penalty  function  pf  and  its  gradient  gradpf  as
Mathematica functions of the parameters, using an immediate evaluation:

pf@8a_, b_, c_<D = p;
gradpf@8a_, b_, c_<D = Grad@p, 8a, b, c<D;

To see that this has worked, evaluate the gradient of the penalty function at a = b = c = 0:

g = gradpf@80, 0, 0<D
80, -634, -634<

We now present some simple code for each part of the BFGS algorithm (12.16). The
following  module  returns  the  updated  approximation  WH jL  to  the  negative  of  the  inverse
Hessian matrix at each iteration:

BFGS@Dq_, Dgrad_, W_D :=
Module@8t1, t2, t3, t4, t5, t6, t7<,

t1 = Outer@Times, Dq, DqD;
t2 = Dq.Dgrad;
t3 = W.Dgrad;
t4 = Outer@Times, t3, t3D;
t5 = Dgrad.t3;H* For DFP ignore the remaining lines

and return W+t1êt2-t4êt5 *L
t6 = Dq ê t2 - t3 ê t5;
t7 = Outer@Times, t6, t6D;
W + t1 ê t2 - t4 ê t5 + t5 t7D
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The  BFGS  updating  expression  can,  of  course,  be  coded  as  a  one-line  command.
However, this would be inefficient as a number of terms are repeated; hence, the terms t1
to t7 in BFGS.

The  next  component  that  is  needed  is  a  line  search  method  for  determining  step-
length  m.  There  happen  to  be  quite  a  few  to  choose  from.  For  simplicity,  we  select  a
relatively  easy version of ArmijoGs  method as  given in Polak  (1971) (for  a more  detailed
version, see Luenberger (1984)):

Armijo@f_, q_, grad_, dir_D :=
Module@8a = 0.5, b = 0.65, m = 1., f0, gd<,

f0 = f@qD; gd = grad.dir;
While@ f@q + m dirD - f0 - m a gd > 0, m = b mD; mD

This module essentially determines a feasible step-length m, but not necessarily an optimal
one. The first argument, f, denotes the objective function (our penalty function). Because
Armijo  needs  to  evaluate  f  at  many  points,  the  Armijo  function  assumes  that  f  is  a
Mathematica function like pf (not p). A more advanced method is GoldsteinGs (again, see
Polak  (1971)  or  Luenberger  (1984)),  where  bounds  are  determined  within  which  an
optimising search can be performed using, for example, FindMinimum (but remember to
transform  to  an  unconstrained  optimisation).  The  cost  in  undertaking  this  method  is  the
additional time it takes to determine an optimal step-length.

To  set  BFGS  on  its  way,  there  are  two  initialisation  choices  required!l
` H0L  and

WH0L!which  are  the  beginning  parameter  vector  XguessG  and  the  beginning  inverse
Hessian  matrix  XguessG,  respectively.  The  success  of  our  search  can  depend  crucially  on
these two factors. To illustrate, suppose we set l

` H0L = H0, 0, 0L and WH0L = I3 . From (12.8),
(12.11), and our earlier output, it follows that l

` H1L = mH0L äH0, 634, 634L. Determining step-
length, we find:

Armijo@pf, 80, 0, 0<, g, 80, 634, 634<D
1 General::unfl :  Underflow occurred in computation.

1 General::unfl :  Underflow occurred in computation.

1 General::unfl :  Underflow occurred in computation.

1 General::stop :  Further output of
General::unfl will be suppressed during this calculation.

1.

e and the algorithm has immediately  run into troubles.  The cause of these  difficulties  is
scaling  (quantities  such  as  Exp@-634D  are  involved  in  numeric  computations).
Fortunately, a heuristic that can help to overcome this type of ill-conditioning is to enforce
scale dependence onto WH0L . A simple one that can often work is:

W0@q_, grad_D := $%%%%%%%%%%%%%%%%%%%%%%%%%%q.q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
grad.grad

IdentityMatrix@Length@qDD
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W0 ensures that the Euclidean length of the initial direction vector from the origin matches
that  of  the  initial  starting  parameter;  that  is,  WH0L  is  forced  to  be  such  that  direction
dH0L = -WH0L . gHl` H0L L satisfies

"################dH0L . dH0L = "#################l
` H0L . l

` H0L .

Of  course,  forcing  WH0L  to  behave  in  this  way  always  rules  out  selecting  l
` H0L  as  a  zero

vector as the initial parameter  guess. For further details on other generally better methods
of scaling and pre-conditioning, see Luenberger (1984).

We  now  implement  the  BFGS  algorithm  using  the  parts  constructed  above.  As  the
starting point, we shall select:

l0 = 80.0, 0.1, 0.2<;
The  code  here  closely  follows  PolakGs  (1971)  algorithm  structure  (given  for  DFP,  but
equally applicable to BFGS). If convergence to tolerance is achieved, the Do loop outputs
the list  XresultsG  which  contains:  (i)  the number  of  iterations  performed,  (ii)  the value
of  the  objective  function  at  the  optimum,  (iii)  the  optimal  parameter  values,  and  (iv)  the
final  weight  matrix  W .  If  no  output  is  produced,  then  convergence  to  tolerance  has  not
been achieved within 30 iterations. Irrespective of whether convergence has been achieved
or not, the final values of the parameters  and the weight matrix are stored in memory and
can be inspected. Finally, the coding that is given here is very much in Xbare bonesG form;
embellishments that the user might like (such as the output from each iteration �) can be
added as desired.

H* Start iteration Hiter=0L *L
l0 = 80.0, 0.1, 0.2<;
g0 = gradpf@l0D;
W = W0@l0, g0D;
Do@ H* Subsequent iterations Hmaximum 30L *L

d = -W.g0;
l1 = l0 + Armijo@pf, l0, g0, dD d;
g1 = gradpf@l1D;

If@ Max@Abs@g1DD < 10-6,
W = BFGS@l1 - l0, g1 - g0, WD;
Break@results = 8iter, -pf@l1D, l1, W<D D;

Dl = l1 - l0;
Dg = g1 - g0;H* Reset l0 and g0 for the next iteration *L
l0 = l1; g0 = g1;
W = BFGS@Dl, Dg, WD, 8iter, 30<D

926, -1989.95, 80.575862, 0.228008, 0.979605<,i
kjjjjjj

0.775792 -0.245487 -0.0810482
-0.245487 0.084435 0.0246111

-0.0810482 0.0246111 0.0093631

y
{zzzzzz=
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The output  states that the BFGS algorithm converged to tolerance after 26 iterations.  The
ML estimates are à = 0.575862, b

`
= 0.228008 and c̀ = 0.979605; almost equivalent  to the

point estimates returned by FindMaximum. At the estimates, the observed log-likelihood
is  maximised  at  a  value  of  -1989.95.  The  BFGS  estimate  of  the  asymptotic  variance-
covariance matrix is the H3ä3L matrix in the output. Table 6 summarises the results.

Estimate SE TStat
a 0.575862 0.880791   0.653801
b 0.228008 0.290577   0.784673
c 0.979605 0.0967631 10.1237

Table 6:  ML estimation results for the unrestricted parameters

Our  stopping  rule  focuses  on  the  gradient,  stopping  if  the  element  with  the  largest
magnitude  is  smaller  than  10-6 .  Our  choice  of  10-6  corresponds  to  the  default  for
AccuracyGoal in FindMinimum. It would not pay to go much smaller than this, and
may even be wise to increase it with larger numbers of parameters.15 Other stopping rules
can  be  tried.16  Finally,  the  outputted  W  is  an  estimate  of  the  asymptotic  variance-
covariance matrix.

To finish,  we  present  a  summary  of  the  ML  estimates  and  their  associated  standard
errors  and  t-statistics  for  the  parameters  of  the  original  Poisson  two-component-mix
model. To do this, we use the Invariance Property, since the unrestricted parameters l are
linked  to  the  restricted  parameters  q  by  the  re-parameterisation  l = gHqL.  Here,  then,  are
the ML estimates of the Poisson two-component-mix parameters q = Hw, f, yL:

soll = 8 a Ø resultsP3, 1T,
b Ø resultsP3, 2T,
c Ø resultsP3, 3T <;

solq = 9w Ø
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + $a

, f Ø $b, y Ø $c= ê. soll

8w Ø 0.359885, f Ø 1.2561, y Ø 2.6634<
That is, the ML estimate  of the mixing parameter  is ẁ = 0.359885, and the ML estimates
of the Poisson component parameters  are f

`
= 1.2561 and y

`
= 2.6634. Here is the estimate

of the asymptotic variance-covariance matrix (see (11.17)):

G = GradA9 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + $a

, $b, $c=, 8a, b, c<E;
G.W.Transpose@GD ê. soll

i
kjjjjjj
0.0411708 0.0710351 0.0497281
0.0710351 0.133219 0.0823362
0.0497281 0.0823362 0.0664192

y
{zzzzzz
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We summarise the ML estimation results obtained using the BFGS algorithm in Table 7.

Estimate SE TStat
w 0.359885 0.202906   1.77366
f 1.2561 0.364992   3.44143
y 2.6634 0.257719 10.3345

Table 7:  ML estimation results for the Poisson two-component-mix model

Finally,  it  is  interesting  to  contrast  the  fit  of  the  Poisson  model  with  that  of  the
Poisson  two-component-mix  model.  Here,  as  a  function  of  x $ 80, 1, 2, e<,  is  the  fitted
Poisson model:

fitP =
$-g gx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

ê. solg

0.115679 2.15693x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x!

e and here is the fitted Poisson two-component-mix model:

fitPcm =
ikjjjjw

$-f fx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

+ H1 - wL 
$-y yx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

y{zzzz ê. solq

0.102482 1.2561x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x!
+
0.0446227 2.6634x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x!

Table 8 compares the fit obtained by each model to the data. Evidently, the Poisson two-
component-mix  model  gives  a  closer  fit  to  the  data  than  the  Poisson  model  in  every
category.  This  improvement  has  been  achieved  as  a  result  of  introducing  two  additional
parameters,  but  it  has  come  at  the  cost  of  requiring  a  more  complicated  estimation
procedure.

Count Mixed Poisson
0 162 161.227 126.784
1 267 271.343 273.466
2 271 262.073 294.924
3 185 191.102 212.044
4 111 114.193 114.341
5 61 57.549 49.325
6 27 24.860 17.732
7 8 9.336 5.464
8 3 3.089 1.473
9 1 0.911 0.353

Table 8:  Fitted Poisson and Poisson two-component-mix models
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12.7 The NewtonMRaphson Algorithm
In  this  section,  we  employ  the  NewtonURaphson  (NR)  algorithm  to  estimate  the
parameters of an Ordered Probit model.

È Data, Statistical Model and Log-likelihood

Random  variables  that  cannot  be  observed  are  termed  latent.  A  common  source  of  such
variables  is  individual  sentiment  because,  in  the absence  of  a  rating scale  common  to all
individuals,  sentiment  cannot  be  measured.  Even  without  an  absolute  measurement  of
sentiment,  it  is  often  possible  to  obtain  partial  information  by  using  categorisation;  a
sampling  device  that  can  achieve  this  is  the  ubiquitous  Xopinion  surveyG.  Responses  to
such surveys are typically ordered! e.g. choose one of Xdisliked Brand XG, Xindifferent to
Brand XG, or Xliked Brand XG!which reflects the ordinal nature of sentiment. Such latent,
ordered  random variables  are typically  modelled using  cumulative  response  probabilities.
Well-known  models  of  this  type  include  the  proportional-odds  model  and  the
proportional-hazards  model  (e.g.  see  McCullagh  and  Nelder  (1989)),  and  the  Ordered
Probit model due to McKelvey and Zavoina (1975) (see also Maddala (1983) and Becker
and  Kennedy  (1992)).  In  this  section,  we  develop  a  simple  form  of  the  ordered  probit
model (with  cross-classification),  estimating parameters  using the NewtonURaphson (NR)
algorithm.

During consultations  with a general medical  practitioner,  patients  were asked a large
number  of  lifestyle  questions.  One  of  these  was  (the  somewhat  morbid),  tHave  you
recently  found  that  the  idea  of  taking  your  own  life  kept  coming  into  your  mind?u.
Goldberg (1972) reports count data for 295 individuals answering this question in Table 9.

Definitely not Do not think so Has crossed my mind Definitely has
Illness class H j = 1L H j = 2L H j = 3L H j = 4L

Normal Hi = 1L 90 5 3 1
Mild Hi = 2L 43 18 21 15

Severe Hi = 3L 34 8 21 36

Table 9:  Psychiatric data! cross-classified by illness

The data is assumed to represent a categorisation of the Xpropensity to suicidal thoughtG, a
latent,  ordered  random variable.  Responses  are indexed by j,  running across  the columns
of  the  table.  In  addition,  all  individuals  had  been  cross-classified  into  one  of  three
psychiatric  classes:  normal  Hi = 1L,  mild  psychiatric  illness  Hi = 2L,  and  severe psychiatric
illness  Hi = 3L.  For  example,  of  the  167  individuals  responding  tDefinitely  notu,  90  were
classified  as  normal,  43  as  having  mild  psychiatric  illness  and  34  as  suffering  severe
psychiatric illness. Enter the data:

freq = 8890, 5, 3, 1<, 843, 18, 21, 15<, 834, 8, 21, 36<<;
Due  to  the  cross-classification,  the  issue  of  interest  is  whether  the  propensity  to

suicidal  thought  can  be  ranked  according  to  illness.  Upon  inspection,  the  data  seems  to
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suggest  that  the  propensity  to  suicidal  thought  increases  with  mental  illness.  In  order  to
quantify this view, we define three latent, ordered random variables,

Yi
* = Propensity to suicidal thought of an individual classified with illness i

and we specify the following linear model for each,

(12.17)Yi
* = bi + Ui , i $ 81, 2, 3<

where Ui  is an unknown disturbance term with zero mean. The (cross-classified) Ordered
Probit  model  is  characterised  by  assuming  a  trivariate  Normal  distribution  (see  §6.4  B)
with independent components for the disturbances, namely,

(12.18)
i
k
jjjjjjj U1

U2

U3

y
{
zzzzzzz ~ NI0#÷ , I3 M

which is scale invariant because observations are categorical. The class-specific parameter
bi  enables  us  to  quantify  the  differences  between  the  psychiatric  classes.  In  parametric
terms, if propensity to suicidal thought can be ranked increasingly in respect of psychiatric
illness, then we would expect b1 < b2 < b3 !a testable hypothesis.17

Of  course,  it  is  not  Yi
*  that  is  observed  in  Table  9;  rather,  observations  have  been

recorded on another trio of random variables which we define as

Yi = the response to the survey question of an individual classified with illness i.

To  establish  the  link  between  response  Yi  and  propensity  Yi
* ,  we  assume  Yi  is  a

categorisation of Yi
* , and that

(12.19)PHYi = jL = PHa j-1 < Yi
* < a j L

for  all  combinations  of indexes  i  and  j.  The parameters  a0 , e, a4  are  cut-off  parameters
which,  because  of  the  ordered  nature  of  Yi

* ,  satisfy  the  inequalities  a0 < a1 < � < a4 .
Given the Normality assumption (12.18), we immediately require a0 = -� and a4 = � to
ensure that probabilities sum to unity. Substituting (12.17) into (12.19), yields

(12.20)
PHYi = jL =  PHa j-1 - bi < Ui < a j - bi L

=  FHa j - bi L - FHa j-1 - bi L
where F denotes the cdf of a NH0, 1L random variable (which is the marginal cdf of Ui ):18

Clear@FD; F@x_D =
1
ÅÅÅÅ
2

i
kjjjjj1 + ErfA x

ÅÅÅÅÅÅÅÅÅÅè!!!!
2

Ey{zzzzz;
Then, the observed log-likelihood is given by:
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obslogLq =

LogA'
i=1

3 HF@a1 - biDLfreqPi,1T  HF@a2 - biD - F@a1 - biDLfreqPi,2T  

HF@a3 - biD - F@a2 - biDLfreqPi,3T  H1 - F@a3 - biDLfreqPi,4TE;
As it stands, the parameters  of this model cannot be estimated uniquely.  To see this,

notice  that  in  the  absence  of  any  restriction,  it  is  trivially  true  that  for  any  non-zero
constant g, the categorical probability in the ordered probit model satisfies

FHa j - bi L - FHa j-1 - bi L = FIHa j + gL - Hbi + gLM - FIHa j-1 + gL - Hbi + gLM
for  all  possible  i  and  j.  Thus,  the  probability  determined  from  values  assigned  to  the
parameters  Ha1 , a2 , a3 , b1 , b2 , b3 L cannot be distinguished from the probability resulting
from  values  assigned  as  per  Ha1 + g, a2 + g, a3 + g, b1 + g, b2 + g, b3 + gL  for  any
arbitrary  g � 0.  This  phenomenon  is  known  as  a  parameter  identification  problem.  To
overcome it, we must break the equivalence in probabilities for at least one combination of
i and j. This can be achieved by fixing one of the parameters, thus effectively removing it
from the parameter  set.  Any parameter  will  do, and any value can be chosen. In practical
terms, it is better to remove one of the cut-off parameters Ha1 , a2 , a3 L, for this reduces by
one the number of inequalities to which these parameters must adhere. Conventionally, the
identifying restriction is taken to be:

a1 = 0;

The parameter q = Ha2 , a3 , b1 , b2 , b3 L is defined over the space

Q = 8Ha2 , a3 L : Ha2 , a3 L $ !+
2 , 0 < a2 < a3< ä 8Hb1 , b2 , b3 L : Hb1 , b2 , b3 L $ !3 <

and therefore Q is a proper subset of !5 . For unconstrained optimisation, a transformation
to new parameters  l = gHqL $ !5  is required.  Clearly,  the transformation  need only act on
the cut-off parameters, and one that satisfies our requirements is:

prm = 9a2 ã
a3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + $a2

, a3 ã $a3, b1 ã b1, b2 ã b2, b3 ã b3=;
where  l = Ha2, a3, b1, b2, b3L $ !5 .  Notice  that  a3  will  be positive  for  all  a3,  and  that  it
will  always  be  larger  than  a2  for  all  a2,  so  the  constraints  0 < a2 < a3  will  always  be
satisfied.19  From inspection  of  prm,  it  is  apparent  that  we  have  not  yet  determined  gHqL,
for a2  depends on a3 . However, by inputting:

qTol = Solve@prm, 8a2, a3, b1, b2, b3<D êê Flatten

9a2 Ø
2a3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + 2a2

, b1 Ø b1, b2 Ø b2, b3 Ø b3, a3 Ø 2a3=
we now have gHqL in the form of a replacement  rule. We now enter into Mathematica the
observed log-likelihood function in terms of l (obslogLl):
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obslogLl = obslogLq ê. qTol;

Similar  to  §12.6,  we  can  use  FindMaximum  to  estimate  the  parameters  using  the
NR algorithm:

FindMaximum@obslogLl, 8a2, 0<, 8a3, 0<,8b1, 0<, 8b2, 0<, 8b3, 0<, Method Ø NewtonD
8-292.329, 8a2 Ø 0.532781, a3 Ø -0.0507304,

b1 Ø -1.34434, b2 Ø 0.0563239, b3 Ø 0.518914<<
But,  as has  previously  been stated,  the main drawback to using FindMaximum  is that it
does  not  supply  the  final  Hessian  matrix!we  cannot  construct  an  estimate  of  the
asymptotic  variance-covariance  matrix  of  the  ML  estimator  of  l  from  FindMaximumGs
output.

È NR Algorithm

We  shall  estimate  l  and  the  asymptotic  variance-covariance  matrix  using  the  NR
algorithm.  From  (12.8),  (12.11)  and  (12.13),  the  NR  algorithm  is  based  on  the  updating
formulae:

l
` Hk+1L =  l

` HkL + mHkL  dHkL
dHkL =  -WHkL . pg Hl` HkL L

WHkL =  -HHkL-1

where k  is the iteration index, pg  is the gradient  of the penalty function,  W  is the inverse
of the Hessian of the penalty function and H  is the Hessian of the observed log-likelihood
function. We obtain the penalty function, the gradient and the Hessian as follows:

p = -obslogLl;
pf@8a2_, a3_, b1_, b2_, b3_<D = p;

g = Grad@p, 8a2, a3, b1, b2, b3<D;
gradpf@8a2_, a3_, b1_, b2_, b3_<D = g;

H = Hessian@obslogLl, 8a2, a3, b1, b2, b3<D;
hessf@8a2_, a3_, b1_, b2_, b3_<D = H;

These  are  very  complicated  expressions,  so  unless  your  computer  has  loads  of  memory
capacity,  and  you  have  loads  of  spare  time,  we  strongly  advise  using  the  humble  semi-
colon X;G (as we have done) to suppress output to the screen! Here, gradpf and hessf
are functions with a List of Symbol arguments matching exactly the elements of l. The
reason  for  constructing  these  two  functions  is  to  avoid  coding  the  NR  algorithm  with
numerous replacement rules, since such rules can be computationally  inefficient and more
cumbersome  to code.  The  vast  bulk  of  computation  time is  spent  on  the  Hessian  matrix.
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This  is  why  NR  algorithms  are  costly,  for  they  evaluate  the  Hessian  matrix  at  every
iteration. It is possible to improve computational efficiency by compiling the Hessian.20

Another way to proceed is to input the mathematical  formula for the Hessian matrix
directly  into  Mathematica;  Maddala  (1983),  for  instance,  gives  such  formulae.  This
method  has  its  cost  too,  not  least  of  which  is  that  it  runs  counter  to  the  approach  taken
throughout  this  volume,  which  is  to  ask  Mathematica  to  do  the  work.  Yet  another
approach  is  to  numerically  evaluate/estimate  the  first-  and  second-order  derivatives,  for
clearly  there will  exist  statistical  models  with parameter  numbers  of  such  magnitude  that
there  will  be  insufficient  memory  available  for  Mathematica  to  derive  the  symbolic
Hessian!after  all,  our  example  only  has  five  parameters,  and  yet  computing  the
symbolic  Hessian  already  requires  around  7  MB  (on  our  reference  machine)  of  free
memory.  In this  regard,  the standard  add-on package  NumericalMath`NLimit`  may
assist, for its ND command performs numerical approximations of derivatives.

In  §12.3,  we  noted  that  the  NR  algorithm  is  useful  as  a  Xfinishing-offG  algorithm
which  fine  tunes  our  estimates.  This  is  because  NR  uses  the  actual  Hessian  matrix,
whereas  quasi-Newton  algorithms (like  BFGS)  only use  estimates  of the  Hessian  matrix.
But, for this example, we will apply the NR algorithm from scratch. Fortunately for us, the
log-likelihood  of  the  Ordered  Probit  model  can  be  shown  to  be  globally  concave  in  its
parameters;  see  Pratt  (1981).  Thus,  the  Hessian  matrix  is  negative  definite  for  all  q,  and
therefore negative definite for all l, as the two parameters are related one-to-one.

In principle,  given concavity, the NR algorithm will reach the global maximum from
wherever we choose to start in parameter space. Numerically, however, it is nearly always
a different story! Sensible starting points nearly always need to be found when optimising,
and the Ordered Probit model is no exception. For instance, if a starting value for a3 equal
to  3.0  is  chosen,  then  one  computation  that  we  are  performing  is  the  integral  under  a
standard  Normal  distribution  curve  up  to  expH3L > 20.  In  this  case,  it  would  not  be
surprising  to  see  the  algorithm  crash,  as  we  will  run  out  of  numerical  precision;  see
Sofroniou  (1996)  for  a  discussion  of  numerical  precision  in  Mathematica.  Sensible
starting  values  usually  require  some  thought  and  are  typically  problem-specific! even
when we are fortunate enough to have an apparently ideal globally concave log-likelihood,
as we do here.

Our implementation of the NR algorithm follows. Like our BFGS algorithm, we have
left  it  very  much  without  any  bells  and  whistles.  Upon  convergence  to  tolerance,  the
output is recorded in results which has four components: resultsP1T is the number
of iterations taken to achieve convergence  to tolerance; resultsP2T  is the value of the
maximised  observed  log-likelihood;  resultsP3T  is  the  ML  point  estimates;  and
resultsP4T is the negative of the inverse Hessian evaluated at the ML point estimates.
The origin would seem to be a sensible starting value at which to initiate the algorithm.

Armijo@f_, q_, grad_, dir_D :=
Module@8a = 0.5, b = 0.65, m = 1., f0, gd<,

f0 = f@qD; gd = grad.dir;
While@ f@q + m dirD - f0 - m a gd > 0, m = b mD; mD
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l0 = 80., 0., 0., 0., 0.<;
g0 = gradpf@l0D;
Do@ H0 = hessf@l0D;

W0 = -Inverse@H0D;
d = -W0.g0;

l1 = l0 + Armijo@pf, l0, g0, dD d;
g1 = gradpf@l1D;

If@Max@Abs@g1DD < 10-6, Break@results =8iter, -pf@l1D, l1, -Inverse@hessf@l1DD<DD;
l0 = l1;
g0 = g1, 8iter, 1, 20<D;

From  its  starting  point,  the  NR  algorithm  takes  just  over  10  seconds  to  converge  to
tolerance on our reference machine. In total, it takes five iterations: �

resultsP1T
5

The returned estimate of l is:

resultsP3T
80.532781, -0.0507304, -1.34434, 0.0563239, 0.518914<

at which the value of the observed log-likelihood is:

resultsP2T
-292.329

Table  10  gives  estimation  results  for  the  parameters  of  our  original  Ordered  Probit
model  (found  using  the  Invariance  Property).  Because  b

`
1 < b

`
2 < b

`
3 ,  our  quantitative

results  lend  support  to  the  qualitative  assessment  made  at  the  very  beginning  of  this
example! that  propensity  to  suicidal  thought  increases  with  severity  of  psychiatric
illness.21

Estimate SE TStat
a2 0.35157 0.059407 5.91804
a3 0.95054 0.094983 10.00740
b1 -1.34434 0.174219 -7.71641
b2 0.05632 0.118849 0.47391
b3 0.51891 0.122836 4.22446

Table 10:  ML estimation results for the Ordered Probit model
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12.8 Exercises
1. Generate 10 pseudo-random drawings from X ~ NH0, 1L as follows:

data = TableAè!!!
2  InverseErf@0, -1 + 2 Random@DD, 810<E

Use ML estimation to fit the NHm, s2 L distribution to the artificial  data using each of
the following:
FindMaximum@obslogLq, 8m, 0<, 8s, 1<D
FindMaximum@obslogLq, 8m, 8-1, 1<<, 8s, 80.5, 2<<D
FindMaximum@obslogLq, 8m, 0, -3, 3<, 8s, 1, 0, 4<D
FindMaximum@obslogLq, 8m, 0<, 8s, 1<, Method Ø NewtonD
FindMaximum@obslogLq, 8m, 0<, 8s, 1<, Method Ø QuasiNewtonD

where  obslogLq  is  the  observed  log-likelihood  for  q = Hm, sL.  Contrast  your
answers against the estimates computed from the exact ML estimator

m̀ = 1ÅÅÅÅÅn  
i=1

n

Xi and s̀ = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1ÅÅÅÅÅn  i=1

n HXi - m̀L2 .

2. Let X ~ WaringHa, bL with pmf

PHX = xL = Hb - aL GHx + aL GHbLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
GHaL GHx + b + 1L , x $ 80, 1, 2, e<

where  the  parameters  are  such  that  b > a > 0.  Use  FindMaximum  to  obtain  ML
estimates of a and b for the Word Count data, which is loaded using:

ReadList["WordCount.dat"]

Hint:  re-parameterise  q = Ha, bL  to  l = Hc, dL $ !2 ,  where  a = 6c  and  b = 6c H1 + 6d L.
Estimate  the  variance-covariance  matrix  of  the  asymptotic  distribution  of  the  ML
estimator using the Hessian estimator. 

3. Let X ~ NegativeBinomialHr, pL.
(i) Show that m < s2 , where m = E@XD and s2 = VarHXL.
(ii) Let HX1 , X2  e, Xn L denote a random sample of size n on X. Now it is generally

accepted  that  X
êêê

,  the  sample  mean,  is  the  best  estimator  of  m.  Using  the  log-
likelihood  concentrated  with  respect  to  the  estimator  X

êêê
 for  m,  obtain  the  ML

estimate  of  r  for  the  data  sets  NB1  (enter  as  ReadList["NB1.dat"])  and
NB2 (enter as ReadList["NB2.dat"]).

(iii) Comment  on  the  fit  of  each  model.  Can  you  find  any  reason  why  the  ML
estimate for the NB2 data seems so erratic?

4. Answer  the  following  using  the  Nerve  data  given  in  §12.2.  Let  X ~ GammaHa, bL
with pdf f Hx; qL, where q = Ha, bL. Example 2 derived the ML estimate as q

`
= Ià, b

`M =H1.17382, 0.186206L.
(i) Derive  FisherGs  estimate  of  the  asymptotic  variance-covariance  matrix  of  the

ML estimator of q (hint: see Example 3).
(ii) Given q

`
, use the Invariance Property (§11.4 E) to derive ML estimates of:

(a) l = Hm, nL, where m = E@XD and n = VarHXL, and
(b) the asymptotic variance-covariance matrix of the ML estimator of l.
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(iii) Re-parameterise the pdf of X to f Hx; lL.
(a) Use  FindMaximumGs  BFGS  algorithm  (Method Ø QuasiNewton)  to

obtain the ML estimate of l.
(b) Estimate the asymptotic variance-covariance matrix of the ML estimator of

l using the Fisher, Hessian and Outer-product estimators.
(c) Compare your results for parts (a) and (b) to those obtained in (ii).

(iv) Using the Invariance Property (§11.4 E), report ML estimates of:
(a) d = Hm, sL, where m = E@XD and s = a, and
(b) the asymptotic variance-covariance matrix of the ML estimator of d.

(v) Re-parameterise the pdf of X to f Hx; dL.
(a) Use FindMaximumGs BFGS algorithm to obtain the ML estimate of d.
(b) Estimate the asymptotic variance-covariance matrix of the ML estimator of

d using the Fisher, Hessian and Outer-product estimators.
(c) Compare your results for parts (a) and (b) to those obtained in (iv).

5. The Gamma regression model specifies the conditional distribution of Y ' X = x, with
pdf

f Hy ' X = x; qL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
GHsL  I mÅÅÅÅÅÅs M-s

 expJ- y sÅÅÅÅÅÅÅÅÅÅm N ys-1

where m = expHa + b xL is the regression function, s is a scaling factor and parameter
q = Ha, b, sL $ 8a $ !, b $ !, s $ !+ <.  Use  ML  estimation  to  fit  the  Gamma
regression model to GreeneGs data (see Example 5). By performing a suitable test  on
s, determine whether the fitted model  represents a significant improvement  over the
Exponential regression model for GreeneGs data.

6. Derive ML estimates  of the ARCH model of §12.3 based on the BFGS algorithm of
§12.6.  Obtain  an  estimate  of  the  variance-covariance  matrix  of  the  asymptotic
distribution  of  the  ML  estimator.  Report  your  ML  estimates,  associated  asymptotic
standard errors and t-statistics.
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Appendix

A.1 Is That the Right Answer, Dr Faustus?

È Symbolic Accuracy

Many  people  find  the  vagaries  of  integration  to  be  a  less  than  salubrious  experience.
Excellent  statistical  reference  texts  can  make  ;avoidance<  a  reasonable  strategy,  but  one
soon  comes  unstuck  when  one  has  to  solve  a  non-textbook  problem.  With  the  advent  of
computer  software like mathStatica, the Faustian joy of computerised problem solving is
made  ever  more  delectable.  Indeed,  over  time,  it  seems  likely  that  the  art  of  manual
integration  will  slowly  wither  away,  much  like  long  division  has  been put  to  rest  by  the
pocket  calculator.  As  we  become  increasingly  reliant  on  the  computer,  we  become more
and  more  dependent  on  its  accuracy.  Mathematica  and  mathStatica  are,  of  course,  not
always infallible, they are not panaceas for solving all problems, and it is possible (though
rare) that they may get an integral or summation problem wrong. Lest this revelation send
some  readers  running  back  to  their  reference  texts,  it  should  be  stressed  that  those  same
reference  texts  suffer  from  exactly  the  same  problem  and  for  the  same  reason:  mistakes
usually  occur  because  something  has  been  ;typeset<  incorrectly.  In  fact,  after  comparing
mathStatica<s  output  with  thousands  of  solutions  in  reference  texts,  it  is  apparent  that
even  the  most  respected  reference  texts  are  peppered  with  surprisingly  large  numbers  of
errors.  Usually,  these  are  typographic  errors  which  are  all  the  more  dangerous  because
they  are  hard  to  detect.  A  healthy  scepticism  for  both  the  printed  word  and  electronic
output is certainly a valuable (though time-consuming) trait to develop.

One advantage of working with a computer is that it is usually possible to test almost
any  symbolic  solution  by  using  numerical  methods.  To  illustrate,  let  us  suppose  that
X ~ Chi-squaredHnL with pdf f HxL:

f =
xnê2-1  $-xê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2nê2  G@ nÅÅÅ

2
D ; domain@fD = 8x, 0, �< && 8n > 0<;

We wish to find the mean deviation EA $ X - m $ E, where m denotes the mean:

m = Expect@x, fD
n



Since  Mathematica  does  not  handle  absolute  values  well,  we  shall  enter  $ x - m $  as  the
expression If[x < m, m - x, x - m]. Then, the mean deviation is:

sol = Expect@If@x < m, m - x, x - mD, fD
4 Gamma@1 + nÅÅÅ

2
, nÅÅÅ

2
D - 2 n Gamma@ nÅÅÅ

2
, nÅÅÅ

2
D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@ nÅÅÅ

2
D

If,  however,  we refer to an excellent  reference  text  like Johnson et al.  (1994,  p.420),  the
mean deviation is listed as: 

JKBsol =
$- nÅÅÅÅ2 nnê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

nÅÅÅÅ2 -1 G@ nÅÅÅ
2
D ;

First, we check if the two solutions are the same, by choosing a value for n, say n = 6:

8sol, JKBsol< ê. n Ø 6.

82.6885, 1.34425<
Clearly, at least one of the solutions is wrong! Generally, the best way to check an answer
is to use a completely different methodology to derive it again. Since our original attempt
was symbolic,  we now use  numerical  methods  to calculate  the  answer.  This  can be  done
using  functions  such  as  NIntegrate  and  NSum.  Here  is  the  mean  deviation  as  a
numerical integral when n = 6: 

NIntegrate@ HAbs@x - mD fL ê. n Ø 6., 8x, 0, �<D
9 General::unfl :  Underflow occurred in computation.

9 General::unfl :  Underflow occurred in computation.

9 General::stop :  Further output of

General::unfl will be suppressed during this calculation.

9 NIntegrate::ncvb :  
NIntegrate failed to converge to prescribed accuracy after 7

recursive bisections in x near x = 5.918918918918919 .̀

2.68852

The  warning  messages  can  be  ignored,  since  a  rough  approximation  serves  our  purpose
here. The numerical answer shows that mathStatica<s symbolic solution is correct; further
experimentation  reveals that the solution given in Johnson et al. is out by a factor of two.
This  highlights  how  important  it  is  to  check  all  output,  from  both  reference  books  and
computers.

Finally, since m is used frequently throughout the text, it is good housekeeping to:

Clear@mD
Z prior to leaving this example. "
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È Numerical Accuracy

 `A rapacious monster lurks within every computer,
and it dines exclusively on accurate digits.a

McCullough (2000, p. 295)

Unfortunately,  numerical accuracy is treated poorly in many common statistical packages,
as McCullough (1998, 1999a, 1999b) has detailed.

`Many  textbooks  convey  the  impression  that  all  one  has  to  do  is  use  a
computer to solve the problem, the implicit and unwarranted assumption
being  that  the  computer<s  solution  is  accurate  and  that  one  software
package is as good as any other.a

McCullough and Vinod (1999, p. 635)

As  a  general  ;philosophy<,  we  try  to  avoid  numerical  difficulties  altogether  by  treating
problems symbolically (exactly), to the extent that this is possible. This means that we try
to solve problems in the most general way possible, and that we also try to stop machine-
precision numbers from sneaking into the calculation. For example, we can input one-and-
a-half  as  3ÅÅÅÅ2  (an  exact  symbolic  entity),  rather  than  as  1.5.  In  this  way,  Mathematica  can
solve many problems in an exact way, even though other packages would have to treat the
same  problem  numerically.  Of  course,  some  problems  can  only  be  treated  numerically.
Fortunately, Mathematica provides two numerical environments for handling them:

(i) Machine-precision  numbers  (also  known  as  floating-point):  Almost  all  computers
have  optimised  hardware  for  doing numerical  calculations.  These  machine-precision
calculations  are  very  fast.  However,  using  machine-precision  forces  all  numbers  to
have  a  fixed  precision,  usually  16  digits  of  precision.  This  may  not  be  enough  to
distinguish between two close numbers. For more detail, see Wolfram (1999, Section
3.1.6). 

(ii) Arbitrary-precision  numbers:  These  numbers  can  contain  any  number  of  digits,  and
Mathematica  keeps  track  of  the  precision  at  all  points  of  the  calculation.
Unfortunately,  arbitrary-precision  numerical  calculations  can  be  very  slow,  because
they do not  take advantage  of  a computer<s  hardware  floating-point  capabilities.  For
more detail, see Wolfram (1999, Section 3.1.5).

Therein  lies  the  trade-off.  If  you  use  machine-precision  numbers  in  Mathematica,  the
assumption  is  that  you  are  primarily  concerned  with  efficiency.  If  you  use  arbitrary-
precision numbers,  the assumption is that you are primarily concerned with accuracy. For
more detail on numerical precision in Mathematica, see Sofroniou (1996). For a definitive
discussion  of  Mathematica<s  accuracy  as  a  statistical  package,  see  McCullough  (2000).
For Mathematica, the news is good:

`By  virtue  of  its  variable  precision  arithmetic  and  symbolic  power,
Mathematica<s  performance  on  these  reliability  tests  far  exceeds  any
finite-precision statistical package.a 

McCullough (2000, p. 296)
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�  Example 1:  Machine-Precision and Arbitrary-Precision Numbers

Let X ~ NH0, 1L with pdf f HxL:
f =

$- x2ÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<;
The cdf, PHX § xL, as a symbolic entity, is:

F = Prob@x, fD
1
ÅÅÅÅ
2

ikjjj1 + ErfA x
ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz
This  is  the  exact  solution.  McCullough  (2000,  p.290)  considers  the  point  x = -7.6,  way
out in the left tail of the distribution. We shall enter -7.6 using exact integers:

sol = F ê. x Ø -
76
ÅÅÅÅÅÅÅ
10

1
ÅÅÅÅ
2

ikjjj1 - ErfA 19
è!!!
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
5

Ey{zzz
Z so this answer is exact too. Following McCullough, we now find the numerical value of
sol  using  both  machine-precision  N[sol]  and  arbitrary-precision  N[sol,20]
numbers:

N@solD
1.48215 µ 10-14

N@sol, 20D
1.4806537490048047086 µ 10-14

Both  solutions  are  correct  up  to  three  significant  digits,  0.0000000000000148,  but  they
differ  thereafter.  In  particular,  the  machine-precision  number  is  incorrect  at  the  fourth
significant  digit.  By  contrast,  all  twenty  requested  significant  digits  of  the  arbitrary-
precision number 0.000000000000014806537490048047086  are correct, as we may verify
with:

NIntegrateAf, 9x, -�, -
76
ÅÅÅÅÅÅÅ
10

=,
WorkingPrecision Ø 30, PrecisionGoal Ø 20E

1.48065374900480470861 µ 10-14
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In  the  next  input,  we  start  off  by  using  machine-precision,  since  -7.6  is  entered  with  2
digit precision, and we then ask Mathematica  to render the result at 20-digit precision. Of
course,  this  is  meaningless! the  extra  added  precision  N[·,20]  cannot  eliminate  the
problem we have created:

N@ F ê. x Ø -7.6, 20D
1.48215 µ 10-14

If  numerical  accuracy  is  important,  the  moral  is  not  to  let  machine-precision  numbers
sneak into one<s workings. "

A.2 Working with Packages
Packages  contain  programming  code  that  expand  Mathematica=s  toolset  in  specialised
fields.  One can distinguish  Mathematica  packages  from Mathematica  notebooks,  because
they each have different file extensions, as Table 1 summarises.

file extension description

.m Mathematica package

.nb Mathematica notebook

Table 1:  Packages and notebooks

The following suggestions will help avoid problems when using packages:

(i) Always load a package in its own Input cell, separate from other calculations.

(ii) Prior  to  loading a  package,  it  is  often best  to first  quit  the kernel  (type  Quit  in the
front  end,  or  use  Kernel  Menu  @  Quit  Kernel).  This  avoids  so-called  ;context<
problems. In particular, mathStatica should always be started from a fresh kernel. 

(iii) The Wolfram packages are organised into families. The easiest way to load a specific
Wolfram  package  is  to  simply  load  its  family.  For  instance,  to  use  any  of  the
Wolfram statistics functions, simply load the statistics context with:

<< Statistics`

Note that the ` used in <<Statistics` is not a <, nor a ', but a `. 

(iv) mathStatica is also a package, and we can load it using:

<< mathStatica.m

or

<< mathStatica`
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A.3 Working with = , Æ , ==  and :=

ClearAll@x, y, z, qD
È Comparing Set H = L With Rule H Ø L

Consider an expression such as:

y = 3 x2

3 x2

We want  to find the value  of y  when x = 3.  Two standard approaches  are: (i)  Set  H = L,
and (ii) Rule H Ø L.
(i) Set H = L: Here, we set x to be 3:

x = 3; y

27

By entering x = 3 in Mathematica, we lose the generality of our analysis!x is now
just  the  number  3  (and  not  a  general  variable  x).  Thus,  we  can  no  longer  find,  for
example,  the  derivative  D[y,x];  nor  can  we  Plot[y,{x,1,2}].  In  order  to
return y to its former pristine state, we first have to clear x of its set value:

Clear@xD; y

3 x2

To prevent these sorts of problems, we tend to avoid using approach (i).

(ii) Rule  H Ø L:  Instead  of  setting  x  to  be 3,  we can  simply  replace  x  with  3  in  just  a
single  expression,  by  using  a  rule;  see  also  Wolfram  (1999,  Section  2.4.1).  For
example, the following input reads, `Evaluate y when x takes the value of 3a:

y ê. x Ø 3

27

This time, we have not permanently changed y or x. Since everything is still general,
we can still find, for example, the derivative of y with respect to x: 

D@y, xD
6 x
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È Comparing Set H = L With Equal H == L
In some situations, both = and Ø are inappropriate. Suppose we want to solve the equation
z == Log@xD  in  terms  of  x.  If  we  input  Solve@z = Log@xD, xD  (with  one  equal
sign),  we  are  actually  asking  Mathematica  to  Solve@Log@xD, xD,  which  is  not  an
equation.  Consequently,  the  =  sign  should  never  be  used  with  the  Solve  function.
Instead, we use the == sign to represent a symbolic equation:

Solve@z == Log@xD, xD
88x Ø *z<<

If,  by  mistake,  we  enter  Solve@z = Log@xD, xD,  then  we  must  first  Clear[z]
before evaluating Solve@z == Log@xD, xD again.

È Comparing Set H = L With SetDelayed H := L
When  defining  functions,  it  is  usually  better  to  use  SetDelayed  H := L  than  an
immediate  Set  H = L.  When  one  uses  Set  H = L,  the  right-hand  side  is  immediately
evaluated. For example:

F1@x_D = x + Random@D
0.733279 + x

So, if we call F1 four times, the same pseudo-random number appears four times:

Table@F1@qD, 84<D
80.733279 + q, 0.733279 + q, 0.733279 + q, 0.733279 + q<

But, if we use SetDelayed H := L, as follows:

F2@x_D := x + Random@D
then each time we call the function, we get a different pseudo-random number:

Table@F2@qD, 84<D
80.143576 + q, 0.77971 + q, 0.778795 + q, 0.618496 + q<

While  this  distinction  may  appear  subtle  at  first,  it  becomes  important  when  one  starts
writing Mathematica functions. Fortunately, it is quite easy to grasp after a few examples. 

In similar vein, one can use RuleDelayed ß instead of an immediate Rule Ø . 
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A.4 Working with Lists
Mathematica  uses  curly  braces  {}  to denote  lists,  not  parentheses  (  ).  Here,  we  enter  the
list X = 8x1 , Z, x6 <:

X = 8x1, x2, x3, x4, x5, x6<;
The fourth element, or part, of list X is:

X@@4DD
x4

Sometimes, XP4T is used rather than X@@4DD. The fancy double bracket P is obtained by
entering Â [[ Â . We now add 5 to each element of the list:

X + 5

85 + x1, 5 + x2, 5 + x3, 5 + x4, 5 + x5, 5 + x6<
Other common manipulations include:

Plus üü X

x1 + x2 + x3 + x4 + x5 + x6

Times üü X

x1 x2 x3 x4 x5 x6

Power üü X

x1
x2
x3
x4

x5

x6

Here is a more sophisticated function that constructs an alternating sum:

Fold@H#2 - #1L &, 0, Reverse@XDD
x1 - x2 + x3 - x4 + x5 - x6

Next, we construct an Assumptions statement for the xi , assuming they are all positive: 

Thread@X > 0D
8x1 > 0, x2 > 0, x3 > 0, x4 > 0, x5 > 0, x6 > 0<

Here is a typical mathStatica ;domain< statement assuming xi * H-�, 0L: 
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Thread@8X, -�, 0<D
88x1, -�, 0<, 8x2, -�, 0<, 8x3, -�, 0<,8x4, -�, 0<, 8x5, -�, 0<, 8x6, -�, 0<<

Finally, here is some data:

data = Table@Random@D, 86<D
80.530808, 0.164839, 0.340276,

0.595038, 0.674885, 0.562323<
which we now attach to the elements of X using rules Ø, as follows:

Thread@X Ø dataD
8x1 Ø 0.530808, x2 Ø 0.164839, x3 Ø 0.340276,

x4 Ø 0.595038, x5 Ø 0.674885, x6 Ø 0.562323<
These tricks of the trade can sometimes be very useful indeed.

A.5 Working with Subscripts
In mathematical  statistics,  it is both common and natural to use subscripted notation  such
as  y1 , Z, yn .  This  section  first  discusses  `The  Wonders  of  Subscriptsa  in  Mathematica,
and then provides `Two Cautionary Tipsa.

È The Wonders of Subscripts

Clear@mD
Subscript  notation  m1 , m2 , Z, m8  offers  many  advantages  over  ;dead<  notation  such  as
m1, m2, Z, m8. For instance, let:

r = Range@8D
81, 2, 3, 4, 5, 6, 7, 8<

Then, to create the list z = 8m1 , m2 , Z, m7 , m8 <, we enter:

z = Thread@mrD8m1, m2, m3, m4, m5, m6, m7, m8<
We  can  now  take  advantage  of  Mathematica<s  advanced  pattern  matching  technology  to
convert from subscripts to, say, powers:
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z ê. mx_ Ø sx

8s, s2, s3, s4, s5, s6, s7, s8<
and back again:

% ê. sx_. Ø mx8m1, m2, m3, m4, m5, m6, m7, m8<
Next, we convert the mi  into functional notation m@iD:

z ê. mx_ Ø m@xD
8m@1D, m@2D, m@3D, m@4D, m@5D, m@6D, m@7D, m@8D<

Now, suppose that mt Ht = 1, Z, 8L denotes m at time t. Then, we can go ;back< one period
in time: 

z ê. mt_ Ø mt-18m0, m1, m2, m3, m4, m5, m6, m7<
Or, try something like:

z ê. mt_ Ø
mt

ÅÅÅÅÅÅÅÅÅÅÅ
m9-t
t

9 m1ÅÅÅÅÅÅÅ
m8

,
m2ÅÅÅÅÅÅÅ
m7
2
,

m3ÅÅÅÅÅÅÅ
m6
3
,

m4ÅÅÅÅÅÅÅ
m5
4
,

m5ÅÅÅÅÅÅÅ
m4
5
,

m6ÅÅÅÅÅÅÅ
m3
6
,

m7ÅÅÅÅÅÅÅ
m2
7
,

m8ÅÅÅÅÅÅÅ
m1
8
=

Because  the  index  t  is  ;live<,  quite  sophisticated  pattern  matching  is  possible.  Here,  for
instance, we replace the even-numbered subscripted elements with �:

z ê. mt_ :> If@EvenQ@tD, �t , mtD8m1, �2, m3, �4, m5, �6, m7, �8<
Now suppose that a random sample of size n = 8, say:

data = 80, 1, 3, 0, 1, 2, 0, 2<;
is collected from a random variable X ~ PoissonHlL with pmf f HxL:

f =
$-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

; domain@fD = 8x, 0, �< && 8l > 0< && 8Discrete<;
Then, using subscript notation, the symbolic likelihood can be entered as: 
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L = .
i=1

n Hf ê. x Ø xiL
3
i=1

n
*-l lxi

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xi !

while the observed likelihood is obtained via:

L ê. 8n Ø 8, xi_ :> dataPiT<
1

ÅÅÅÅÅÅÅ
24

*-8 l l9

È Two Cautionary Tips

Caution  1:  While  subscript  notation  has  many  advantages  in  Mathematica,  its  use  also
requires  some  care.  This  is  because  the  internal  representation  in  Mathematica  of  the
subscript  expression  y1  is  quite  different  to  the  Symbol  y.  Technically,  this  is  because
Head@yD == Symbol,  while Head@y1D == Subscript. That is, Mathematica thinks
of y  as a Symbol, while it thinks  of y1  as Subscript[y,1];  see also Appendix A.8.
Because of this difference, the following is important.

Suppose we set y = 3. To clear y, we would then enter Clear[y]:

y = 3; Clear@yD; y

y

For  this  to  work,  y  must  be  a  Symbol.  It  will  not  work  for  y1 ,  because  the  internal
representation  of y1  is Subscript[y,1], which  is not  a Symbol.  The same goes for
y
ê, ỳ, y* , and other notational variants of y. For instance:

y1 = 3; Clear@y1D; y1

9 Clear::ssym :  y1 is not a symbol or a string.

3

Instead, to clear y1 , one must use either y1 = . , as in:

y1 = 3; y1 = .; y1

y1

or the more savage Clear[Subscript]:

y1 = 3; Clear@SubscriptD; y1

y1

Note that Clear[Subscript] will clear all subscripted variables. This can be used as
a nifty trick to clear all of 8y1, y2, Z, yn< simultaneously!
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Caution  2:  In  Mathematica  Version  4.0,  there  are  still  a  few  functions  that  do  not
handle subscripted variables properly (though this seems to be mostly fixed as of Version
4.1). This problem can usually be overcome by wrapping Evaluate around the relevant
expression. For instance, under Version 4.0, the following generates error messages:

f = Exp@x1D; NIntegrate@f, 8x1, -�, 2<D
9 Function::flpar :  

Parameter specification 8x1< in Function@8x1<, 8f<D
should be a symbol or a list of symbols.

9 General::stop :  Further output of Function::flpar will

be suppressed during this calculation.

9 NIntegrate::inum :  
Integrand 84.< is not numerical at 8x1< = 81.<.
NIntegrate@f, 8x1, -�, 2<D

Wrapping Evaluate around f overcomes this ;bug< by forcing Mathematica to evaluate
f prior to starting the numerical integration:

f = Exp@x1D; NIntegrate@Evaluate@fD, 8x1, -�, 2<D
7.38906

Alternatively, the following also works fine:

NIntegrate@ Exp@x1D, 8x1, -�, 2<D
7.38906

Similarly, the following produces copious error messages under Version 4.0:

f = x1 + x2; Plot3D@f, 8x1, 0, 1<, 8x2, 0, 1<D
but if we wrap Evaluate around f, the desired plot is generated:

f = x1 + x2; Plot3D@Evaluate@fD, 8x1, 0, 1<, 8x2, 0, 1<D
As a different example, the following works fine:

D@x13  x, x1D
3 x x1

2

but the next input does not work as we might expect,  because x1 = Subscript@x, 1D
is interpreted by Mathematica as a function of x:

D@x13 x, xD
x1
3 + 3 x x1

2 Subscript
H1,0L@x, 1D
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A.6 Working with Matrices
This appendix gives a brief overview of matrices in Mathematica. A good starting point is
also Wolfram (1999, Sections 3.7.1 m 3.7.11). Two standard Mathematica add-on packages
may  also  be  of  interest,  namely  LinearAlgebra`MatrixManipulation`  and
Statistics`DataManipulation`.

È Constructing Matrices

In Mathematica, a matrix is represented by a list of lists. For example, the matrix

A =

i
k
jjjjjjjjjjjjj

1 2 3
4 5 6

7 8 9
10 11 12

y
{
zzzzzzzzzzzzz

can be entered into Mathematica as follows:

A = 881, 2, 3<, 84, 5, 6<, 87, 8, 9<, 810, 11, 12<<
i
k
jjjjjjjjjjj
1 2 3

4 5 6

7 8 9

10 11 12

y
{
zzzzzzzzzzz

If mathStatica  is loaded, this output will appear on screen as a fancy formatted matrix. If
mathStatica is not loaded, the output will appear as a List (just like the input). If you do
not  like  the  fancy  matrix  format,  you  can  switch  it  off  with  the  mathStatica  function
FancyMatrix! see Appendix A.8.

Keyboard  entry:  Table  2  describes  how  to  enter  fancy  matrices  directly  from  the
keyboard. This entry mechanism is quite neat, and it is easily mastered.

short cut description

! , add a column
! Á add a row

Table 2:  Creating fancy matrices using the keyboard 

For example, to enter the matrix J 1 2 3

4 5 6
N, type the following keystrokes in an Input cell:

(     1     " ,     2     " ,     3     " Á     4     Í     5     Í     6     Ø     )

While  this  may  appear  as  the  fancy  matrix  J 1 2 3

4 5 6
N,  the  internal  representation  in

Mathematica is still 881, 2, 3<, 84, 5, 6<<.
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A  number  of  Mathematica  functions  are  helpful  in  constructing  matrices,  as  the
following examples illustrate. Here is an identity matrix:

IdentityMatrix@5D
i
k
jjjjjjjjjjjjjjj
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

y
{
zzzzzzzzzzzzzzz

Z a diagonal matrix:

DiagonalMatrix@8a, b, c, d<D
i
k
jjjjjjjjjjj
a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

y
{
zzzzzzzzzzz

Z a more general matrix created with Table:

Table@a@i, jD, 8i, 2<, 8j, 4<D
J a@1, 1D a@1, 2D a@1, 3D a@1, 4D
a@2, 1D a@2, 2D a@2, 3D a@2, 4D N

Z an example using subscript notation:

Table@ai,j, 8i, 2<, 8j, 4<D
J a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4
N

Z an upper-triangular matrix:

Table@ If@i § j, Ã, 0D, 8i, 5<, 8j, 5<D
i
k
jjjjjjjjjjjjjjj
Ã Ã Ã Ã Ã
0 Ã Ã Ã Ã
0 0 Ã Ã Ã
0 0 0 Ã Ã
0 0 0 0 Ã

y
{
zzzzzzzzzzzzzzz

Z and a Hilbert matrix: 

Table@1 ê Hi + j - 1L, 8i, 3<, 8j, 3<Di
k
jjjjjjjjjj
1 1ÅÅÅ

2

1ÅÅÅ
3

1ÅÅÅ
2

1ÅÅÅ
3

1ÅÅÅ
4

1ÅÅÅ
3

1ÅÅÅ
4

1ÅÅÅ
5

y
{
zzzzzzzzzz
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È Operating on Matrices

Consider the matrices:

M = J a b
c d

N; B = J 1 2
3 4

N;
For detail  on getting pieces  of matrices,  see Wolfram (1999,  Section 3.7.2). In particular,
here is the first row of M :

MP1T
8a, b<

An easy way to grab, say, the second column of M  is to select it with the mouse, copy, and
paste it  into a new Input cell.  If desired,  this can then be converted into InputForm (Cell
Menu @ ConvertTo @ InputForm). Alternatively, we can obtain the second column with:

MPAll, 2T
8a, c<

The dimension H2ä 2L of matrix M is obtained with:

Dimensions@MD
82, 2<

The transpose of M  is:

Transpose@MD
J a c

b d
N

The determinant of M is given by:

Det@MD
-b c + a d

The inverse of M is:

Inverse@MD
ikjjjj

dÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-b c+a d - bÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-b c+a d

- cÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-b c+a d
aÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ-b c+a d

y{zzzz
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The trace is the sum of the elements on the main diagonal:

Tr@MD
a + d

Here are the eigenvalues of M:

Eigenvalues@MD
9 1

ÅÅÅÅ
2

Ia + d -
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a2 + 4 b c - 2 a d + d2 M,

1
ÅÅÅÅ
2

Ia + d +
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a2 + 4 b c - 2 a d + d2 M=

To illustrate matrix addition, consider B + M:

B + M

J 1 + a 2 + b

3 + c 4 + d
N

To illustrate matrix multiplication, consider B M:

B.M

J a + 2 c b + 2 d

3 a + 4 c 3 b + 4 d
N

Z which is generally not equal to M B:

M.B

J a + 3 b 2 a + 4 b

c + 3 d 2 c + 4 d
N

Similarly, here is the product B M B:

B.M.B

J a + 2 c + 3 Hb + 2 dL 2 Ha + 2 cL + 4 Hb + 2 dL
3 a + 4 c + 3 H3 b + 4 dL 2 H3 a + 4 cL + 4 H3 b + 4 dL N

Z which is generally not equal to BT  M B:

Transpose@BD.M.B
J a + 3 c + 3 Hb + 3 dL 2 Ha + 3 cL + 4 Hb + 3 dL
2 a + 4 c + 3 H2 b + 4 dL 2 H2 a + 4 cL + 4 H2 b + 4 dL N
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Powers of a matrix, such as B3 = B B B, can either be entered as:

MatrixPower@B, 3D
J 37 54

81 118
N

or as:

B.B.B

J 37 54

81 118
N

but not as:

B3

J 1 8

27 64
N

Mathematica does not provide a function for doing Kronecker products, so here is one we
put together for this Appendix:

Kronecker@A_, B_D :=
Partition@

Flatten@
Map@ Transpose, Outer@Times, A, BD DD, Dimensions@ADP2T Dimensions@BDP2T D

For example, here is the Kronecker product B�M :

Kronecker@B, MD
i
k
jjjjjjjjjjj

a b 2 a 2 b

c d 2 c 2 d

3 a 3 b 4 a 4 b

3 c 3 d 4 c 4 d

y
{
zzzzzzzzzzz

and here is the Kronecker product M �B:

Kronecker@M, BD
i
k
jjjjjjjjjjj

a 2 a b 2 b

3 a 4 a 3 b 4 b

c 2 c d 2 d

3 c 4 c 3 d 4 d

y
{
zzzzzzzzzzz
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A.7 Working with Vectors
There are two completely different ways to enter a vector in Mathematica:

(i) The  List  Approach:  This  is  the  standard  Mathematica  method.  It  does  not
distinguish between column and row vectors.  Thus, Transpose  cannot be used on
these vectors.

(ii) The Matrix Approach:  Here, a vector is entered as a special  case of a matrix. This
does distinguish between column and row vectors,  so Transpose can be used with
these  vectors.  Entering  the  vector  this  way  takes  more  effort,  but  it  can  be  less
confusing and more ;natural< than the List approach.

In this book, we use approach (i). Mixing the two approaches is not recommended, as this
may cause error and confusion.

È Vectors as Lists

The  standard  Mathematica  way  to  represent  a  vector  is  as  a  List  8Z<,  not  a  matrix88Z<<. Consider, for example:

vec = 815, -3, 5<
815, -3, 5<

Mathematica thinks vec is a vector:

VectorQ@vecD
True

Is  vec  a  column  vector  or  a  row  vector?  The  answer  is  neither.  Importantly,  when  the
List  approach  is  used,  Mathematica  makes  no  distinction  between  column  and  row
vectors.  Instead,  Mathematica  carries  out  whatever  operation  is  possible.  This  can  be
confusing  and  disorienting.  To  illustrate,  suppose  we  are  interested  in  the  H3ä1L  column
vector v2 and the H1ä 3L row vector u2÷ , given by

v2 =
i
k
jjjjjjj a

b
c

y
{
zzzzzzz    and   u2÷ = H 1 2 3 L .

Using the List approach, we enter both of them into Mathematica in the same way:

v = 8a, b, c<
u = 81, 2, 3<
8a, b, c<81, 2, 3<
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Although  we  can  find  the  Transpose  of  a  matrix,  there  is  no  such  thing  as  a
Transpose of a Mathematica Vector:

Transpose@vD
9 Transpose::nmtx :  The first two levels of the

one-dimensional list 8a, b, c< cannot be transposed.

Transpose@8a, b, c<D
Once again, this arises because Mathematica does not distinguish between column vectors
and row vectors. To stress the point, this means that the Mathematica input for v2 and v2T  is
exactly the same.

When  the  Dot  operator  is  applied  to  two  vectors,  it  returns  a  scalar.  Thus,  v.v  is
equivalent to v2T v2 H1ä 1L:

v.v

a2 + b2 + c2

while u.u is equivalent to u2÷ u2÷ T H1ä1L:
u.u

14

In order to obtain v2 v2T H3ä 3L and u2÷ T u2÷  H3ä 3L, we have to derive the outer product using the
rather cumbersome expression:

Outer@Times, v, vD
i
k
jjjjjjjj
a2 a b a c

a b b2 b c

a c b c c2

y
{
zzzzzzzz

Outer@Times, u, uD
i
kjjjjjj
1 2 3

2 4 6

3 6 9

y
{zzzzzz

Next, suppose:

M =
i
k
jjjjjj 1 0 0
4 5 6
0 0 9

y
{
zzzzzz;
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Then, v2T M v2 H1ä1L is evaluated with:

v.M.v

5 b2 + a Ha + 4 bL + c H6 b + 9 cL
and u2÷ M u2÷ T  H1ä 1L is evaluated with:

u.M.u

146

Once again, we stress that we do not use u.M.Transpose[u] here, because one cannot
find the Transpose of a Mathematica Vector. 

The mathStatica function Grad[f, x2] calculates the gradient of scalar f with respect
to x2 = 8x1 , Z, xn<, namely

9 � fÅÅÅÅÅÅÅÅÅÅÅÅÅ
� x1

, Z, � fÅÅÅÅÅÅÅÅÅÅÅÅÅ
� xn

= .
Here, then, is the gradient of f = a b2  with respect to v2:

f = a b2; Grad@f, vD
8b2, 2 a b, 0<

The  derivative  of  a  vector  with  respect  to  a  vector  yields  a  matrix.  If  f
2÷

 is  an  m-
dimensional  vector,  and  x2  is  an  n-dimensional  vector,  then  Grad[ f

2÷
,  x2 ]  calculates  theHmä nL matrix:

i
k
jjjjjjjjjjjjjjjj
� f1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
� x1

� � f1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
� xn

ª � ª
� fmÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
� x1

� � fmÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
� xn

y
{
zzzzzzzzzzzzzzzz

This is also known as the Jacobian matrix. Here is an example:

f = 8a b2, a, b, c2, 1<; Grad@f, vD
i
k
jjjjjjjjjjjjjjjj
b2 2 a b 0

1 0 0

0 1 0

0 0 2 c

0 0 0

y
{
zzzzzzzzzzzzzzzz
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È Vectors as Matrices

Column  vectors  Hmä1L  and  row  vectors  H1ä nL  are,  of  course,  just  special  cases  of  anHmä nL  matrix.  In  this  vein,  one  can  force  Mathematica  to  distinguish  between  a  column
vector  and  a  row vector  by  entering  them both  as matrices  88Z<<,  rather  than as  a  single
List 8Z<. To illustrate, suppose we are interested again in the H3ä1L column vector v2 and
the H1ä3L row vector u2÷ , given by

v2 =
i
k
jjjjjjj a

b
c

y
{
zzzzzzz    and   u2÷ = H 1 2 3 L .

This  time, we shall enter  both v2  and u2÷  into Mathematica  as if they were matrices. So, we
enter the column vector v2 as:

V = 88a<, 8b<, 8c<<
i
kjjjjjj
a

b

c

y
{zzzzzz

As far as Mathematica is concerned, this is not a Vector:

VectorQ@VD
False

Rather, Mathematica thinks it is a Matrix:

MatrixQ@VD
True

Similarly, we enter the row vector u2÷  as if it is the first row of a matrix:

U = 881, 2, 3<< H* not 81,2,3< *L
881, 2, 3<<
VectorQ@UD
False

MatrixQ@UD
True
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Because V and U are Mathematica matrices, Transpose now works:

Transpose@VD
88a, b, c<<
Transpose@UD
i
kjjjjjj
1

2

3

y
{zzzzzz

We can now use standard notation to find v2T v2 H1ä1L:
Transpose@VD.V
88a2 + b2 + c2<<

and u2÷  u2÷ T H1ä1L:
U.Transpose@UD
8814<<

To obtain v2 v2TH3ä 3L and u2÷ T u2÷  H3ä 3L, we no longer have to use Outer products. Again, the
answer is obtained using standard notation. Here is v2 v2T :

V.Transpose@VD
i
k
jjjjjjjj
a2 a b a c

a b b2 b c

a c b c c2

y
{
zzzzzzzz

and u2÷ T u2÷ :

Transpose@UD.U
i
kjjjjjj
1 2 3

2 4 6

3 6 9

y
{zzzzzz

Next, suppose:

M =
i
k
jjjjjj 1 0 0
4 5 6
0 0 9

y
{
zzzzzz;
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Then, v2T M v2 H1ä1L is evaluated with:

Transpose@VD.M.V
885 b2 + a Ha + 4 bL + c H6 b + 9 cL<<

and u2÷ M u2÷ T  H1ä 1L is evaluated with:

U.M.Transpose@UD
88146<<

Z not with U.M.U .

The  Matrix  approach  to  vectors  has  the  advantage  that  it  allows  one  to  distinguish
between column and row vectors,  which  seems more natural.  However,  on the downside,
many Mathematica functions (including Grad) have been designed to operate on a single
List  (Vector),  not  on  a  matrix;  these  functions  will  often  not  work  with  vectors  that
have been entered using the Matrix approach.

A.8 Changes to Default Behaviour
mathStatica  makes  a  number  of  changes  to  default  Mathematica  behaviour.  These
changes  only  take  effect  after  you  load  mathStatica,  and  they  only  remain  active  while
mathStatica is running. This section lists three ;visual< changes.

Case 1:  G[x]

If  mathStatica  is  not  loaded,  the  expression  G[x]  has  no  meaning  to  Mathematica.  If
mathStatica  is  loaded,  the  expression  G[x]  is  interpreted  as  the  Mathematica  function
Gamma[x]:

G@xD ã Gamma@xD
True

Case 2:  Subscript and Related Notation in Input Cells

Quit

If  mathStatica  is not loaded,  it is best  to avoid mixing x  with its variants  {x1 , x̀, Z} in
Input cells. To see why, let us suppose we set x = 3:

x = 3

3
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and then evaluate:

9x1, x*, xê, x9, xè, x̀, x°, xæ=
931, 3*, 3

ê
, 3
:
, 3

è
, 3

`
, 3

°
, 3

æ=
This output is not the desired behaviour in standard notational systems.

Quit

However, if mathStatica is loaded, we can work with x and its variants {x1 , x̀, Z} at the
same time without any ;problems<:

<< mathStatica.m

x = 3

3

This time, Mathematica treats the variants {x1 , x̀, ...} in the way we want it to:

9x1, x*, xê, x9, xè, x̀, x°, xæ=
9x1, x*, x

ê
, x
:
, x

è
, x̀, x

°
, x

æ=
This  change  is  implemented  in mathStatica  simply by  adding the  attribute  HoldFirst
to the following list of functions:

lis = 8Subscript, SuperStar, OverBar, OverVector,
OverTilde, OverHat, OverDot, Overscript,
Superscript, Subsuperscript, Underscript,
Underoverscript, SubPlus, SubMinus, SubStar,
SuperPlus, SuperMinus, SuperDagger, UnderBar<;

This idea was suggested by Carl Woll.  In our experience, it works brilliantly, without any
undesirable  side  effects,  and  without  the  need  for  the  Notation  package  which  can
interfere  with  the subscript  manipulations  used  by  mathStatica.  If,  for  some  reason,  you
do not like this feature, you can return to Mathematica<s default behaviour by entering:

ClearAttributes@Evaluate@lisD, HoldFirstD
Of course, if you do this, some Input cells in this book may no longer work as intended.

Case 3:  Matrix Output

If mathStatica is not loaded, matrices appear as lists. For example:

Quit
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m = Table@i - j, 8i, 4<, 8j, 5<D
880, -1, -2, -3, -4<, 81, 0, -1, -2, -3<,82, 1, 0, -1, -2<, 83, 2, 1, 0, -1<<

If,  however,  mathStatica  is  loaded,  matrices  automatically  appear  nicely  formatted  as
matrices. For example:

Quit

<< mathStatica.m

m = Table@i - j, 8i, 4<, 8j, 5<D
i
k
jjjjjjjjjjj
0 -1 -2 -3 -4
1 0 -1 -2 -3
2 1 0 -1 -2
3 2 1 0 -1

y
{
zzzzzzzzzzz

Standard matrix operations still operate flawlessly:

mP1T
80, -1, -2, -3, -4<
m + 2

i
k
jjjjjjjjjjj
2 1 0 -1 -2
3 2 1 0 -1
4 3 2 1 0

5 4 3 2 1

y
{
zzzzzzzzzzz

Moreover,  it  is  extremely  easy  to  extract  a  column  (or  two):  simply  select  the  desired
column with the mouse, copy,  and paste it into a new Input  cell.  If desired,  you can then
convert into InputForm (Cell Menu @ ConvertTo @ InputForm).

This  trick  essentially  eliminates  the  need  to  use  the  awkward  MatrixForm
command.  If,  for  some  reason,  you  do  not  like  this  fancy  formatted  output  (e.g.  if  you
work  with  very  large  matrices),  you  can  return  to  Mathematica<s  default  behaviour  by
simply evaluating:

FancyMatrix@OffD
9 FancyMatrix is now Off.

Then:

m

880, -1, -2, -3, -4<, 81, 0, -1, -2, -3<,82, 1, 0, -1, -2<, 83, 2, 1, 0, -1<<
You can switch it on again with FancyMatrix[On]. 
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A.9 Building Your Own mathStatica Function
The building blocks of mathematical statistics include the expectations operator,  variance,
probability,  transformations,  and  so  on.  A  lot  of  effort  and  code  has  gone  into  creating
these functions  in mathStatica. The more adventurous  reader can create powerful  custom
functions by combining these building blocks in different ways!much like a LEGO® set.
To illustrate, suppose we want to write our own function to automate kurtosis calculations
for an arbitrary univariate density function f . We recall that kurtosis is defined by

b2 = m4 êm2
2  

where  mr = E@HX - mLr D.  How many  arguments  should  our  Kurtosis  function  have? In
other  words,  should  it  be  Kurtosis[x, m, f],  or  Kurtosis[x, f],  or  just
Kurtosis[f]? If our function is smart, we will not need the ;x<, since this information
can  be  derived  from  domain[f];  nor  do  we  need  the  ;m<,  because  this  can  also  be
calculated  from  density  f.  So,  the  neat  solution  is  simply  Kurtosis[f].  Then,  we
might proceed as follows:

Kurtosis[f_] := Module[{xx,mean,var,sol,b=domain[f]}, 
    xx  =  If[ Head[b] === And, b[[1,1]], b[[1]]];
  mean  =  Expect[xx, f];
   var  =     Var[xx, f];
   sol  =  Expect[(xx - mean)^4, f] / var^2;
   Simplify[sol]      ]

In the  above,  the term xx  picks  out  the random variable  x  from any  given domain[f]
statement. We also need to set the Attributes of our Kurtosis function:

SetAttributes@Kurtosis, HoldFirstD
What  does  this  do?  The HoldFirst  expression  forces  the  Kurtosis  function  to hold
the f  as an ;f<, rather  than immediately evaluating  it as, say,  f = 0-l  lx ê x! .  By holding
the  f,  the  function  can  then  find  out  what  domain[f]  has  been  set  to,  as  opposed  to
domain[0-l  lx ê x!].  Similarly,  it  can  evaluate  Expect[x, f]  or  Var[x, f].  More
generally,  if  we  wrote  a  function  MyFunc[n_, f_],  where  f  is  the  second  argument
(rather than the first),  we would use SetAttributes[MyFunc, HoldRest],  so that
the f is still held. To illustrate our new function, suppose X ~ PoissonHlL with pmf f HxL:

f =
$-l lx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

; domain@fD = 8x, 0, �< && 8l > 0< && 8Discrete<;
Then, the kurtosis of the distribution is:

Kurtosis@fD
3 +

1
ÅÅÅÅ
l
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Notes

Chapter 1 Introduction
1. Nota bene  Take note.

Chapter 2 Continuous Random Variables
1. Warning:  On  the  one  hand,  s  is  often  used  to  denote  the  standard  deviation.  On the

other  hand,  some  distributions  use  the  symbol  s  to  denote  a  parameter,  even  though

this parameter  is not equal to the standard deviation;  examples include the Lognormal,

Rayleigh and MaxwellCBoltzmann distributions.

2. The textbook reference  solution, as listed in Johnson et al.  (1994, equation (18.11)),  is

incorrect.

3. Black and  Scholes  first  tried  to  publish  their  paper  in 1970  at  the Journal  of  Political

Economy  and  the  Review  of  Economics  and  Statistics.  Both  journals  immediately

rejected the paper without even sending it to referees!

4. The  assumption  that  investors  are  risk-neutral  is  a  simplification  device:  it  can  be

shown that the solutions derived are valid in all worlds.

Chapter 3 Discrete Random Variables
1. The more  surface  area  a  face  has,  the greater  the  chance  that it  will  contact  the  table-

top.  Hence,  shaving  a  face  increases  the  chance  that  it,  and  its  opposing  face,  will

occur. Now, because the die was a perfect cube to begin with, shaving the 1-face is no

different  from  shaving  the  6-face.  The  chance  of  a  1  or  6  is  therefore  uniformly

increased.  To see intuitively  what  happens to the probabilities,  imagine throwing a die

that has been shaved to extreme! the die would be a disk with two faces, 1 and 6, and

almost no edge, so that the chance of outcomes 2, 3, 4 or 5 drop (uniformly) to zero.

2. The  interpretation  of  the  limiting  distribution  is  this:  after  the  process  has  been

operating  for  a  long  duration  (Yburnt-inZ),  the  (unconditional)  probability  pk  of  the

process being in a state k is independent of how the process first began. For given states

k  and  j,  pk  is  defined  as  limtØ�  PHXt = k " X0 = jL  and  is  invariant  to  the  value  of  j.

Other  terms  for  the  limiting  distribution  include  Ystationary  distributionZ,  Ysteady-state

distributionZ,  and  Yequilibrium  distributionZ.  For  further  details  on  Markov  chains  see,



for example,  Taylor  and Karlin (1998),  and for  further details  on asymptotic  statistics,

see Chapter 8.

3. In the derivations to follow, it is easier to think in terms of draws being made one-by-

one without replacement.  However, removing  at once a single handful of m  balls from

the urn is probabilistically equivalent to m one-by-one draws, if not physically so.

4. To  see  that  f HxL  has  the  same  probability  mass  under  domain[f]={x,0,n}  as

under  domain[f]={x,0,Min[n,r]},  consider  the  two  possibilities:  If  n § r,

everything  is  clearly  fine.  If  n > r,  the  terms  added  correspond  to  every

x ' 8 r + 1, _, n<.  In  this  range,  x > r,  and  hence  I T - n
r - x M  is  always  0,  so  that  the

probability  mass  f HxL = 0  for  x > r.  Thus,  the  probability  mass  is  not  affected  by  the

inclusion of the extra terms.

5. It  is  not  appropriate  to  treat  the  component-mix  X  as  if  it  is  a  weighted  average  of

random  variables.  For  one  thing,  the  domain  of  support  of  a  weighted  average  of

random variables  is  more  complicated  because  the values of the weights  influence  the

support.  To  see  this,  consider  two  Bernoulli  variables.  The  domain  of  support  of  the

component-mix  is  the  union 80, 1< ( 80, 1< = 80, 1<,  whereas  the  domain  of  support  of

the weighted average is 80, w1 , w2 , 1<.
6. The  assumption  of  Normality  is  not  critical  here.  It  is  sufficient  that  Yi  has  a  finite

variance. Then approximate Normality  for Y = i=1
t Yi  follows by a suitable version of

the Central Limit Theorem; see, for example, Taylor and Karlin (1998, p.75).

7. When working numerically,  the trick here is to ensure that the variance of the Normal

pdf s2  matches the variance of the parameter-mix model given by Expect[t w2 , g]=
w2 ê p.  Then,  taking  say  s2 = 1,  we  require  p = w2  for  the  variances  to  match.  The

values used in Fig. 11 (s = 1, w =
è!!!!!!!

0.1 , p = 0.1) are consistent with this requirement.

8. Lookup tables  are built  by DiscreteRNG  using MathematicaZs  Which  function.  To

illustrate, here is a lookup table for Example 17, where u= Random[]:

Which[ 0   < u < 0.1,   -1.  , 
       0.1 < u < 0.5,    1.5 , 
       0.5 < u < 0.8,    Pi  , 
       True,             4.4  ]

Chapter 4 Distributions of Functions of Random Variables
1. Notes:

(i) For a more detailed proof, see Walpole and Myers (1993, Theorem 7.3).

(ii) Observe that J = +xÅÅÅÅÅÅÅÅÅ
+y

= 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
+yê+x

.

2. Let X ~ ExponentialH 1ÅÅÅÅ
a
L with pdf hHxL:

h = a "- a x  ; domain@hD = 8x, 0, �< && 8a > 0< && 8b > 0< ;
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Then, the pdf of Y = b .X  Hb > 0L is:

Transform@y ã b "x, h D
TransformExtremum@y ã b "x, h D
a b

a
y

-1-a

8y, b, �< && 8a > 0, b > 0<
3. The multivariate  case follows analogously;  see, for instance,  Roussas (1997,  p.232) or

Hogg and Craig (1995, Section 4.5).

Chapter 5 Systems of Distributions
1. The  area  defining  I(J)  in  Fig. 1  was  derived  symbolically  using  Mathematica.  A

comparison  with  Johnson  et  al.  (1994)  shows  that  their  diagram is  actually  somewhat

inaccurate,  as  is  OrdZs  (1972)  diagram.  By  contrast,  Stuart  and  OrdZs  (1994)  diagram

seems fine.

2. For somewhat cleaner results, note that:

(i) §7.2  B discusses  unbiased  estimators  of  central  moments  calculated  from sample

data; 

(ii) The  Yquick  and  dirtyZ  formulae  used  here  for  calculating  moments  from grouped

data  assume  that  the  frequencies  occur  at  the  mid-point  of  each  interval,  rather

than  being  spread  over  the  interval.  A technique  known as  SheppardZs  correction

can  sometimes  correct  for  this  effect:  see,  for  instance,  Stuart  and  Ord  (1994,

Section 3.18).

3. The  reader  comparing  results  with  Stuart  and  Ord  (1994)  should  note  that  there  is  a

typographic error in their solution to m3 .

4. Two alternative methods for deriving Hermite polynomials (as used in statistics) are H1

and H2, where:

H1@j_D := 2-jê2  HermiteHAj, z
ÅÅÅÅÅÅÅÅÅÅè!!!!
2

E êê Expand

and:

Clear@gD; g'@zD = -z g@zD;
H2@j_D := H-1Lj D@g@zD, 8z, j<D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g@zD êê Expand

H1 makes use of the built-in HermiteH function, while H2 notes that if density gHzL is
NH0, 1L, then g£ HzL = -z gHzL. While both H1 and H2 are more efficient than H, they are

somewhat less elegant in the present context.

5. The original  source  of  the  data  is  Schwert  (1990).  Pagan  and  Ullah  then  adjusted  this

data for calendar effects by regressing out twelve monthly dummies.

NOTES 449



Chapter 6 Multivariate Distributions
1. In order  to  ascribe  a  particular  value  to the  conditioning  variable,  say f Hx1 " X2 = 1ÅÅÅÅ

2
L,

proceed as follows:

Conditional@x1, fD ê. x2 Ø
1
ÅÅÅÅ
2

D Here is the conditional pdf  f H x1  À x2  L:
1
ÅÅÅÅ
2

+ x1

Do  not  use  Conditional@x1, f ê. x2 Ø 1ÅÅÅ
2
D.  In  mathStatica  functions,  the

syntax  f ê. x2 Ø 1ÅÅÅ
2

 may  only  be  used  for  replacing  the  values  of  parameters  (not

variables).

2. Some texts  refer  to this  as  the  FarlieCGumbelCMorgenstern  class  of distributions;  see,

for instance, Kotz et al. (2000, p.51).

3. More  generally,  if  Z ~ NH0, 1L,  its  cdf  is  FHzL = 1ÅÅÅÅ2 I1 + ErfA zÅÅÅÅÅÅÅÅÅÅè!!!!
2
EM.  Then,  in  a  zero

correlation m-variate setting with Z
.÷

= HZ1 , _, Zm L ~ NI0.÷ , Im M, the joint cdf will be:

I 1ÅÅÅÅÅ
2
Mm J1 + ErfA z1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!

2
EN� J1 + ErfA zmÅÅÅÅÅÅÅÅÅÅÅÅè!!!

2
EN . 

This follows because HZ1 , _, Zm L are mutually stochastically independent (Table 3 (i)).

4. MathematicaZs  Multinormal  statistics  package  contains  a  special  CDF  function  for

the multivariate  Normal  density.  Under Mathematica  Version  4.0.x, this  function does

not  work  if  any  rij = 0,  irrespective  of  whether  the  0  is  a  symbolic  zero  (0)  or  a

numerical  zero (0.).  For instance,  PHX § -2, Y § 0, Z § 2L  fails  to evaluate  under  zero

correlation:

CDF@dist3 ê. r_ Ø 0, 8-2, 0, 2<D
D Solve::svars :  

Equations may not give solutions for all "solve" variables.

D CDF::mnormfail: etc ...

Fortunately, this problem has been fixed, as of Mathematica Version 4.1.

5. Under  Mathematica  Version  4.0,  the  CDF  function  in  MathematicaZs  Multinormal

statistics  package  has  two  problems:  it  is  very  slow,  and  it  consumes  unnecessarily

large amounts of memory. For example:

G@1, -7, 3D êê Timing

87.25 Second, 1.27981 µ 10-12<
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Rolf Mertig  has  suggested (in email  to the authors)  a fix to this problem that does  not

alter the accuracy of the solution in any way. Simply enter:

Unprotect@MultinormalDistributionD;
UpValues@MultinormalDistributionD =

UpValues@MultinormalDistributionD ê.
HoldPattern@NIntegrate@a_, b__DD ß
NIntegrate@Evaluate@aD, bD;

and then the CDF function is suddenly more than 40 times faster, and it no longer hogs

memory:

G@1, -7, 3D êê Timing

80.11 Second, 1.27981 µ 10-12<
Under Mathematica  Version 4.1,  none of these  problems occur,  so there  is no need to

fix anything.

6. A random vector X
.÷÷
 is said to be spherically distributed if its pdf is equivalent to that of

Y
.÷÷

= H  X
.÷÷
,  for  all  orthogonal  matrices  H .  The  zero  correlation  bivariate  Normal  is  a

member of the spherical class, because its pdf

1ÅÅÅÅÅÅÅÅÅÅÅ
2 p  exp

ikjjj- x. T  x.ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

y{zzz
depends  on  x

.
 only  through  the  value  of  the  scalar  x

. T  x.,  and  soHH  x. LT  HH  x. L = x
. T  HHT  HL x. = x

. T  x.,  because  HT  H = I2 .  An  interesting  property  of

spherically  distributed  variables  is  that  a  transformation  to  polar  co-ordinates  yields

mutually stochastically independent random variables. Thus, in the context of Example

20  (Robin  Hood)  above,  when  r = 0,  the  angle  Q  will  be  independent  of  the  radius

(distance)  R  (see  density  gHr, qL).  For  further  details  on  the  spherical  family  of

distributions, see Muirhead (1982).

7. The multinomial coefficient

J n

x1 , x2 , _, xm
N = n!ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x1 ! x2 ! � xm !

is provided in Mathematica  by the function Multinomial@ x1 , x2 , _, xm D. It gives

the number of ways to partition n objects into m sets of size xi .

8. Alternatively, one can find the solution YmanuallyZ as follows:

E@.t1  Y1 + t2  Y2 + Ht1 +t2 L Y0 D =   E@ .t1  Y1 D E@ .t2  Y2 D E@ .Ht1 +t2 L Y0 D by Table 3 HiiL
=   expI H.t1 - 1L l1 + H.t2 - 1L l2 + H.t1 + t2 - 1L l0 M.

The same technique can be used to derive the pgf.
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Chapter 7 Moments of Sampling Distributions
1. Chapter  2  introduced  a  suite  of  converter  functions  that  allow  one  to  express  any

population moment (m
£
, m,  or k) in terms of any other population  moment (m

£
, m, or k).

These  functional  relationships  also  hold  between  the  sample  moments.  Thus,  by

combining  the  moment  converter  functions  with  equation  (7.2),  we  can  convert  any

sample  moment  (raw,  central  or  cumulant)  into  power  sums.  For  instance,  to  convert

the fourth central sample moment m4  into power sums, we first convert from central m

to  raw  m
£

 moments  using  CentralToRaw[4,  m,  m
£
]  (note  the  optional  notation

arguments  m  and m
£
),  and then use (7.2)  to convert  the latter  into power  sums. Here is

m4  in terms of power sums:

CentralToRawA4, m, m
£ E ê. m

£
i_ ß

si
ÅÅÅÅÅÅÅ
n

m4 Ø -
3 s1

4

ÅÅÅÅÅÅÅÅÅÅÅ
n4

+
6 s1

2 s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n3

-
4 s1 s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n2

+
s4ÅÅÅÅÅÅÅ
n

This is identical to:

SampleCentralToPowerSum@4D
m4 Ø -

3 s1
4

ÅÅÅÅÅÅÅÅÅÅÅ
n4

+
6 s1

2 s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n3

-
4 s1 s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n2

+
s4ÅÅÅÅÅÅÅ
n

2. KendallZs  comment  on  the  term  YpolykaysZ  can  be  found  in  Stuart  and  Ord  (1994,

Section 12.22).

3. Just  as  we  can  think  of  moments  as  being  Yabout  zeroZ  (raw)  or  Yabout  the  meanZ

(central),  one  can  think  of  cumulants  as  also  being  Yabout  zeroZ  or  Yabout  the  meanZ.

The moment of moment functions that are expressed in terms of cumulants, namely:

RawMomentToCumulant

CentralMomentToCumulant 

CumulantMomentToCumulant

_  do  their  internal  calculations  about  the  mean.  That  is,  they  set  m1 = k1 = 0.  As

such,  if  p  =  PolyK[{1,2,3}]P2T,  then  RawMomentToCumulant[1,p]  will

return  0,  not  k1  k2  k3 .  To force  mathStatica  to  do  its  ___ToCumulant  calculations

about zero rather than about the mean, add Z to the end of the function name: e.g.  use

RawMomentToCumulantZ. For example, given:

p = PolyK@81, 2, 3<DP2T;
... compare:

RawMomentToCumulant@1, pD
0
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with:

RawMomentToCumulantZ@1, pD
k1 k2 k3

Working  Yabout  zeroZ  requires  greater  computational  effort  than  working  Yabout  the

meanZ,  so  the  various   ___CumulantZ  functions  are  often  significantly  slower  than

their Z-less cousins.

4. PowerSumToAug,  AugToPowerSum  and  MonomialToPowerSum  are  the  only

mathStatica  functions  that  allow one  to  use shorthand  notation  such as  814 < to  denote81, 1, 1, 1<. This feature does not work with any other mathStatica function.

Chapter 8 Asymptotic Theory
1. The discussion of  Calculus`Limit`  has  benefitted  from detailed discussions  with

Dave Withoff of Wolfram Research.

2. Some texts  (e.g.  Billingsley  (1995))  separate  the  definition  into  two  parts:  (i)  terming

(8.1)  the  weak  convergence  of  8Fn <n=1
�  to  F,  and  (ii)  defining  convergence  in

distribution of 8Xn <n=1
�  to X only when the corresponding cdfZs converge weakly. 

3. van Beek improved upon the original version of the bounds referred to in the so-called

BerryCEsseen Theorem; for details see, amongst others, Bhattacharya and Rao (1976).

4. F  is  the  limiting  distribution  of  W*  by  the  LindebergCFeller  version  of  the  Central

Limit Theorem. This theorem is not discussed here, but details about it can be found in

Billingsley (1995) and McCabe and Tremayne (1993), amongst others.

5. Under Version 4.0 of Mathematica, some platforms give the solution for m3
+  as

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 + qL H4 + qL G@ qÅÅÅ

2
D  I--qê2 I24- qÅÅÅÅ

2 q
4+qÅÅÅÅÅÅÅÅ
2 H2 + qL -

2 -qê2 I32 H4 + 3 qL GA1 +
q
ÅÅÅÅ
2
E + 8 H-4 + q2L GA3 +

q
ÅÅÅÅ
2
E -

q4 H6 + qL GA q
ÅÅÅÅ
2
E - 64 GammaA3 +

q
ÅÅÅÅ
2
,

q
ÅÅÅÅ
2
EMMM

Although  this  solution  appears  different  to  the  one  derived  in  the  text,  the  two  are

nevertheless equivalent.

6. We emphasise  that for  any finite choice of n,  this pseudo-random number generator  is

only approximately NH0, 1L.
7. For example, it makes no sense to consider the convergence in probability of 8Xn <n=1

�  to

X, if all variables in the sequence are measured in terms of pounds of butter, when X is

measured in terms of numbers of guns.
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8. Letting MSE = EAHXêêê
n - qL2E , write

MSE = E

Ä
ÇÅÅÅÅÅÅÅÅÅikjjjj 1ÅÅÅÅÅ

n
 
i=1

n HXi - qLy{zzzz
2 ÉÖÑÑÑÑÑÑÑÑÑ = 1ÅÅÅÅÅÅÅÅ

n2  
i=1

n 
j=1

n

EAHXi - qL HXj - qLE.
Of  the  n2  terms  in  the  double-sum  there  are  n  when  the  indices  are  equal,  yielding

expectations  in  the  form of  E@HXi - qL2 D;  the  remaining  nHn - 1L  terms  are  of  the  form

E@HXi - qL HXj - qLD.  Due  to  independence,  the  latter  expectation  can  be  decomposed

into the product of expectations: E@Xi - qD E@Xj - qD. Thus,

MSE = 1ÅÅÅÅÅÅÅÅ
n2 

i=1

n

E@HXi - qL2 D + 1ÅÅÅÅÅÅÅÅ
n2  

i=1

n 
j=1

n

i� j

 E@Xi - qD E@Xj - qD.
As  each  of  the  random  variables  in  the  random  sample  is  assumed  to  be  a  copy  of  a

random  variable  X,  replace  E@HXi - qL2 D  with  E@HX - qL2 D,  as  well  as  E@Xi - qD  and

E@Xj - qD with E@X - qD. Finally, then,

MSE = 1ÅÅÅÅÅÅÅÅ
n2 

i=1

n

E@HX - qL2 D + 1ÅÅÅÅÅÅÅÅ
n2  

i=1

n 
j=1

n

i� j

 HE@X - qDL2
= 1ÅÅÅÅÅ

n
E@HX - qL2 D + n-1ÅÅÅÅÅÅÅÅÅÅÅÅ

n
 HE@XD - qL2 .

Chapter 9 Statistical Decision Theory

1. Sometimes,  we  do  not  know  the  functional  form of  gIq`; qM;  if  this  is  the  case  then  an

alternative expression for risk involves the multiple integral:

Rq
` HqL = @ � @ LIq`Hx1 , _, xn L, qM f Hx1 , _, xn ; qL + x1  � + xn

where we let q
`HX1 , _, Xn L express the estimator in terms of the variables in the random

sample X1 , _, Xn , the latter having joint density f  (here assumed continuous).  For the

examples encountered in this chapter, we shall assume the functional form of gIq`; qM is
known.

2. The pdf of XHrL  can be determined by considering  the combinatorics  underlying the re-

arrangement  of the random sample. In all, there are n candidates from HX1 , _, Xn L for

XHrL ,  and  n - 1  remaining  places  that  fall  into  two  classes:  r - 1  places  below  x  (x

represents values assigned to XHrL), and n - r places above x. Those that fall below x do

so  with  probability  FHxL,  and  those  that  lie  above  x  do  so  with  probability  1 - FHxL,
while the successful candidate contributes the value of the pdf at x, f HxL.

3. Johnson  et  al.  (1995,  equation  (24.14))  give  an  expression  for  the  pdf  of  XHrL  which

differs substantially  to the (correct)  output  produced by mathStatica. It  is not difficult

to  show  that  the  former  is  incorrect.  Furthermore,  it  can  be  shown  that  equations
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(24.15), (24.17) and (24.18) of Johnson et al. (1995) are incorrectly deflated by a factor

of two.

4. Mathematica solves many integrals by using a large lookup table. If the expression we

are  trying  to  integrate  is  not  in  a  standard  form,  Mathematica  may  not  find  the

expression in its lookup table, and the integral will fail to evaluate.

Chapter 10 Unbiased Parameter Estimation
1. Many texts  use the  term Fisher  Information  when  referring  to  either  measure.  Sample

Information  may be viewed as  Fisher  Information  per  observation  on  a size n  random

sample X
.÷÷

= HX1 , _, Xn L. 
2. Example 10 is one such example. See Theorem 10.2.1 in Silvey (1995), or Gourieroux

and  Monfort  (1995,  pp. 81C82)  for  the  conditions  that  a  given  statistical  model  must

meet in order that the BUE of a parameter exists.

3. If  the  domain  of  support  of  X  depends  on  unknown  parameters  (e.g.  q  in

X ~ UniformH0, qL), added care needs to be taken when using (10.13). In this book, we

shall not concern ourselves with cases of this type; instead, for further details, we refer

the interested reader to Stuart and Ord (1991, pp. 638C641).

4. This definition  suffices for  our purposes.  For the full version of the definition, see, for

example, Hogg and Craig (1995, p.330).

5. Here,  E@TD = I0 äPHXn § kLM + I1 ä PHXn > kLM = PHXn > kL.  Since  Xn  is  a  copy  of  X,  it

follows that T  is unbiased for gHlL. 
Chapter 11 Principles of Maximum Likelihood Estimation
1. If  q  is  a  vector  of  k  elements,  then  the  first-order  condition  requires  the  simultaneous

solution  of  k  equations,  and  the  second-order  condition  requires  establishing  that  theHk ä kL Hessian matrix is negative definite.

2. It  is  conventional  in  the  Normal  statistical  model  to  discuss  estimation  of  the  pairHm, s2 L  rather  than  Hm, sL.  However,  because  Mathematica  treats  s2  as  a  Power  and

not  as a  Symbol,  activities  such  as  differentiation  and  equation-solving  involving  s2

can  not  be  undertaken.  This  can  be  partially  overcome  by  entering  SuperD@OnD
which  invokes  a  mathStatica  function  that  allows  Mathematica  to  differentiate  with

respect  to  Power  variables.  Unfortunately,  mathStatica  does  not  contain  a  similar

enhancement for equation-solving in terms of Power variables.

3. The following input generates an information message:

NSum::nslim: Limit of summation n is not a number.

This  has  no  bearing  on  the  correctness  of  the  output  so  this  message  may  be  safely

ignored. We have deleted the message from the text.
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4. Of  course,  biasedness  is  just  one  aspect  of  small  sample  performance.  Chapter  9

considers other factors, such as performance under Mean Square Error. 

5. The mgf of the GammaHn, 1ÅÅÅÅÅÅÅÅ
n q L distribution may be derived as:

                g =
ya - 1 "-yêb
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

G@aD ba ê. 9a Ø n, b Ø
1

ÅÅÅÅÅÅÅÅ
n q

=;
domain@gD = 8y, 0, �< && 8n > 0, n . Integers, q > 0<;
Expect@"t y, gD
I1 -

t
ÅÅÅÅÅÅÅÅ
n q

M-n

Using  simple  algebra,  this  output  may  be  re-written  Hq ê Hq - tÅÅÅÅ
n
LLn ,  which  matches  the

mgf of logX
êêêêêêê

.

6. Let 8Yn < be a sequence of random variables indexed by n, and Y  a random variable such

that  Yn ö
d

Y .  Let  g  denote  a  continuous  function  (it  must  be  independent  of  n)

throughout  the  domain  of  support  of  8Yn <.  The  Continuous  Mapping  Theorem  states

that gHYn Lö
d

gHY L; see, for example, McCabe and Tremayne (1993). In our case, we set

gHyL = y-1 ,  and because  convergence  in  distribution  to a constant  implies  convergence

in probability to the same constant (§8.5 A), the theorem may be applied.

7. Alternatively,  the  limiting  distribution  of  
è!!!

n  Iq` - qM  can  be  found  by  applying

SkorohodZs Theorem (also called the delta method). Briefly, let the sequence of random

variables  8Yn <  be  such  that  
è!!!

n  HYn - cLö
d

Y ,  where  c  is  a  constant  and  Y  a  random

variable,  and  let  a  function  g  have  a  continuous  first  derivative  with  G = �gHcL ê�y.

Then  
è!!!

n  HgHYn L - gHcLLö
d

G Y .  In  our  case,  we  have  
è!!!

n  Hq`-1
- q-1 L ö

d
q-1  Z.  So8Yn < = 8q`-1 <,  c = q-1 ,  Y = q-1  Z,  where  Z ~ NH0, 1L.  Now  set  gHyL = 1 ê y,  so

G = -1 ê c2 . Applying the theorem yields:

        
è!!!

n  Iq` - qM ö
d

 H-q2 L q-1  Z ~ NH0, q2 L.
8. The log-likelihood can be concentrated  with respect  to the MLE of a0 . Thus, if  we letHHY1 , X1 L, _, HYn , Xn LL  denote a random sample  of size n  on the pair  HY , XL,  the MLE

of a0  can, as a function of b, be shown to equal

            à = àHbL = log
ikjjjj 1ÅÅÅÅÅ

n
 
i=1

n

Yi  .- b Xi
y{zzzz.

The  concentrated  log-likelihood  function  is  given  by  log LHàHbL, bL,  which  requires

numerical  methods  to  be  maximised  with  respect  to  b  (numerical  optimisation  is

discussed in Chapter 12).
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Chapter 12 Maximum Likelihood Estimation in Practice
1. Of  course,  elementary  calculus  may  be  used  to  symbolically  maximise  the  observed

log-likelihood,  but  our  purpose  here  is  to  demonstrate  FindMaximum.  Indeed,  from

Example 5  of Chapter 11, the ML estimator  of l  is given by the sample mean. For the

Nerve data, the ML estimate of l is:

SampleMean@xdataD
0.218573

2. For  commentary  on  the  comparison  between  ML  and  OLS  estimators  in  the  Normal

linear regression model see, for example, Judge et al. (1985, Chapter 2).

3. Just for fun, another (equivalent) way to construct urules is:

urules = MapThread@Hu#1 Ø #2L &, 8Range@nD, uvec<D;
Short@urulesD
8u1 Ø 0., u2 Ø 0.13, á236à, u239 Ø -0.11<

4. FindMaximum  /  FindMinimum  may  sometimes  work  with  subscript  parameters  if

Evaluate  is  wrapped  around  the  expression  to  be  optimised  (i.e.

FindMinimum[Evaluate[expr],{...}]);  however,  this  device  will  not

always work, and so it is best to avoid using subscript  notation with FindMaximum /

FindMinimum.

5. In  practice,  of  course,  a  great  deal  of  further  experimentation  with  different  starting

values  is  usually  necessary.  For  space  reasons,  we  will  not  pursue  our  search  any

further  here.  However,  we  do  encourage  the  reader  to  experiment  further  using  their

own choices in the above code.

6. In general, if Xn  ö
d

 X  and Yn  ö
p

 c, where c is a constant, then Xn  Yn  ö
d

 c X. We can

use this result by defining

Yn = $%%%%%%%%%%%%a b2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
à b

` 2
.

Because of the consistency property of the MLE, we have Yn  ö
p

 c = 1. Thus,

$%%%%%%%%%%%%a b2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
à b

` 2
 
è!!!

n  Hm̀ - mL ö
d

1 ä NH0, a b2 L = NH0, a b2 L.
Therefore, at the estimates of à and b

`
,

$%%%%%%%%%%%%a b2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
à b

` 2
 
è!!!

n  Hm̀ - mL ~a NH0, a b2 L.
Thus, è!!!

n  Hm̀ - mL  ~a NJ0, à b
`2N.
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7. The inverse cdf of the NH0, 1L distribution, evaluated at 1 - w ê2, is derived as follows:

f =
"- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<;
Solve@y ã Prob@x, fD, xD ê. y Ø J1 -

w
ÅÅÅÅ
2
N

99x Ø
è!!!
2 InverseErfA0, -1 + 2 I1 -

w
ÅÅÅÅ
2
ME==

8. MathematicaZs  on-line  help  for  FindMinimum  has  an  example  of  this  problem  in  a

one-dimensional case; see also Wolfram (1999, Section 3.9.8).

9. If  we  used  countPx + 1T  instead  of  nx ,  the  input  would  fail.  Why?  Because  the

product,

3
x=0

G I --g  gxÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

McountPx+1T

is  taken  with x  increasing  from 0  to G,  where G  is a  symbol  (because  it  has  not  been

assigned  any  numerical  value).  Since  the  numerical  value  of  G  is  unknown,

Mathematica  can  not  evaluate  the  product.  Thus,  Mathematica  must  treat  x  as  a

symbol. This, in turn, causes countPx + 1T to fail. 

10. In  the  previous  input,  it  would  not  be  advisable  to  replace  G  with  9,  for  then

Mathematica would expand the product, and SuperLog would not take effect.

11. The log-likelihood is concave with respect to g because:

Hessian@logLg, gD
-

x=0
G

x nx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

g2

_ is strictly negative.

12. For  example,  an  estimate  of  the  standard  error  of  the  ML  estimator  of  g,  using  the

Hessian estimator given in Table 3, is given by:

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-Hessian@logLg, gD ê. 8G Ø 9, nx_ ß countPx + 1T< ê. solg

0.0443622

13. It  is  a  mistake  to  use  the  NewtonCRaphson  algorithm  when  the  Hessian  matrix  is

positive definite at points in the parameter space because, at these points, (12.12) must

be  positive-valued.  This  forces  the  penalty  function / log-likelihood  function  to

increase / decrease  in value from one iteration to the next! the exact opposite of how a
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gradient method algorithm is meant to work. The situation is not as clear if the Hessian

matrix  is  indefinite  at  points  in  the  parameter  space,  because  (12.12)  can  still  be

negative-valued.  Thus, the NewtonCRaphson algorithm can work if the Hessian matrix

happens  to  be  indefinite,  but  it  can  also  fail.  On  the  other  hand,  the  BFGS  algorithm

will work properly wherever it is located in parameter space, for (12.12) will always be

negative.

In  our  example,  it  is  easy  to  show  that  the  Hessian  matrix  is  not  negative  definite

throughout the parameter space. For example, at Ha, b, cL = H0, 1, 2L, the Hessian matrix

is given by:

h = Hessian@obslogLl, 8a, b, c<D ê. 8a Ø 0, b Ø 1, c Ø 2< êê N

i
kjjjjjj

-180.07 -63.7694 -374.955
-63.7694 -2321.03 75.9626

-374.955 75.9626 489.334

y
{zzzzzz

The eigenvalues of this matrix are:

Eigenvalues@ h D
8-2324.45, 660.295, -347.606<

Thus, h is indefinite since it has both positive and negative eigenvalues. Consequently,

the Hessian matrix is not negative definite throughout the parameter space.

14. If  MethodØ QuasiNewton  or  MethodØ Newton  is  specified,  then  it  is

unnecessary  to  supply  the  gradient  through  the  option  Gradient Ø

Grad[obslogLl,{a,b,c}],  since  these  methods  calculate  the  gradient

themselves.  If  MethodØ QuasiNewton  or  MethodØ Newton  is  specified,  but

Mathematica  cannot  find  symbolic  derivatives  of  the  objective  function,  then

FindMaximum will not work.

15. To illustrate, let the scalar function f HxL be such that the scalar x0  minimises f ; that is,

f ' Hx0 L = 0.  Now,  for  a  point  x  close  to  x0 ,  and  for  f  quadratic  in  a  region  about  x0 ,  a

Taylor series expansion about x0  yields f HxL = f Hx0 L + f '' Hx0 L Hx - x0 L2 ê2. Point  x  will

be numerically distinct from x0  provided at least that Hx - x0 L2  is greater than precision.

Therefore, if $MachinePrecision is equal to 16, it would not be meaningful to set

tolerance smaller than 10-8 . 

16. It is inefficient  to include a check of the positive-definiteness  of WH jL .  This is because,

provided  WH0L  is  positive  definite,  BFGS  will  force  all  WH jL  in  the  sequence  to  be

positive definite. 

17. Our  analysis  of  this  test  is  somewhat  informal.  We  determine  whether  or  not  the  ML

point estimates  satisfy the inequalities! that is,  whether b
`

1 < b
`

2 < b
`

3  holds! for our

main  focus  of  attention  in  this  section  is  the  computation  of  the  ML  parameter

estimates using the NR algorithm.
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18. The cdf of a NH0, 1L random variable is derived as follows:

f =
"- x2ÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@fD = 8x, -�, �<; Prob@x, fD
1
ÅÅÅÅ
2

ikjjj1 + ErfA x
ÅÅÅÅÅÅÅÅÅè!!!
2

Ey{zzz
19. We refrain from using Subscript notation for parameters because FindMinimum /

FindMaximum, which we apply later on, does not handle Subscript notation well.

20. The Hessian can be compiled as follows:

hessfC = Compile@8a2, a3, b1, b2, b3<, Evaluate@HDD;
Mathematica requires large amounts of memory to successfully execute this command.

In fact, around 43 MB of free RAM in the Kernel is needed for this one calculation; use

MemoryInUse[]  to check your  own memory  performance  (Wolfram (1999,  Section

2.13.4)). We can now compare the performance of the compiled function hessfC with

the uncompiled function hessf. To illustrate, evaluate at the point l = H0, 0, 0, 0, 0L:
lval = 80., 0., 0., 0., 0.<;

Here is the compiled function:

hessfC üü lval êê Timing

90.55 Second,
i

k

jjjjjjjjjjjjjjjjjjjj
-20.5475 10.608 -0.999693 -5.00375 -3.83075
10.608 -174.13 4.08597 31.0208 45.4937

-0.999693 4.08597 -65.9319 -4.54747µ 10-13 -2.72848µ10-12

-5.00375 31.0208 0. -77.5857 2.27374µ10-13

-3.83075 45.4937 -7.7307µ 10-12
1.3074µ10-12 -78.8815

y

{

zzzzzzzzzzzzzzzzzzzz
=

_ while here is the uncompiled function:

hessf@lvalD êê Timing

92.03 Second,
i

k

jjjjjjjjjjjjjjjjjjjj
-20.5475 10.608 -0.999693 -5.00375 -3.83075
10.608 -174.13 4.08597 31.0208 45.4937

-0.999693 4.08597 -65.9319 -9.09495µ 10-13
4.54747µ 10-13

-5.00375 31.0208 4.54747µ 10-13 -77.5857 2.27374µ 10-13

-3.83075 45.4937 1.36424µ 10-12
7.67386µ 10-13 -78.8815

y

{

zzzzzzzzzzzzzzzzzzzz
=

The compiled function is about four times faster.
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21. The  strength  of  support  for  this  would  appear  to  be  overwhelming  judging  from  an

inspection  of  the  estimated  asymptotic  standard  errors  of  b
`

1 ,  b
`

2  and  b
`

3 .  A  rule  of

thumb that compares the extent of overlap of intervals constructed as

estimate � 2 ä Hestimated standard deviationL
finds only  a slight  overlap between  the intervals  about  the second and  third  estimates.

Formal statistical evidence may be gathered by performing a hypothesis test of multiple

inequality  restrictions.  For  example,  one  testing  scenario  could  be  to  specify  the

maintained hypothesis as b1 = b2 = b3 , and the alternative hypothesis as b1 < b2 < b3 .
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Index

A

abbreviations 25
absolute values 41, 59, 284, 422
accuracy

numerical 116, 230;231, 423;425
symbolic 421;422

admissible estimator 302
Ali;Mikhail;Haq 212, 249
ancillary statistic 337
animations

approximation error 286
bivariate Exponential pdf (Gumbel Model II)

11
bivariate Gamma pdf (McKay) 248
bivariate Normal pdf 217
bivariate Normal quantiles 219
bivariate Normal;Uniform pdf 214
bivariate Uniform pdf 213
conditional mean and variance 215
contours of bivariate Normal component-mix

249
contours of the trivariate Normal pdf 227
limit distribution of Binomial is Poisson 281
Lorenz curve for a Pareto distribution 44
non-parametric kernel density estimate 183
Pearson system 150
pmf of sum of two dice (fair vs shaved) 87
Robin Hood 223

arbitrary-precision numbers 423;424
Arc;Sine distribution 6
ARCH model 384;392
assumptions technology 8;9
asymptotic distribution 282;286

definition 282
of MLE (invariance property) 369;371
of MLE (maximum likelihood estimator) 367
of MLE (multiple parameters) 371;374
of MLE (with hypothesis testing) 393;394
of sample mean 287
of sample sum 287

asymptotic Fisher Information 375, 376
asymptotic theory 277;300
asymptotic unbiased estimator 366
asymptotic variance-covariance matrix 395;399,

404, 407, 410, 415, 418;419
augmented symmetric function 272;276
AzzaliniZs skew-Normal distribution 80, 225

B

bandwidth 181
BatesZs distribution 139, 289;290
Bernoulli distribution 89;91

cumulant generating function 271
distribution of sample sum 141
likelihood 352
Logit model 90;91
method of moments estimator 184
pmf 89
sample mean vs sample median 309;310
sufficiency in Bernoulli trials 337

Berry;Esseen Theorem 453
best unbiased estimator (BUE) 325, 335;336,

362, 364
Beta distribution

as defining Pearson Type I(J) 185
as member of Pearson family 158
cumulants 64
fitted to censored marks 353;354
MLE 363
pdf 64

Beta;Binomial distribution 106
bias 306
Binomial distribution 91;95

as limiting distribution of Ehrenfest urn 95
as sum of n Bernoulli rvZs 91, 141
cdf 92
kurtosis 93
limit distribution 280, 281
mgf 141, 281
Normal approximation 93, 281, 299
pmf 91
Poisson approximation 95, 280, 300
product cumulant 270

biology 107, 380
Birnbaum;Saunders distribution

cdf, pdf, quantiles 38;39
pseudo-random number generation 78

bivariate Cauchy distribution 237
bivariate Exponential distribution

Gumbel Model I, 204
Gumbel Model II, 11;13

bivariate Gamma (McKay) 248
bivariate Logistic distribution (Gumbel) 248, 249
bivariate Normal distribution 216;226

cdf 216, 217, 229;231
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bivariate Normal distribution (cont.)
characteristic function 221
component-mixture 249
conditional distribution 220
contour plot 218
marginal distributions 220
mgf 220
orthant probability 231
pdf 216, 217
pseudo-random number generation 232;234
quantiles 218;219
truncated bivariate Normal 224;226
variance-covariance matrix 220
visualising random data 234

bivariate Normal;Uniform distribution 213;215
bivariate Poisson 243;248

mgf 246
moments 246;248
pgf 244
pmf 244;245

bivariate StudentZs t 237;238
bivariate Uniform (à la Morgenstern) 212;213
Black;Scholes option pricing 70;71, 447
Brownian motion 70

C

Cauchy distribution
as a stable distribution 58
as ratio of two Normals 134
as transformation of Uniform 119
characteristic function 143
compared to Sinc2 pdf 35;36
distribution of sample mean 143
mean 36
pdf 35, 143
product of two Cauchy rvZs 148

cdf (cumulative distribution function)
definitions

- continuous multivariate 191
- continuous univariate 31
- discrete multivariate 194
- discrete univariate 81

limit distribution 279
numerical cdf 39
of Arc;Sine 7
of Binomial 92
of Birnbaum;Saunders 39
of bivariate Exponential

- Gumbel Model I, 204
- Gumbel Model II, 12

of bivariate Normal 216, 217, 229;231
of bivariate Normal;Uniform 214
of bivariate Uniform 213
of half-Halo 75
of Inverse Triangular 13
of Levy 74

of Maxwell;Boltzmann 32
of Pareto distribution 38
of Pascal 10
of Reflected Gamma 33
of stable distribution 59
of trivariate Normal 229;231
see also inverse cdf

censored data 354
censored distribution 68;69

and option pricing 70;71
and pseudo-random number generation 114
censored Lognormal 71
censored Normal 69
censored Poisson 327

Central Limit Theorem 286;292, 365
Generalised Central Limit Theorem 56
Lindeberg;Feller 453
Lindeberg;Lévy 287, 366, 368, 373

central moment 45, 200
characteristic function 50;60

definition
- multivariate 203
- univariate 50

inversion of cf
- numerical 53, 55, 60
- symbolic 53;60

Inversion Theorem 53
of bivariate Normal 221
of Cauchy 58, 143
of Levy 58
of Lindley 51
of Linnik 54
of Normal 50, 57
of Pareto 51
of stable distribution 56;57
relation to pgf 84
transformations 131
Uniqueness Theorem 52

ChebyshevZs Inequality 295;296
Chi-squared distribution

as square of a Normal rv 129, 131, 299
asymptotic distribution of sample mean 283
distribution of sample sum 142
mean deviation 41, 421;422
method of moments estimator 283
mgf 131
mode 36
pdf 36, 41
ratio of two Chi-squared rvZs 135
relation to Fisher F 135
van BeekZs bound 284;285
see also noncentral Chi-squared

coefficient of variation 40
complete sufficient statistic 343, 346
component-mix distribution 102;104

bivariate Normal component-mixture 249
estimating a Poisson two-component-mix

405;411
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conditional expectation E[X�a < X � b] 66;67
odd-valued Poisson rv 97;98
truncated Normal 67

conditional expectation E[X�Y = y] 197;199
definitions: continuous 197, discrete 199
deriving conditional mean and variance

- continuous 198, 215
- discrete 199

Normal Linear Regression model 221;222
Rao;Blackwell Theorem 342
regression function 197, 221;222

conditional pdf f (X�a < X � b) 65;67
conditional pdf f (X�Y = y) 197

of bivariate Exponential (Gumbel Model II)
12

of bivariate Normal 220
of bivariate Normal;Uniform 215
Normal Linear Regression model 221;222

conditional pmf f (X�Y = y) 199
conditional probability 65, 97
confidence interval 394;395
consistency 292;294, 367, 457
consistent estimator 294, 297
Continuous Mapping Theorem 366, 456
contour plot 188, 218, 227
convergence

in distribution 278;282, 293
in probability 292;298
to a constant 294

copulae 211;215
correlation 201

and independence 125, 211
and positive definite matrix 228
between k-statistics 268
between order statistics 314
definition 201
trivariate example 202
visualising correlation 212;213
see also covariance

covariance 201
between sample moments 266
definition 201
derived from central mgf 205
in terms of raw moments 206
of bivariate Exponential (Gumbel Model II)

12
trivariate example 202
see also correlation

Cramér;Rao lower bound 333;335
for Extreme Value 336
for Inverse Gaussian 334;335
for Poisson 334

cumulant generating function
definition 60, 203
of Bernoulli 271
of Beta 64
of Poisson 96

cumulants 60
in terms of moments 62, 206;207

of Bernoulli 271
of Beta 64
of k-statistics 267;271
of Poisson 96
product cumulant 209;210, 269
unbiased estimator of cumulants 256;260

cumulative distribution function (see cdf)

D

data
censored 354
population vs sample 151
raw vs grouped 151
;;
American NFL matches 260
Australian age profile 239
Bank of Melbourne share price 384
censored student marks 354
death notices 405
grain 153
income and education 396
medical patients and dosage 90
NB1, NB2 418
nerve (biometric) 380, 418
psychiatric (suicide) 412
sickness 155
snowfall 181
student marks 151, 162, 170, 177, 354
Swiss bank notes 19, 185
US stock market returns 185
word count 418

degenerate distribution 103, 238, 280
delta method 456
density estimation

Gram;Charlier 175;180
Johnson 164;174
non-parametric kernel density 181;183
Pearson 149;163

dice 84;87
differentiation with respect to powers 326
Discrete Uniform distribution 115
distributions

asymptotic
censored
component-mix
degenerate
elliptical
empirical
limit distribution
mixing
parameter-mix
piecewise
spherical
stable family
stopped-sum
truncated
zero-inflated
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distributions ; Continuous
a-Laplace (see Linnik)
Arc;Sine
AzzaliniZs skew-Normal
Bates
Beta
Birnbaum;Saunders
Cauchy
Chi-squared
Double Exponential (see Laplace)
Exponential
Extreme Value
Fisher F
Gamma
Gaussian (see Normal)
half-Halo
half-Normal
Hyperbolic Secant
Inverse Gamma
Inverse Gaussian
Inverse Triangular
Irwin;Hall
Johnson family
Laplace
Levy
Lindley
Linnik
Logistic
Lognormal
Maxwell;Boltzmann
noncentral Chi-squared
noncentral F
Normal
Pareto
Pearson family
Power Function
Random Walk
Rayleigh
Rectangular (see Uniform)
Reflected Gamma
semi-Circular (see half-Halo)
Sinc2

stable
StudentZs t
Triangular
Uniform
Weibull

distributions ; Discrete
Bernoulli
Beta;Binomial
Binomial
Discrete Uniform
Geometric
Holla
Hypergeometric
Logarithmic
Negative Binomial
Pascal
Poisson

Pólya;Aeppli
Riemann Zeta
Waiting-time Negative Binomial
Waring
Yule
Zero-Inflated Poisson
Zipf (see Riemann Zeta)

distributions ; Multivariate
bivariate Cauchy
bivariate Exponential (Gumbel Model I and

II)
bivariate Gamma (McKay)
bivariate Logistic (Gumbel)
bivariate Normal
bivariate Normal;Uniform (à la

Morgenstern)
bivariate Poisson
bivariate StudentZs t
bivariate Uniform (à la Morgenstern)
Multinomial
multivariate Cauchy
multivariate Gamma (Cheriyan and

Ramabhadran)
multivariate Normal
multivariate StudentZs t
Trinomial
trivariate Normal
truncated bivariate Normal

domain of support 31, 81;85
circular 191
non-rectangular 124, 125, 190;191, 314
rectangular 124, 190
triangular 191, 314, 317

dominant estimator 302
Dr Faustus 421

E

economics and finance 43;45, 56, 70;72,
108;109, 117, 121, 384

Ehrenfest urn 94;95
ellipse 218, 236
ellipsoid 227
elliptical distributions 234
empirical pdf 73, 77, 154, 381, 383
empirical pmf 16, 110, 111, 112
engineering 122
entropy 15
Epanechnikov kernel 182
estimator

admissible 302
asymptotic unbiased 366
BUE (best unbiased) 325, 335;336, 362, 364
consistent 294, 297
density (see density estimation)
dominant 302
estimator vs estimate 357
Fisher estimator 395;396, 397, 404
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h-statistic 253;256
Hessian estimator 395;396, 398, 404
inadmissible 302, 321;322
k-statistic 256;261
maximum likelihood estimator (see MLE)
method of moments 183;184, 283
minimax 305
minimum variance unbiased 341;346, 364
non-parametric kernel density 181;183
ordinary least squares 385
Outer-product 395;396, 398
sample central moment 360
sample maximum 320;321
sample mean (see sample mean)
sample median 309;310, 318;320
sample range 320;321
sample sum 277, 287
unbiased estimator of parameters 325;347
unbiased estimator of population moments

251;261
expectation operator

basic properties 32
definitions

- continuous 32
- discrete 83
- multivariate 200

when applied to sample moments 263
Exponential distribution

bivariate 11;13, 204
difference of two Exponentials 139;140
distribution of sample sum 141;142
likelihood 351
MLE (numerical) 381
MLE (symbolic) 358
order statistics 313;314
pdf 141, 313, 344, 358
relation to Extreme Value 121
relation to Pareto 121
relation to Rayleigh 122
relation to Uniform 121
sufficient statistic 344
sum of two Exponentials 136

Exponential regression 375;376, 396
Extreme Value distribution

Cramér;Rao lower bound 336
pdf 336, 377
relation to Exponential 121

F

factorial moment 60, 206;207, 247
factorial moment generating function 60, 203,

247
factorisation criterion 339;341
families of distributions

Gram;Charlier 175;180
Johnson 164;174
Pearson 149;163

stable family 56;61
fat tails 56, 108;109

see also kurtosis
first-order condition 21, 36, 357;361, 363
Fisher estimator 395;396, 397, 404
Fisher F distribution 135
Fisher Information 326;332

and MLE (regularity conditions) 367;368,
372;373

asymptotic Fisher Information 375, 376
first derivative form vs second derivative 329
for censored Poisson 327;328
for Gamma 331;332
for Inverse Gaussian 18
for Lindley 326
for Normal 330;331
for Riemann Zeta 329
for Uniform 330

Frank 212
frequency polygon 73, 77, 151, 154, 380

see also plotting techniques
Function Form 82
functions of random variables 117;148
fundamental expectation result 274

G

games
archery (Robin Hood) 222;224
cards, poker 101
craps 87;89, 115
dice (fair and unfair) 84;87

Gamma distribution
as member of Pearson family 157, 185
as sum of n Exponential rvZs 141;142
bivariate Gamma (McKay) 248
Fisher Information 331;332
hypothesis testing 392;394
method of moments estimator 184
mgf 142, 456
MLE (numerical) 382;383
multivariate (Cheriyan & Ramabhadran) 208
pdf 73, 142
pseudo-random number generation 73
relation to Inverse Gamma 147

Gamma regression model 419
gas molecules 32
Gaussian kernel 19, 182
generating functions 46;56, 203;205
Geometric distribution

definition 98
distribution of difference of two rvZs 148
pmf 98

Gini coefficient 40, 43;45
gradient 357;361
Gram;Charlier expansions 175;180
graphical techniques (see plotting techniques)
Greek alphabet 28
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H

h-statistic 253;256
half-Halo distribution 75, 80
half-Normal distribution 225
Helmert transformation 145
HELP 5
Hermite polynomial 175, 179, 449
Hessian estimator 395;396, 398, 404
Hessian matrix 358, 360
histogram 18, 155 (see also plotting techniques)
HollaZs distribution 105, 112
Hyperbolic Secant distribution 80
Hypergeometric distribution 100;101

I

inadmissible estimator 302, 321;322
income distribution 43;44, 121
independence

correlation and dependence 125, 211
mutually stochastically independent 210

independent product space 124, 190
Invariance Property 360, 369;371, 401, 410, 417
inverse cdf

numerical inversion 38;39, 75;77, 109
symbolic inversion 37;38, 74;75
of Birnbaum;Saunders 38;39
of half-Halo 75
of Levy 74
of Pareto 38, 43

Inverse Gamma distribution
as member of Pearson family 185
pdf 365
relation to Gamma 147, 365
relation to Levy 58

Inverse Gaussian distribution
Cramér;Rao lower bound 334;335
Fisher Information 18
pdf 18, 334
relation to Random Walk distribution 147

Inverse Triangular distribution 13;14
Inversion Theorem 53
Irwin;Hall distribution 55, 139
isobaric 272

J

Jacobian of the transformation 118, 123, 130,
223

Johnson family 164;174
as transformation of a Logistic rv 185
as transformation of a Normal rv 164
Types and chart 164

- SL (Lognormal) 165;167
- SU (Unbounded) 168;172
- SB (Bounded) 173;174

K

k-statistic 20, 256;261
kernel density (see non-parametric kernel density)
KhinchineZs Theorem 298
KhinchineZs Weak Law of Large Numbers 278,

296;298, 366
Kronecker product 437
kurtosis

building your own function 446
definition 40;41
of Binomial 93
of Poisson 446
of Weibull 42
Pearson family 149;150

L

Laplace distribution
as Linnik 54
as Reflected Gamma 33
order statistics of 23, 315;317
relation to Exponential 139;140

latent variable 353, 412
Lehmann;Scheffé Theorem 346
Levy distribution

as a stable distribution 58
as an Inverse Gamma 58
cdf, pdf, pseudo-random number 74

likelihood
function 21, 350;357
observed 22, 351;357
see also log-likelihood

limit distribution
definition 279
of Binomial 280, 281
of sample mean (Normal) 279

limits in Mathematica 278
Lindley distribution

characteristic function 51
Fisher Information 326;327
pdf 51, 327

linear regression function 221
linex (linear;exponential) loss 322
linguistics 107
Linnik distribution 54
List Form 82, 111
log-likelihood

concentrated 361, 382;383, 418
function 21, 357;376, 381
observed log-likelihood

- ARCH model (stock prices) 387
- Exponential model (nerve data) 381
- Exponential regression (income) 396
- Gamma model (nerve data) 382;383
- Logit model (dosage data) 90
- Ordered Probit model (psychiatric data)

414;415
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- Poisson two-component-mix model
405;406

see also likelihood
Logarithmic distribution 115
Logistic distribution

as base for a Johnson-style family 185
bivariate 248, 249
pdf 23, 318
order statistics of 23
relation to Uniform 147
sample mean vs sample median 318;320

Logit model 90;91
Lognormal distribution

and stock prices 71
as member of Johnson family 165;167
as transformation of Normal 120, 165
censored below 71
moments of sample sum 276
pdf 71, 120

Lorenz curve 43;44
loss function 301;305

asymmetric 303;304
asymmetric quadratic 322, 323
linex (linear;exponential) 322
quadratic 306

M

machine-precision numbers 423;425
marginal distribution 195;196

and copulae 211
joint pdf as product of marginals 210, 211,

351, 355
more examples 12, 126, 133;137, 146, 204,

214, 220, 224;225, 237;238, 244
Markov chain 94, 447;448
MarkovZs inequality 295;296
Mathematica

assumptions technology 8;9
bracket types 27
changes to default behaviour 443;445
differentiation with respect to powers 326
Greek alphabet 28
how to enter m

£

r  30
kernel (fresh and crispy) 5, 425
limits 278
lists 428;429
matrices 433;437, 445
notation (common) 27
notation entry 28;30
packages 425
replacements 27
subscripts 429;432
timings 30
upper and lower case conventions 24
using � in Input cells 443
vectors 438;443
see also plotting techniques

mathStatica
Basic vs Gold version 4
Continuous distribution palette 5
Discrete distribution palette 5
HELP 5
installation 3
loading 5
registration 3
working with parameters 8

maximum likelihood estimation (see MLE)
Maxwell;Boltzmann distribution 32
mean 35;36, 45

see also sample mean
mean deviation 40, 41, 299, 421;422
mean square error (see MSE)
median 37

of Pareto distribution 37;38
see also sample median

medical 90;91, 155, 380, 405, 412
method of moments estimator 183;184

for Bernoulli 184
for Chi-squared 283
for Gamma 184

mgf (moment generating function)
and cumulant generating function 60
and independence 210
central mgf 93, 203, 205, 247
definition 46, 203
Inversion Theorem 53
Uniqueness Theorem 52
of Binomial 93, 141, 281
of bivariate Exponential (Gumbel Model I)

204
of bivariate Exponential (Gumbel Model II)

12
of bivariate Normal 220
of bivariate Poisson 246
of Chi-squared 131
of Gamma 142, 456
of Multinomial 239, 241;242, 242;243
of multivariate Gamma 208
of multivariate Normal 249
of noncentral Chi-squared 144
of Normal 47
of Pareto 49
of sample mean 141
of sample sum 141
of sample sum of squares 141
of Uniform 48

MGF Method 52;56, 130;132, 141;147
MGF Theorem 52, 141

more examples 281, 364;365
minimax estimator 305
minimum variance unbiased estimation (see

MVUE)
mixing distributions 102;109

component-mix 102;104, 249, 405;411
parameter;mix 105;109
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MLE (maximum likelihood estimation) 357;376
asymptotic properties 365;366, 371;376
general properties 362
invariance property 369;371
more than one parameter 371;374
non-iid samples 374;376
numerical MLE (see Chapter 12)

- ARCH model (stock prices) 387
- Exponential model (nerve data) 381
- Exponential regression model (income)

396
- Gamma model (nerve data) 382;383
- Logit model (dosage data) 90
- Normal model (random data) 418
- Ordered Probit model (psychiatric data)

414;415
- Poisson two-component-mix model

405;406
regularity conditions

- basic 367;369
- more than one parameter 371;372
- non-iid samples 374;375

small sample properties 363;365
symbolic MLE (see Chapter 11)

- for Exponential 358
- for Normal 359;360, 418
- for Pareto 360;361
- for Power Function 362;363
- for Rayleigh 21
- for Uniform 377

mode 36
moment conversion functions

univariate 62;64
multivariate 206;210

moment generating function (see mgf)
moments

central moment 45, 200
factorial moment 60, 206;207
fitting moments (see Pearson, Johnson,

method of moments)
negative moment 80
population moments vs sample moments 251
product moment 200, 266
raw moment 45, 200

moments of moments 261;271
introduction 20

moments of sampling distributions 251;276
monomial symmetric function 273
Monte Carlo 290

see also pseudo-random number generation
see also simulation

Morgenstern 212
MSE (mean square error)

as risk 306;311
comparing h-statistics with polyaches

264;266
of sample median and sample mean

(Logistic) 318;320

of sample range and sample maximum
(Uniform) 320;321

weak law of large numbers 296;297
multinomial coefficient 451
Multinomial distribution 238;243
multiple local optima 400
multivariate Cauchy distribution 236
multivariate Gamma distribution (Cheriyan and

Ramabhadran) 208
multivariate Normal distribution 216;235
multivariate StudentZs t 236
mutually stochastically independent 210
MVUE (minimum variance unbiased estimation)

341;346, 364

N

Negative Binomial distribution 99, 105, 418
noncentral Chi-squared distribution

as Chi-squared;Poisson mixture 105
derivation 144
exercises 299

noncentral F distribution 135
non-parametric kernel density 181;183

with bi-weight, tri-weight kernel 182
with Epanechnikov kernel 182
with Gaussian kernel 19, 182

non-rectangular domain 124, 125, 190;191,
320;321

Normal distribution
and Gram;Charlier expansions 175
as a stable distribution 57
as limit distribution of a Binomial 93, 281,

299
as member of Johnson family 164;165, 167
as member of Pearson family 150, 158
asymptotic distribution of MLE of (m, s2)

372;374
basics 8
bivariate Normal 216;226
censored below 69
central moments 265
characteristic function 50, 57
characteristic function of X1X2 132
conditional expectation of sample median,

given sample mean 342;343
distribution:

- of product of two Normals 132, 133
- of ratio of two Normals 134
- of X2 129, 131
- of sample mean 143, 294;295
- of sample sum of squares 144
- of sample sum of squares about the mean

145
estimators for the Normal variance 307;308
finance 56, 108;109
Fisher Information 330;331
limit distribution of sample mean 279
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limit Normal distribution 362, 367
- examples 369, 392;395

mgf 47
mgf of X2 131
MLE of (m, s2) 359;360, 418
MVUE of (m, s2) 346
Normal approximation to Binomial 93, 281,

299
pseudo-random number generation

- approximate 291;292
- exact 72;73, 418

QQ plot 291
raw moments 46
relation to Cauchy 134
relation to Chi-squared 129, 131
relation to Lognormal 120
risk of a Normally distributed estimator

303;304
sample mean as consistent estimator of

population mean 294;295
standardising a Normal rv 120
sufficient statistics for (m, s2) 340;341
trivariate Normal 226;228
truncated above 65;66, 67
working with s vs s2 326, 377, 455

see also Invariance Property
Normal linear regression model 221;222, 385,

457
notation

Mathematica notation
- bracket types 27
- Greek alphabet 28
- how to enter m

£

r  30
- notation (common) 27
- notation entry 28;30
- replacements 27
- subscripts 429;432
- upper and lower case conventions 24
- using � in Input cells 443

statistics notation
- abbreviations 25
- sets and operators 25
- statistics notation 26
- upper and lower case conventions 24

O

one-to-one transformation 118
optimisation

differentiation with respect to powers 326
first-order condition 21, 36, 357;361, 363
gradient 357;361
Hessian matrix 358, 360
multiple local optima 400
score 357;361
second-order condition 22, 36;37, 357;360
unconstrained vs constrained numerical

optimisation 369, 379, 388;389, 401,
414

optimisation algorithms 399;405
Armijo 408
BFGS (Broyden;Fletcher;Goldfarb;Shanno)

399;400, 403, 405;411, 459
DFP (Davidon;Fletcher;Powell) 403
direct search 400
genetic 400
Golden Search 401
Goldstein 408
gradient method 400, 401;405
line search 401
Method � Newton 390;391, 397, 403,

415, 459
Method � QuasiNewton 403, 406;407,

419, 459
NR (Newton Raphson) 390;391, 397,

399;400, 403, 412;417, 458;459
numerical convergence 404;405
Score 403;404
simulated annealing 400
taboo search 400

option pricing 70;72
order statistics 311;322

distribution of:
- sample maximum 312, 321
- sample minimum 312
- sample median 318;320
- sample range 320;321

for Exponential 313;314
for Laplace 23, 315;317
for Logistic 23
for Uniform 312
joint order statistics 23, 314, 316, 320

Ordered Probit model 412;417
ordinary least squares 385
orthant probability 231
Outer-product estimator 395;396, 398

P

p-value 393;394
parameter identification problem 414
parameter-mix distribution 105;109
Pareto distribution

characteristic function 51
median 37;38
mgf 49
MLE 360;361
pdf 37, 49, 51, 360
quantiles 38
relation to Exponential 121
relation to Power Function 147
relation to Riemann Zeta 107

Pascal distribution 10, 99
pdf (probability density function)

definition 31, 187
see also Distributions
see also pmf (for discrete rvZs)
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peakedness 40;41, 108;109
Pearson family 149;163

animated tour 150
Pearson coefficients in terms of moments

159;160
Types and chart 150

- Type I, 17, 156, 158, 185
- Type II, 158
- Type III, 154, 157, 185
- Type IV, 151;153, 157
- Type V, 158, 185
- Type VI, 158
- Type VII, 157

unimodal 179
using a cubic polynomial 161;163

penalty function 400, 407, 415
pgf (probability generating function)

definitions 60, 84, 203
deriving probabilities from pgf 85, 85;86,

86, 104, 245
of bivariate Poisson 244;245
of Hypergeometric 100
of Negative Binomial 99
of Pascal 11
of Zero-Inflated Poisson 104

physics 32, 94;95
piecewise distributions

BatesZs distribution 289;290
Inverse Triangular 13
Laplace 23, 315;317
order statistics of 23
Reflected Gamma 33

plotting techniques (some examples)
arrows 37, 81, 280
contour plots 188, 218, 227
data

- bivariate / trivariate 233;235
- grouped data 18, 155
- raw 151

see also frequency polygon
- scatter plot 397
- time-series 384
see also empirical pdf / pmf

domain of support (bivariate) 125, 138, 140
empirical pdf 73, 77, 154, 381, 383
empirical pmf 16, 110, 111, 112
filled plot 44, 68
frequency polygon 73, 77, 151, 154, 380
graphics array 32, 38, 68, 109, 118, 124, 168,

174, 218
histogram 18, 155
Johnson system 170
non-parametric kernel density 19, 182;183
parametric plot 167
pdf plots 6, 139, etc.

- as parameters change 8, 14, 32, 145, 165,
225, 313, 315

- 3D 11, 188, 198, 213, 214, 217, 316
Pearson system 17, 152

pmf plots 10, 83, 98, 101, 103
- as parameters change 87, 92, 96
- 3D 190

QQ plots 291
scatter plot 397
superimposing plots 34, 35, 37, 42, 54, 55,

69, 91, 133, 219, 302, 306
text labels 32, 37, 54, 145, 302, 306, 313
wireframe 228
see also animations

pmf (probability mass function)
definitions 82, 189
see also Distributions ; Discrete
see also pdf (for continuous rvZs)

Poisson distribution 95;98
as limit distribution of Binomial 95, 280, 300
bivariate Poisson 243;248
censoring 327;328
Cramér;Rao lower bound 334
cumulant generating function 96
distribution of sample sum 137
kurtosis 446
odd-valued Poisson 97;98
pmf 16, 95, 110, 334
Poisson two-component-mix 102;103, 406
pseudo-random number generation 16, 110
sufficient statistic for l 340
zero-inflated Poisson 104

poker 101
Pólya;Aeppli distribution 105
polyache 255;256
polykay 257;259
Power Function distribution

as a Beta rv 185, 363
as defining Pearson Type I(J) 185
MLE 362;363
relation to Pareto 147
sufficient statistic 363;364

power sum 252, 272;276
probability

conditional 65, 97
multivariate 191;194
orthant probability 231
probability content of a region 192;193,

230;231
throwing a die 84;87
see also cdf

probability density function (see pdf)
probability generating function (see pgf)
probability mass function (see pmf)
probit model 412;413
product moment 200, 266
products / ratios of random variables 133;136

see also:
- deriving the pdf of the bivariate t

237;238
- product of two Uniforms 126;127

Proportional-hazards model 412
Proportional-odds model 412
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pseudo-random number generation
methods

- inverse method (numerical) 75;77,
109;115

- inverse method (symbolic) 74;75
- MathematicaZs Statistics package 72;73
- rejection method 77;79

and censoring 114
computational efficiency 113, 115
List Form 111
of Birnbaum;Saunders 78
of Gamma 73
of half-Halo 75;77
of Holla 112
of Levy 74
of multivariate Normal 232;234
of Normal 291;292, 418
of Poisson 16, 110
of Riemann Zeta 113
visualising random data in 2D, 3D 233;235

Q

QQ plot 291
quantiles 37

of Birnbaum;Saunders 38;39
of bivariate Normal 218;219
of bivariate StudentZs t 237
of Pareto 38
of trivariate Normal 227;228

R

random number (see pseudo-random number)
random variable

continuous 31, 81, 187
discrete 81;82, 189
see also Distributions

Random Walk distribution 147
random walk with drift 355, 384;386
Rao;Blackwell Theorem 342
raw moment 45, 200
Rayleigh distribution

MLE 21
relation to Exponential 122

rectangular domain 124, 190
reference computer 30
Reflected Gamma distribution 33;34
registration 3
regression 384;392
regression function 197, 221;222
regularity conditions

for Fisher Information 329;330
for MLE

- basic 367;369
- more than one parameter 371;372
- non-iid samples 374;375

relative mean deviation 299
re-parameterisation 369, 388;389, 401, 406, 410,

414
Riemann Zeta distribution

area of application 107
Fisher Information 329
pmf 113, 329
pseudo-random number generation 113

risk 301;305
Robin Hood 222;224

S

sample information 332, 338, 376
sample maximum 311, 312, 320;321, 377
sample mean

as consistent estimator (Khinchine) 298
as consistent estimator (Normal) 294;295
as MLE (for Exponential parameter) 358
as MLE (for Normal parameter) 359;360
asymptotic distribution of sample mean 287
definition 277
distribution of sample mean

- for Cauchy 143
- for Normal 143
- for Uniform 139, 288;292

KhinchineZs Theorem 298
limit distribution of sample mean (Normal)

279
mgf of 141
variance of the sample mean 264
vs sample median, for Bernoulli trials

309;310
vs sample median, for Logistic trials

318;320
sample median

conditional expectation of sample median,
given sample mean 342;343

vs sample mean, for Bernoulli trials 309;310
vs sample mean, for Logistic trials 318;320

sample minimum 311, 312
sample moment 251

sample central moment 251, 360
- covariance between sample central

moments 266
- in terms of power sums 252
- variance of 264

sample raw moment 251
- as unbiased estimators of population raw

moments 253
- in terms of power sums 252

sample range 320;321
sample sum

asymptotic distribution of sample sum 287
definition 277
distribution of sample sum

- for Bernoulli 141
- for Chi-squared 142
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sample sum (cont.)
distribution of sample sum (cont.)

- for Exponential 141;142
- for Poisson 137
- for Uniform 55, 139

mgf of sample sum 141
moments of sample sum 261;271, 276

sample sum of squares
distribution of (Normal) 144
mgf of 141

sampling with or without replacement 100
scedastic function 197
score 357;361
second-order condition 22, 36;37, 357;360
security (stock) price 70;72, 108;109, 384
Sheather;Jones optimal bandwidth 19, 182
signal-to-noise ratio 299
Silverman optimal bandwidth 182
simulation 87;89, 126;127, 298;299

see also Monte Carlo
see also pseudo-random number

Sinc2 distribution 35;36
skewness

definition 40
of Weibull 42
Pearson family 149;150

SkorohodZs Theorem 456
small sample accuracy 289;292
smoothing methods 181;183
spherical distributions 234, 451
stable distributions 56;61
standard deviation 40, 45
standard error 395, 399
standardised random variable 40, 120, 281, 287
statistic 251
stopped-sum distribution 108
StudentZs t distribution

as member of Pearson family 157
as Normal;InverseGamma mixture 105
bivariate StudentZs t 237;238
derivation, pdf 134

sufficient statistic 337;341, 344, 362, 363;364
sums of random variables 136;147

deriving pmf of bivariate Poisson 244;245
sum of Bernoulli rvZs 141
sum of Chi-squared rvZs 142
sum of Exponentials 136, 141;142
sum of Poisson rvZs 137
sum of Uniform rvZs 54;55, 138;139
see also sample sum

Swiss bank notes 19, 185
symmetric function 253, 272;276
systems of distributions (see families) 149;180

T

t distribution (see StudentZs t)
t-statistic 395, 399

theorems
Berry;Esseen 453
Central Limit Theorem 286;292
Continuous Mapping Theorem 366, 456
Inversion Theorem 53
Khinchine 298
Lehmann;Scheffé 346
Lindeberg;Feller 453
Lindeberg;Lévy 287
MGF Theorem 52, 141
Rao;Blackwell Theorem 342
SkorohodZs Theorem 456
transformation theorems

- univariate 118
- multivariate 123
- not one-to-one 127

Uniqueness Theorem 52
timings 30
transformations 117;148

MGF Method 52;56, 130;132, 141;147
transformation method 118;130

- univariate 118
- multivariate 123
- manual 130
- Jacobian 118, 123, 130, 223
- one-to-one transformation 118
- not one-to-one 127

Helmert transformation 145
non-rectangular domain 124, 125
transformation to polar co-ordinates 222;223
see also:

- products / ratios of random variables
- sums of random variables

Triangular distribution
as sum of two Uniform rvZs 55, 138;139

Trinomial distribution 239
trivariate Normal 226;228

cdf 229;231
orthant probability 231
pseudo-random number generation 232;234
visualising random data 235

truncated distribution 65;67
truncated (above) standard Normal 65;66, 67
truncated bivariate Normal 224;226

U

unbiased estimators of parameters 325;347
asymptotic unbiasedness 366

unbiased estimators of population moments
251;261

introduction 20
multivariate 259;261
of central moments 253;254, 259;261
of cumulants 256;258, 260
of Normal population variance 307;308
of population variance 253, 254
of raw moments 253
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Uniform distribution
bivariate Uniform (à la Morgenstern)

212;213
Fisher Information 330
mgf 48
MLE 377
order statistics 312
other transformations of a Uniform rv 122
pdf 48, 122, 312, 320, 330
product of two Uniform rvZs 126;127
relation to Bates 139, 289;290
relation to Cauchy 119
relation to Exponential 121
relation to Irwin;Hall 55, 139
relation to Logistic 147
sample mean and Central Limit Theorem

288;292
sample range vs sample maximum 320;321
sum of Uniform rvZs 54;55, 138;139

unimodal 36, 179, 182;183
Uniqueness Theorem 52

V

van Beek bound 283;285, 453
variance

definition 40, 45
of sample mean 264
of 2nd sample central moment 264

variance-covariance matrix
asymptotic variance-covariance matrix

395;399, 404, 407, 410, 415, 418;419
definition 201

variance-covariance matrix (cont.)
of bivariate Exponential

- Gumbel Model I, 205
- Gumbel Model II, 12

of bivariate Normal 220
of bivariate Normal;Uniform 215
of bivariate Uniform 213
of trivariate models 202, 211
of truncated bivariate Normal 226
of unbiased estimators 333;335

W

Waiting-time Negative Binomial distribution 99
Waring distribution 418
weak law of large numbers 296;298
Weibull distribution 42

X

xenium (see book cover)

Y

Yule distribution 107

Z

zero-inflated distributions 103;104
Zipf distribution (see Riemann Zeta) 107
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